More stories

  • in

    Multi-community effects of organic and conventional farming practices in vineyards

    1.Díaz et al. Summary for Policymakers of the Global Assessment.pdf.2.Kehoe, L. et al. Biodiversity at risk under future cropland expansion and intensification. Nat. Ecol. Evolut. 1, 1129–1135 (2017).Article 

    Google Scholar 
    3.Hendershot, J. N. et al. Intensive farming drives long-term shifts in avian community composition. Nature 579, 393–396 (2020).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    4.Bommarco, R., Kleijn, D. & Potts, S. G. Ecological intensification: Harnessing ecosystem services for food security. Trends Ecol. Evol. 28, 230–238 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    5.Michael, D. R., Wood, J. T., O’Loughlin, T. & Lindenmayer, D. B. Influence of land sharing and land sparing strategies on patterns of vegetation and terrestrial vertebrate richness and occurrence in Australian endangered eucalypt woodlands. Agr. Ecosyst. Environ. 227, 24–32 (2016).Article 

    Google Scholar 
    6.Tittonell, P. Ecological intensification of agriculture—Sustainable by nature. Curr. Opin. Environ. Sustain. 8, 53–61 (2014).Article 

    Google Scholar 
    7.Willer, E. H., Schlatter, B., Trávní, J., Kemper, L. & Lernoud, J. The World of Organic Agriculture Statistics and Emerging Trends 2020. 337.8.Reganold, J. P. & Wachter, J. M. Organic agriculture in the twenty-first century. Nat. Plants 2 (2016).9.Connor, D. J. Organic agriculture cannot feed the world. Field Crop Res. 106, 187–190 (2008).Article 

    Google Scholar 
    10.Seufert, V. & Ramankutty, N. Many shades of gray—The context-dependent performance of organic agriculture. Sci. Adv. 3, e1602638 (2017).11.Smith, O. M. et al. Landscape context affects the sustainability of organic farming systems. Proc. Natl. Acad. Sci. 117, 2870–2878 (2020).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    12.Bengtsson, J., Ahnström, J. & Weibull, A.-C. The effects of organic agriculture on biodiversity and abundance: A meta-analysis: Organic agriculture, biodiversity and abundance. J. Appl. Ecol. 42, 261–269 (2005).Article 

    Google Scholar 
    13.Tuck, S. L. et al. Land-use intensity and the effects of organic farming on biodiversity: A hierarchical meta-analysis. J. Appl. Ecol. 51, 746–755 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    14.Lichtenberg, E. M. et al. A global synthesis of the effects of diversified farming systems on arthropod diversity within fields and across agricultural landscapes. Glob. Change Biol. 23, 4946–4957 (2017).ADS 
    Article 

    Google Scholar 
    15.Lori, M., Symnaczik, S., Mäder, P., De Deyn, G. & Gattinger, A. Organic farming enhances soil microbial abundance and activity—A meta-analysis and meta-regression. PLOS ONE 12, e0180442 (2017).16.Kleijn, D., Rundlöf, M., Scheper, J., Smith, H. G. & Tscharntke, T. Does conservation on farmland contribute to halting the biodiversity decline?. Trends Ecol. Evol. 26, 474–481 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    17.Birkhofer, K., Ekroos, J., Corlett, E. B. & Smith, H. G. Winners and losers of organic cereal farming in animal communities across Central and Northern Europe. Biol. Cons. 175, 25–33 (2014).Article 

    Google Scholar 
    18.Mackie, K. A., Müller, T., Zikeli, S. & Kandeler, E. Long-term copper application in an organic vineyard modifies spatial distribution of soil micro-organisms. Soil Biol. Biochem. 65, 245–253 (2013).CAS 
    Article 

    Google Scholar 
    19.Buchholz, J. et al. Soil biota in vineyards are more influenced by plants and soil quality than by tillage intensity or the surrounding landscape. Sci. Rep. 7 (2017).20.Hole, D. G. et al. Does organic farming benefit biodiversity?. Biol. Cons. 122, 113–130 (2005).Article 

    Google Scholar 
    21.Power, A. G. Ecosystem services and agriculture: Tradeoffs and synergies. Philos. Trans. R. Soc. B Biol. Sci. 365, 2959–2971 (2010).Article 

    Google Scholar 
    22.Peigné, J. et al. Earthworm populations under different tillage systems in organic farming. Soil Tillage Res. 104, 207–214 (2009).Article 

    Google Scholar 
    23.Biondi, A., Desneux, N., Siscaro, G. & Zappalà, L. Using organic-certified rather than synthetic pesticides may not be safer for biological control agents: Selectivity and side effects of 14 pesticides on the predator Orius laevigatus. Chemosphere 87, 803–812 (2012).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    24.Mehrabi, Z., Seufert, V., Ramankutty, N. The conventional versus alternative agricultural divide: A response to Garibaldi et al. Trends Ecol. Evolut. 32, 720–721 (2017).25.Tscharntke, T., Klein, A. M., Kruess, A., Steffan-Dewenter, I. & Thies, C. Landscape perspectives on agricultural intensification and biodiversity – ecosystem service management. Ecol. Lett. 8, 857–874 (2005).Article 

    Google Scholar 
    26.Gámez-Virués, S. et al. Landscape simplification filters species traits and drives biotic homogenization. Nat. Commun. 6 (2015).27.Holzschuh, A., Steffan-Dewenter, I. & Tscharntke, T. Agricultural landscapes with organic crops support higher pollinator diversity. Oikos 117, 354–361 (2008).Article 

    Google Scholar 
    28.Muneret, L., Auriol, A., Thiéry, D. & Rusch, A. Organic farming at local and landscape scales fosters biological pest control in vineyards. Ecol. Appl. 29, e01818 (2019).29.Gabriel, D. et al. Scale matters: The impact of organic farming on biodiversity at different spatial scales: Scale matters in organic farming. Ecol. Lett. 13, 858–869 (2010).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    30.Agreste. Pratiques Phytosanitaires en Viticulture. Campagne 2016. (2020)31.Agreste. La Viticulture Bio en Nouvelle-Aquitaine: Un Dynamisme à Tous les Stades de la Filière. (2020).32.Gruber, S. & Claupein, W. Effect of tillage intensity on weed infestation in organic farming. Soil Tillage Res. 105, 104–111 (2009).Article 

    Google Scholar 
    33.Pfingstmann, A. et al. Contrasting effects of tillage and landscape structure on spiders and springtails in vineyards. Sustainability 11, 2095 (2019).Article 

    Google Scholar 
    34.Dittmer, S. & Schrader, S. Longterm effects of soil compaction and tillage on Collembola and straw decomposition in arable soil. Pedobiologia 44, 527–538 (2000).Article 

    Google Scholar 
    35.Kolb, S., Uzman, D., Leyer, I., Reineke, A. & Entling, M. H. Differential effects of semi-natural habitats and organic management on spiders in viticultural landscapes. Agric. Ecosyst. Environ. 287, 106695 (2020).36.Birkhofer, K. et al. Relationships between multiple biodiversity components and ecosystem services along a landscape complexity gradient. Biol. Cons. 218, 247–253 (2018).Article 

    Google Scholar 
    37.Kratschmer, S. et al. Tillage intensity or landscape features: What matters most for wild bee diversity in vineyards?. Agric. Ecosyst. Environ. 266, 142–152 (2018).Article 

    Google Scholar 
    38.Ullmann, K. S., Meisner, M. H. & Williams, N. M. Impact of tillage on the crop pollinating, ground-nesting bee, Peponapis pruinosa in California. Agric. Ecosyst. Environ. 232, 240–246 (2016).Article 

    Google Scholar 
    39.Jiang, X., Wright, A. L., Wang, X. & Liang, F. Tillage-induced changes in fungal and bacterial biomass associated with soil aggregates: A long-term field study in a subtropical rice soil in China. Appl. Soil. Ecol. 48, 168–173 (2011).Article 

    Google Scholar 
    40.Zuber, S. M. & Villamil, M. B. Meta-analysis approach to assess effect of tillage on microbial biomass and enzyme activities. Soil Biol. Biochem. 97, 176–187 (2016).CAS 
    Article 

    Google Scholar 
    41.Luff, M. L. The biology of the ground beetle Harpalus rufipes in a strawberry field in Northumberland. Ann. Appl. Biol. 94, 153–164 (1980).Article 

    Google Scholar 
    42.Shearin, A. F., Reberg-Horton, S. C. & Gallandt, E. R. Direct effects of tillage on the activity density of ground beetle (Coleoptera: Carabidae) weed seed predators. Environ. Entomol. 36, 1140–1146 (2007).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    43.Rundlöf, M. et al. Seed coating with a neonicotinoid insecticide negatively affects wild bees. Nature 521, 77–80 (2015).ADS 
    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    44.Martin, E. A. et al. The interplay of landscape composition and configuration: new pathways to manage functional biodiversity and agroecosystem services across Europe. Ecol. Lett. 22, 1083–1094 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    45.Goded, S., Ekroos, J., Azcárate, J. G., Guitián, J. A. & Smith, H. G. Effects of organic farming on plant and butterfly functional diversity in mosaic landscapes. Agric. Ecosyst. Environ. 284, 106600 (2019).46.Rusch, A., Valantin-Morison, M., Sarthou, J.-P. & Roger-Estrade, J. Multi-scale effects of landscape complexity and crop management on pollen beetle parasitism rate. Landsc. Ecol. 26, 473–486 (2011).Article 

    Google Scholar 
    47.Tamburini, G., De Simone, S., Sigura, M., Boscutti, F. & Marini, L. Conservation tillage mitigates the negative effect of landscape simplification on biological control. J. Appl. Ecol. 53, 233–241 (2016).Article 

    Google Scholar 
    48.Le Féon, V. et al. Intensification of agriculture, landscape composition and wild bee communities: A large scale study in four European countries. Agric. Ecosyst. Environ. 137, 143–150 (2010).Article 

    Google Scholar 
    49.Sousa, J. P. et al. Changes in Collembola richness and diversity along a gradient of land-use intensity: A pan European study. Pedobiologia 50, 147–156 (2006).Article 

    Google Scholar 
    50.Vanbergen, A. J. et al. Scale-specific correlations between habitat heterogeneity and soil fauna diversity along a landscape structure gradient. Oecologia 153, 713–725 (2007).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    51.Lehmitz, R., Russell, D., Hohberg, K., Christian, A. & Xylander, W. E. R. Active dispersal of oribatid mites into young soils. Appl. Soil. Ecol. 55, 10–19 (2012).Article 

    Google Scholar 
    52.Concepción, E. D., Díaz, M. & Baquero, R. A. Effects of landscape complexity on the ecological effectiveness of agri-environment schemes. Landsc. Ecol. 23, 135–148 (2008).Article 

    Google Scholar 
    53.Tscharntke, T. et al. Landscape moderation of biodiversity patterns and processes – Eight hypotheses. Biol. Rev. 87, 661–685 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    54.Desneux, N., Decourtye, A. & Delpuech, J.-M. The sublethal effects of pesticides on beneficial arthropods. Annu. Rev. Entomol. 52, 81–106 (2007).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    55.Naveed, M. et al. Simultaneous loss of soil biodiversity and functions along a copper contamination gradient: When soil goes to sleep. Soil Sci. Soc. Am. J. 78, 1239–1250 (2014).ADS 
    Article 
    CAS 

    Google Scholar 
    56.Eijsackers, H., Beneke, P., Maboeta, M., Louw, J. P. E. & Reinecke, A. J. The implications of copper fungicide usage in vineyards for earthworm activity and resulting sustainable soil quality. Ecotoxicol. Environ. Saf. 62, 99–111 (2005).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    57.Le Provost, G. et al. Land-use history impacts functional diversity across multiple trophic groups. Proc. Natl. Acad. Sci. 117, 1573–1579 (2020).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    58.Muneret, L. et al. Organic farming expansion drives natural enemy abundance but not diversity in vineyard-dominated landscapes. Ecol. Evol. https://doi.org/10.1002/ece3.5810 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    59.Lechenet, M., Dessaint, F., Py, G., Makowski, D. & Munier-Jolain, N. Reducing pesticide use while preserving crop productivity and profitability on arable farms. Nat. Plants 3 (2017).60.Le Féon, V. et al. Solitary bee abundance and species richness in dynamic agricultural landscapes. Agric. Ecosyst. Environ. 166, 94–101 (2013).Article 

    Google Scholar 
    61.McCravy, K. & Ruholl, J. Bee (Hymenoptera: Apoidea) diversity and sampling methodology in a midwestern USA deciduous forest. Insects 8, 81 (2017).PubMed Central 
    Article 

    Google Scholar 
    62.Bano, R. & Roy, S. Extraction of Soil Microarthropods: A Low Cost Berlese-Tullgren Funnels Extractor. 4.63.Grueber, C. E., Nakagawa, S., Laws, R. J. & Jamieson, I. G. Multimodel inference in ecology and evolution: Challenges and solutions: Multimodel inference. J. Evol. Biol. 24, 699–711 (2011).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    64.Burnham, K. P. & Anderson, D. R. Multimodel inference: Understanding AIC and BIC in model selection. Sociol. Methods Res. 33, 261–304 (2004).MathSciNet 
    Article 

    Google Scholar 
    65.Bartoń, K. MuMIn: Multi-Model Inference. R Package Version 1.43.17. https://CRAN.R-project.org/package=MuMIn (2020).66.R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ (2020).67.Hartig, F. DHARMa: Residual Diagnostics for Hierarchical (Multi-Level/Mixed) Regression Models (2020). R Package Version 0.3.3.0. https://CRAN.R-project.org/package=DHARMa68.Bates, D., Maechler, M., Bolker, B., Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67(1), 1–48. https://doi.org/10.18637/jss.v067.i01 (2015). More

  • in

    Aquatic reservoir of Vibrio cholerae in an African Great Lake assessed by large scale plankton sampling and ultrasensitive molecular methods

    1.Mutreja, A. et al. Evidence for several waves of global transmission in the seventh cholera pandemic. Nature 477, 462–465 (2011).CAS 
    Article 

    Google Scholar 
    2.Ali, M., Nelson, A. R., Lopez, A. L. & Sack, D. A. Updated global burden of cholera in endemic countries. PLoS Negl. Trop. Dis. 9, e0003832 (2015).Article 

    Google Scholar 
    3.Bompangue, D. N. et al. Lakes as source of cholera outbreaks, Democratic Republic of Congo. Emerg. Infect. Dis. 14, 798–800 (2008).Article 

    Google Scholar 
    4.Weill, F. X. et al. Genomic history of the seventh pandemic of cholera in Africa. Science 358, 785–789 (2017).CAS 
    Article 

    Google Scholar 
    5.Hounmanou, Y. M. G. et al. Genomic insights into Vibrio cholerae O1 responsible for cholera epidemics in Tanzania between 1993 and 2017. PLoS Neglect Trop. D. 13, e0007934 (2019).Article 

    Google Scholar 
    6.Colwell, R. R. Global climate and infectious disease: the cholera paradigm. Science 274, 2025–2031 (1996).CAS 
    Article 

    Google Scholar 
    7.Singleton, F., Attwell, R., Jangi, M. & Colwell, R. Influence of salinity and organic nutrient concentration on survival and growth of Vibrio choleraein aquatic microcosms. Appl. Environ. Microbiol. 43, 1080–1085 (1982).CAS 
    Article 

    Google Scholar 
    8.Kirschner, A. K. T. et al. Rapid growth of planktonic Vibrio cholerae non-O1/non-O139 strains in a large alkaline lake in Austria: Dependence on temperature and dissolved organic carbon quality. Appl. Environ. Microb. 74, 2004–2015 (2008).CAS 
    Article 

    Google Scholar 
    9.Reid, P. C. et al. The continuous plankton recorder: concepts and history, from Plankton Indicator to undulating recorders. Prog. Oceanogr. 57, 117–173 (2003).Article 

    Google Scholar 
    10.Vezzulli, L. et al. Climate influence on Vibrio and associated human diseases during the past half-century in the coastal North Atlantic. Proc. Natl. Acad. Sci. USA. 113, E5062–E5071 (2016).CAS 
    Article 

    Google Scholar 
    11.Huq, A. et al. Detection, isolation, and identification of Vibrio cholerae from the environment. Curr. Protoc. Microbiol. https://doi.org/10.1002/9780471729259.mc06a05s26 (2012).12.Thompson, F. L. et al. Phylogeny and molecular identification of vibrios on the basis of multilocus sequence analysis. Appl. Environ. Microb. 71, 5107–5115 (2005).CAS 
    Article 

    Google Scholar 
    13.Vezzulli, L. et al. GbpA as a novel qPCR target for the species-specific detection of Vibrio cholerae O1, O139, Non-O1/Non-O139 in environmental, stool, and historical continuous plankton recorder samples. s. PLoS ONE 10, e0123983 (2015).Article 

    Google Scholar 
    14.Alam, M. et al. Toxigenic Vibrio cholerae in the aquatic environment of Mathbaria, Bangladesh. Appl. Environ. Microb. 72, 2849–2855 (2006).CAS 
    Article 

    Google Scholar 
    15.Senoh, M. et al. Isolation of viable but nonculturable Vibrio cholerae O1 from environmental water samples in Kolkata, India, in a culturable state. Microbiol. Open 3, 239–246 (2014).CAS 
    Article 

    Google Scholar 
    16.Vezzulli, L. et al. Whole-genome enrichment provides deep insights into vibrio cholerae metagenome from an African river. Microb. Ecol. 73, 734–738 (2017).CAS 
    Article 

    Google Scholar 
    17.Kaboré, S. et al. Occurrence of Vibrio cholerae in water reservoirs of Burkina Faso. Res Microbiol 169, 1–10 (2018).Article 

    Google Scholar 
    18.Bwire, G. et al. Environmental surveillance of Vibrio cholerae O1/O139 in the five African Great Lakes and other major surface water sources in Uganda. Front. Microbiol. 9, 1560 (2018).Article 

    Google Scholar 
    19.Vezzulli, L., Baker-Austin, C., Kirschner, A., Pruzzo, C. & Martinez-Urtaza, J. Global emergence of environmental non-O1/O139 Vibrio cholerae infections linked with climate change: a neglected research field? Environ. Microbiol. 22, 4342–4355 (2020).CAS 
    Article 

    Google Scholar  More

  • in

    Novel robust time series analysis for long-term and short-term prediction

    The data needed for estimating the SR relationship consist of spawning biomass (S) and recruitment (R) observed over time. A lognormal distribution is frequently used as the distribution of errors for SR relationships13. We therefore assume that the residuals from a regression model having (r=log (R)) as a response variable and the logarithm of the latent SR relationship as the mean will have a normal distribution. In addition, we assume that the latent SR relationship is likely to be contaminated by some outliers given that fish populations often suffer from nonnegligible contamination, such as sporadic strong cohorts5.Figure 3Parameter estimates of the density-independent parameter (a), density-dependent parameter (b), and autocorrelation ((rho)) for the simulation using the HS SR function with autocorrelation (true (rho = 0.8)) in the residuals.Full size imageFigure 4Application of the robust SR model to fish population data from Japan. (Top) Estimates of ((b-min (S))/(max (S)-min (S))) using the LS and RSR methods. (Bottom) Examples of fitted SR curves using the LS (black line) and RSR (red line) methods (left, walleye pollock in the Sea of Japan; right, round herring in the Tsushima warm current).Full size imageA robust regression approachSuppose that the logarithm of recruitment ((r_t = log (R_t), (t = 1, ldots , T))) has the following autocorrelated normal distribution,$$begin{aligned} r_t = f(S_t|{varvec{theta }})+varepsilon _t, end{aligned}$$
    (1)
    where (varepsilon _t) is a scaled autoregressive error of order one, that is, (sqrt{lambda _t}(varepsilon _t-rho sqrt{lambda _{t-1}} varepsilon _{t-1})= e_t) with a gaussian noise (e_t) of mean zero and variance (sigma ^2), (S_t) is the spawning biomass, (f(S_t|{varvec{theta }})) is the logarithm of a density-dependent population growth model (spawner-recruitment (SR) curve), ({varvec{theta }}) is the parameter (vector) of the SR curve, (rho) is the autocorrelation, and (sigma ^2) is the base variance of the normal distribution. (lambda _t , (in (0,1])) is the weight for a datum in year t. Rearranging the equation for (varepsilon _t), we have (varepsilon _t sim N(rho sqrt{lambda _{t-1}} varepsilon _{t-1}, sigma ^2/lambda _t)) (Appendix A). We define (lambda _t) to be related to the magnitude of the residual (varepsilon _t),$$begin{aligned} lambda _t = exp left( – phi varepsilon _t^2 right) , end{aligned}$$where (phi , ( >0)) is the parameter that adjusts the influence of outliers. Given that the base variance (sigma ^2) is divided by (lambda _t), the variance is inflated when the difference between the datum and the SR curve is large. The model is equivalent to the AR(1) model when (lambda _t equiv 1) (i.e., (phi =0)) for any t. (sqrt{lambda _t}) is interpreted as the probability of the datum being generated from an uncontaminated normal distribution. When changing the (phi) parameter with (rho =0), the shapes of the probability density function and its derivative are similar to the Tukey’s biweight (also called bisquare) function14, which is close to the gaussian function near zero but decays swiftly as the datum becomes farther from zero (Fig. 1).By solving the equation at equilibrium, the mean deviance residual at (t=1) is zero and the variance at (t=1) is given by ({text{var}}({varepsilon_{1}} ){ = }{sigma ^{2}} {{/}}left[ {lambda _{1}} left( {1} – {rho ^{2}} {tilde{lambda }} right) right]), where ({tilde{lambda }}) is calculated by substituting the sample mean of (lambda _t), (tilde{lambda } = (1/T) sum _{t=1}^T lambda _t) (Appendix B). Incorporating the initial status, the log-likelihood function to be maximized is given by$$begin{aligned} log (L) = sum _{t=1}^T log left( N(r_t|f(S_t|{varvec{theta }})+delta _t, nu _t sigma ^2 lambda _t^{-1}) right) , end{aligned}$$
    (2)
    where (delta _{t} = 0) and (nu _{t} = (1-rho ^2 tilde{lambda })^{-1}) if (t = 1), and (delta _{t} = rho sqrt{lambda _{t-1}} varepsilon _{t-1}) and (nu _{t} = 1) if (t > 1). Because (varepsilon _{t-1}) increases and (lambda _{t-1}) decreases when there is an outlier at (t-1), the multiplication of (rho) and (sqrt{lambda _{t-1}}) mitigates the influence of an extreme outlier on autocorrelation and contributes to the restoration of the original autocorrelation.We need to estimate the parameters (sigma), (rho), and (phi) in addition to the SR relationship parameters ({varvec{theta }}). The parameter (phi) determines the mixing proportion of contamination and governs the predictive ability of the model. We use time series cross-validation15, which is also called retrospective forecasting16 (RF), to stably determine the value of (phi). First we delete the last datum. Then we use the SR relationship estimated from the data excluding the last datum to forecast recruitment and calculate its error assuming that the deleted recruitment for the last year is true. Next, we delete the two last data, forecast the second-to-last recruitment, and calculate the error assuming that the deleted second-to-last year’s recruitment is true. After the procedure is repeated on a rolling basis, the (phi) parameter having the smallest average error is finally selected. The optimum (phi) is determined by minimizing the following RF error:$$begin{aligned} RF_R = exp left( frac{1}{P} sum _{t=1}^P log left[ left( r_{T-(t-1)} -hat{r}_{T-(t-1)}^{1:(T-t)} right) ^2 right] right) . end{aligned}$$
    (3)
    This is the geometric mean of predicted errors, which stabilizes the performance of retrospective forecasting. (r_{T-(t-1)}) is the logarithm of observed recruitment in year (T-(t-1)) and (hat{r}_{T-(t-1)}^{1:(T-t)}) is the predicted value estimated using the data from years 1 to (T-t), which is given by$$begin{aligned} hat{r}_{T-(t-1)}^{1:(T-t)} = f(S_{T-(t-1)}|hat{varvec{theta }})+hat{rho } sqrt{hat{lambda }_{T-t}} hat{varepsilon }_{T-t}, end{aligned}$$where (t = 1, ldots , P). We adopt (P=10) for stable estimation in this paper, though we commonly take 5 as the minimum P17.All subsequent analyses are performed using R18 and its package TMB19 (Template Model Builder).SimulationWe generate the simulated data ((left{ (R_t, S_t) ; t = 1, ldots , T right})) with some outliers and autocorrelated errors and test the performance of our robust SR (RSR) method in comparison with the LS and LAD methods. LAD was chosen because it is a typical robust method and is generally superior to the least median squares method used in Chen & Paloheimo (1995)11. The average recruitment data are generated from the Hockey–Stick (HS) SR function12, (f(S_t|{varvec{theta }}) = log left( a min (S_t, b) right)), where ({varvec{theta }} = (a, b) = (1.2, 500)). Stochastic normal errors are added to the log recruitment data with or without autocorrelation. When there is an autocorrelation in the residuals of log recruitment, the autocorrelation is set to (rho = 0.8). To examine the effect of outliers, we add the outliers that occur at the expected frequency of twice per 10 years ((p=0.2)) to the residuals of log recruitment. The patterns of outlier occurrence are threefold: evenly occurring positive and negative outliers ((q=0.5)), all positive outliers ((q=1.0)), and all negative outliers ((q=0.0)) (see Appendix C for the definition of q). We then have eight types of simulated data (no outliers, positive and negative outliers, all positive outliers, and all negative outliers for autocorrelation in the normal residual (rho = 0) and (rho =0.8), respectively). The simulations are replicated 1,000 times for each of the eight types. The length of each SR data time series (T) is set to 30 years which is typical for SR time series data9,12. The performance of the methods is evaluated by two indicators that represent long-term and short-term predictive abilities ((hat{R}_0 – R_0)/R_0) and ((hat{R}_{T+1} – R_{T+1})/R_{T+1}), respectively, where the former is the asymptotic maximum recruitment ((R_0 = ab) for the HS SR function) and the latter is recruitment in the ensuing year (T+1), which is given by (R_{T+1} = exp (f(S_{T+1}|{varvec{theta }}) + rho omega _{T} + eta _{T+1})), where (omega _T) and (eta _{T+1}) are independent gaussian noises (Appendix C). Note that the true recruitment at (T+1) does not include any outliers. The mathematical details of the simulation are given in Appendix C. Autocorrelation is always estimated such that (rho) is set to zero when an estimate of (rho) is equal to or less than zero because a negative autocorrelation is usually impractical20. The parameter (log (phi )) in RSR is chosen from the grid values from (-3.0) to 3.0 in increments of 0.5. The best (phi) is a minimizer of the RF error (RF_R) (Eq. 3).For sensitivity tests, we conduct the following additional simulations: (S1) same as the above base case scenario (S0) except that (a = 1.8); (S2) same as S0 except that (p = 0.1) (the expected frequency of outliers is once every 10 years) in place of (p=0.2); (S3) same as S0 except that (p = 0.3) (the expected frequency of outliers is three times every 10 years) in place of (p=0.2); (S4) same as S0 except that (f(S_t|{varvec{theta }})) is the logarithm of the Beverton–Holt function; (S5) same as S0 except that (f(S_t|{varvec{theta }})) is the logarithm of the Ricker function; S6) same as S0 except for the spawner-abundance dependent p, in which the expected frequency of outliers is higher for lower spawner abundances than for higher spawner abundances.Finally, we calculate biological reference points related to maximum sustainable yield (MSY), i.e., fishing rate at MSY ((F_{rm {msy}})) and spawning biomass at MSY ((S_{rm {msy}})), for each scenario and evaluate their relative biases. To calculate (F_{rm {msy}}) and (S_{rm {msy}}), we require additional information on survival and growth as well as an assumption about population dynamics. For simplicity, we use the delay-difference model as the population dynamics model5. The mathematical details are given in Appendix D.Real data analysisIchinokawa, Okamura & Kurota (2017) fitted the SR curves to fish population data from Japan which comprise 26 SR datasets (Appendix E), demonstrating that some populations showed strong density dependence but others had weak or low density dependence. We fit the HS SR curves to the same 26 SR datasets used in Ichinokawa, Okamura & Kurota (2017). Because Ichinokawa, Okamura & Kurota (2017) used LS as the fitting method, we use LS and RSR to compare the density-independent parameter (log (hat{a})), standardized density-dependent parameter (( hat{b}-min (S) )/( max (S) – min (S) )), autocorrelation in the residuals (hat{rho }), and predictability (hat{RF}_R) in the HS SR curves. More

  • in

    Recent CO2 levels promote increased production of the toxin parthenin in an invasive Parthenium hysterophorus biotype

    1.Climate Change: Vital Signs of the Planet (NASA, 2021); https://climate.nasa.gov/vital-signs/carbon-dioxide2.Kimball, B. A. Crop responses to elevated CO2 and interactions with H2O, N, and temperature. Curr. Opin. Plant Biol. 31, 36–43 (2016).CAS 
    Article 

    Google Scholar 
    3.Leakey, A. D. B. et al. Elevated CO2 effects on plant carbon, nitrogen, and water relations: six important lessons from FACE. J. Exp. Bot. 60, 2859–2876 (2009).CAS 
    Article 

    Google Scholar 
    4.Lee, T. D., Barrott, S. H. & Reich, P. B. Photosynthetic responses of 13 grassland species across 11 years of free-air CO2 enrichment is modest, consistent and independent of N supply. Glob. Change Biol. 17, 2893–2904 (2011).Article 

    Google Scholar 
    5.Ainsworth, E. A. & Long, S. P. 30 years of free-air carbon dioxide enrichment (FACE): what have we learned about future crop productivity and its potential for adaptation? Glob. Change Biol. 27, 27–49 (2021).Article 

    Google Scholar 
    6.Dusenge, M. E., Duarte, A. G. & Way, D. A. Plant carbon metabolism and climate change: elevated CO2 and temperature impacts on photosynthesis, photorespiration and respiration. New Phytol. 221, 32–49 (2019).CAS 
    Article 

    Google Scholar 
    7.Sardans, J. et al. Ecometabolomics for a better understanding of plant responses and acclimation to abiotic factors linked to global change. Metabolites 10, 239 (2020).CAS 
    Article 

    Google Scholar 
    8.Poorter, H. & Navas, M.-L. Plant growth and competition at elevated CO2: on winners, losers and functional groups. New Phytol. 157, 175–198 (2003).Article 

    Google Scholar 
    9.Parmesan, C. & Hanley, M. E. Plants and climate change: complexities and surprises. Ann. Bot. 116, 849–864 (2015).Article 

    Google Scholar 
    10.Ode, P. J., Johnson, S. N. & Moore, B. D. Atmospheric change and induced plant secondary metabolites—are we reshaping the building blocks of multi-trophic interactions? Curr. Opin. Insect Sci. 5, 57–65 (2014).Article 

    Google Scholar 
    11.Robinson, E. A., Ryan, G. D. & Newman, J. A. A meta-analytical review of the effects of elevated CO2 on plant–arthropod interactions highlights the importance of interacting environmental and biological variables. New Phytol. 194, 321–336 (2012).CAS 
    Article 

    Google Scholar 
    12.Willeit, M., Ganopolski, A., Calov, R. & Brovkin, V. Mid-Pleistocene transition in glacial cycles explained by declining CO2 and regolith removal. Sci. Adv. 5, eaav7337 (2019).CAS 
    Article 

    Google Scholar 
    13.Busch, F. A. & Sage, R. F. The sensitivity of photosynthesis to O2 and CO2 concentration identifies strong Rubisco control above the thermal optimum. New Phytol. 213, 1036–1051 (2017).CAS 
    Article 

    Google Scholar 
    14.Drake, B. G., Gonzàlez-Meler, M. A. & Long, S. P. More efficient plants: a consequence of rising atmospheric CO2? Annu. Rev. Plant Physiol. Plant Mol. Biol. 48, 609–639 (1997).CAS 
    Article 

    Google Scholar 
    15.Ziska, L. H., Sicher, R. C., George, K. & Mohan, J. E. Rising atmospheric carbon dioxide and potential impacts on the growth and toxicity of poison ivy (Toxicodendron radicans). Weed Sci. 55, 288–292 (2007).CAS 
    Article 

    Google Scholar 
    16.Ziska, L. H. & Caulfield, F. A. Rising CO2 and pollen production of common ragweed (Ambrosia artemisiifolia L.), a known allergy-inducing species: implications for public health. Funct. Plant Biol. 27, 893 (2000).Article 

    Google Scholar 
    17.Ziska, L. H., Panicker, S. & Wojno, H. L. Recent and projected increases in atmospheric carbon dioxide and the potential impacts on growth and alkaloid production in wild poppy (Papaver setigerum DC.). Clim. Change 91, 395 (2008).CAS 
    Article 

    Google Scholar 
    18.Del Fabbro, C. & Prati, D. The relative importance of immediate allelopathy and allelopathic legacy in invasive plant species. Basic Appl. Ecol. 16, 28–35 (2015).Article 

    Google Scholar 
    19.Ni, G. et al. Exploring the novel weapons hypothesis with invasive plant species in China. Allelopath. J. 29, 199–214 (2012).
    Google Scholar 
    20.Peñuelas, J. et al. Higher allocation to low cost chemical defenses in Iinvasive species of Hawaii. J. Chem. Ecol. 36, 1255–1270 (2010).Article 

    Google Scholar 
    21.Bajwa, A. A., McClay, A. & Adkins, S. W. in Parthenium Weed: Biology, Ecology and Management (eds Adkins, S., Shabbir, A. et al.) 7–39 (CABI, 2019).22.Adkins, S. & Shabbir, A. Biology, ecology and management of the invasive parthenium weed (Parthenium hysterophorus L.): management of parthenium weed. Pest Manag. Sci. 70, 1023–1029 (2014).CAS 
    Article 

    Google Scholar 
    23.Niranjan, A. et al. Identification and quantification of heterologous compounds parthenin and organic acids in Parthenium hysterophorus L. using HPLC-PDA-MS-MS. Anal. Lett. 46, 48–59 (2013).Article 

    Google Scholar 
    24.Belz, R. G., van der Laan, M., Reinhardt, C. F. & Hurle, K. Soil degradation of parthenin—does it contradict the role of allelopathy in the invasive weed Parthenium hysterophorus L.? J. Chem. Ecol. 35, 1137–1150 (2009).CAS 
    Article 

    Google Scholar 
    25.Hanif, Z., Adkins, S. W., Prentis, P. J., Navie, S. C. & O’Donnell, C. J. Characterization of the reproductive behaviour and invasive potential of parthenium weed in Australia. Pak. J. Weed Sci. Res. 18, 767–774 (2012).
    Google Scholar 
    26.Bajwa, A. A., Chauhan, B. S. & Adkins, S. Morphological, physiological and biochemical responses of two Australian biotypes of Parthenium hysterophorus to different soil moisture regimes. Environ. Sci. Pollut. Res. 24, 16186–16194 (2017).CAS 
    Article 

    Google Scholar 
    27.Nguyen, T., Bajwa, A. A., Navie, S., O’Donnell, C. & Adkins, S. Parthenium weed (Parthenium hysterophorus L.) and climate change: the effect of CO2 concentration, temperature, and water deficit on growth and reproduction of two biotypes. Environ. Sci. Pollut. Res. 24, 10727–10739 (2017).Article 

    Google Scholar 
    28.Chadwick, M., Trewin, H., Gawthrop, F. & Wagstaff, C. Sesquiterpenoids lactones: benefits to plants and people. Int. J. Mol. Sci. 14, 12780–12805 (2013).Article 

    Google Scholar 
    29.Ojija, F., Arnold, S. E. J. & Treydte, A. C. Impacts of alien invasive Parthenium hysterophorus on flower visitation by insects to co-flowering plants. Arthropod Plant Interact. 13, 719–734 (2019).Article 

    Google Scholar 
    30.Bajwa, A. A., Chauhan, B. S. & Adkins, S. W. Germination ecology of two Australian biotypes of ragweed parthenium (Parthenium hysterophorus) relates to their invasiveness. Weed Sci. 66, 62–70 (2018).Article 

    Google Scholar 
    31.Bajwa, A. A. et al. Toxic potential and metabolic profiling of two Australian biotypes of the invasive plant parthenium weed (Parthenium hysterophorus L.). Toxins 12, 447 (2020).CAS 
    Article 

    Google Scholar 
    32.Grime, J. P. Plant Strategies, Vegetation Processes, and Ecosystem Properties (Wiley, 2001).33.Grime, J. P. in Plant Evolutionary Biology (eds Gottlieb, L. D. & Jain, S. K.) 371–393 (Springer, 1988).34.Craine, J. M. Reconciling plant strategy theories of Grime and Tilman. J. Ecol. 93, 1041–1052 (2005).Article 

    Google Scholar 
    35.Bae, J. et al. Effect of elevated atmospheric carbon dioxide on the allelopathic potential of common ragweed. J. Ecol. Environ. 43, 21 (2019).Article 

    Google Scholar 
    36.Wang, R.-L. et al. Responses of Mikania micrantha, an invasive weed to elevated CO2: induction of β-caryophyllene synthase, changes in emission capability and allelopathic potential of β-caryophyllene. J. Chem. Ecol. 36, 1076–1082 (2010).CAS 
    Article 

    Google Scholar 
    37.Robinson, J. M. Photosynthetic carbon metabolism in leaves and isolated chloroplasts from spinach plants grown under short and intermediate photosynthetic periods. Plant Physiol. 75, 397–409 (1984).CAS 
    Article 

    Google Scholar 
    38.R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019).39.Filion, M., Dutilleul, P. & Potvin, C. Optimum experimental design for Free-Air Carbon dioxide Enrichment (FACE) studies. Glob. Change Biol. 6, 843–854 (2000).Article 

    Google Scholar 
    40.Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. https://www.jstatsoft.org/article/view/v067i01 (2015).41.Searle, S. R., Speed, F. M. & Milliken, G. A. Population marginal means in the linear model: an alternative to least squares means. Am. Stat. 34, 216–221 (1980).
    Google Scholar  More

  • in

    Animal sales from Wuhan wet markets immediately prior to the COVID-19 pandemic

    Our findings illustrate both the range and extent of wildlife exploitation in Wuhan markets, prior to new trading bans linked to the COVID-19 outbreak, along with the poor conditions under which these animals were kept prior to sale. Circumstantially, the absence of pangolins (and bats, not typically eaten in Central China; media footage generally depicts Indonesia) from our comprehensive survey data corroborates that pangolins are unlikely implicated as spill-over hosts in the COVID-19 outbreak. This is unsurprising because live pangolin trading has largely ceased in China13.We should therefore not be complacent, because the original source of COVID-19 does not seem to have been established. This is doubly important because false attribution can lead to extreme and irresponsible animal persecution. For instance, civets were killed en masse following the SARS-CoV outbreak5, and any unwarranted vilification or persecution of pangolins and bats in relation to COVID-19 would risk undermining otherwise very successful efforts to better protect and conserve wildlife in China.Regarding our insights into broader IWT issues in Wuhan, the animals sold were relatively expensive, representing luxury food items, not cheap bushmeat (Table 1). We thus make an ethical distinction here between the subsistence consumption of bush meat in poorer nations, versus the sort of cachet attached to wild animal consumption in parts of the developed world, notably China14, but also Japan15. While c. 30% of mammals were clearly wild-caught, indicated by trapping and shooting wounds, the captive breeding of other species is commonplace in China. Raccoon dog fur farming is legal in China; however, due to a drop in fur prices, raccoon dogs are now frequently sold off in live animal markets, augmented by wild-caught individuals. Similarly, all American mink (Neovison vison) originated from fur farms—noting that SARS-CoV-2 has been reported in mink farms in Europe and North America16, 17. In contrast, the captive breeding and sale of Siberian weasels (Mustela sibirica), is totally illegal in China, yet they are easy to breed, and sold openly, without attracting law enforcement. Indeed, prior to COVID-19 reforms, although enforcement officers from the Wuhan Forestry Bureau issued permits to market vendors, they were broadly disinterested in what species were sold. Furthermore, although animals were required to have an origin certificate and be quarantined to ensure they did not exhibit overt disease symptoms, no clear policy was enforced on these conditions. This is important because the species that were traded are capable of hosting a wide range of infectious zoonotic diseases or disease-baring parasites (Supplementary Table S1), aside from COVID-19. These range from potentially lethal viruses, for example, rabies, SFTS, H5N1, to common bacterial infections that, nevertheless, represent a risk to human health (e.g., Streptococcus). Indeed, globally, wildlife is thought to be the source of at least 70% of all emerging diseases18.Legislative reform is also vital to clarify unequivocally which species are considered ‘wild’ and cannot be traded legally and safely. Another problem, as encountered by the WHO report is that, retrospectively, it proved difficult to ascertain which species were on sale, even to the genus level, relying solely on the responsible market authority’s official sales records and disclosures1. As we19, 20, and others21, have proposed previously, China’s LFSSP and LESS must be updated to apply proper binomials, and to align with recent taxonomic revisions; for instance, cobra snakes (Nada atra) can be farmed legally for food with permits, but wild caught species, such as water snakes and wolf snakes were also sold in Wuhan, labelled simply as ‘snakes’. Such an application of clear species names would allow for more effective prosecutions19. Furthermore, the WHO reports that market authorities claimed all live and frozen animals sold in the Huanan market were acquired from farms officially licensed for breeding and quarantine, and as such no illegal wildlife trade was identified1. In reality, however, because China has no regulatory authority regulating animal trading conducted by small-scale vendors or individuals it is impossible to make this determination1, 21. Similar discrepancies concerning species identification and origins afflict investigations around the world22.Another important animal trade that requires attention, outside of exploitation as food, is the supply of pets, like the squirrels and crested myna birds sold in Wuhan’s market. Our previous research found annual trade volumes equivalent to c. 17,000 parrots and c. 160,000 turtles (many turtles being invasive if escaping to the wild) sold online as pets via Taobao.com between 2016–2017, in contravention of China’s WACL and/or the Animal Epidemic Prevention Law23,24,25. While not currently the vector of any major viral epidemics, it would be naive to imagine that unconventional pets do not still also pose a serious concern for public health26. This potential for disease is likely exacerbated by poor sanitary and welfare conditions (Fig. 2). More

  • in

    Nutrients cause consolidation of soil carbon flux to small proportion of bacterial community

    Sample collection and incubationThree replicates of soil samples were collected from the top 10 cm in of plant-free patches in four ecosystems along the C. Hart Merriam elevation gradient in Northern Arizona25 beginning at high desert grassland (1760 m), and followed at higher elevations by piñon-pine juniper woodland (2020 m), ponderosa pine forest (2344 m), and mixed conifer forest (2620 m). Soils were air-dried for 24 h at room temperature, homogenized, and passed through a 2 mm sieve before being stored at 4 °C for another 24 h. Soil incubations were performed on soils with mass of 20 g of dry soil for measurements of CO2 and microbial biomass carbon (MBC), while 2 g of dry soil aliquots were incubated separately (but under equivalent conditions) for quantitative stable isotope probing (qSIP). We applied three treatments to these soils through the addition of water (up to 70% water-holding capacity): water alone (control), with glucose (C treatment; 1000 µg C g−1 dry soil), or with glucose and nitrogen (C + N treatment; [NH4]2SO4 at 100 µg N g−1 dry soil). All samples for qSIP were incubated with 18O-enriched water (97 atom%) and matching controls necessary to calculate the change in 18O enrichment across the microbial community. We applied water at natural abundance (i.e., no 18O-enriched water) to the larger soil samples prepared for measurement of carbon flux. All soils were incubated in the dark for one week. Following incubation, soils were frozen at −80 °C for 1 week prior to DNA extraction.Soil, CO2, and microbial biomass measurementsWe analyzed headspace gas of soils for CO2 concentration and δ13CO2 three times during the week-long incubation using a LI-Cor 6262 (LI-Cor Biosciences Inc. Lincoln, NE, USA) and a Picarro G2201 (Picarro Inc., Sunnyvale, CA, USA), respectively. Prior to incubation we analyzed soil MBC using the chloroform-fumigation extraction method on 10 g of soil. One sub-sample was immediately extracted with 25 ml of a 0.05 M K2SO4 solution, while a second sub-sample was first fumigated with chloroform (for 5 days), after which it was similarly extracted. Following K2SO4 addition, we agitated soils for 1 h, filtered the extract through a Whatman #3 filter paper, and dried the filtered solution (60 °C, 4 days). Salts with extracted C were ground and analyzed for total C using an elemental analyzer coupled to a mass spectrometer. MBC was calculated as the difference between the fumigated and immediately extracted samples’ soil C using an extraction efficiency of 0.45 (as per Liu et al.26).Quantitative stable isotope probingWe performed DNA extraction and 16S amplicon sequencing on 18O-incubated qSIP soils11,12,13. The procedures targeted the V4 region of the 16S gene as specified by the Earth Microbiome Project (EMP, http://www.earthmicrobiome.org) standard protocols27,28. We used PowerSoil DNA extraction kits following manufacture instructions to isolate DNA from soil (MoBio laboratories, Carlsbad, CA, USA). We quantified extracted DNA using the Qubit dsDNA High-Sensitivity assay kit and a Qubit 2.0 Fluorometer (Invitrogen, Eugene, OR, USA). To quantify the degree of 18O isotope incorporation into bacterial DNA, we performed density fractionation and sequenced 15–18 fractions separately following methods modified from the canonical publication7. We added 1 µg of DNA to 2.6 mL of saturated CsCl solution in combination with a gradient buffer (200 mM Tris, 200 mM KCL, 2 mM EDTA) in a 3.3 mL OptiSeal ultracentrifuge tube (Beckman Coulter, Fullerton, CA, USA). The solution was centrifuged to produce a gradient of increasingly labeled (heavier) DNA in an Optima Max bench top ultracentrifuge (Beckman Coulter, Brea, CA, USA) with a Beckman TLN-100 rotor (127,000 × g for 72 h) at 18 °C. We separated each sample from the continuous gradient into approximately 20 fractions (150 µL) using a modified fraction recovery system (Beckman Coulter). We then measured the density of each separate fraction with a Reichart AR200 digital refractometer (Reichert Analytical Instruments, Depew, NY, USA) and retained fractions with densities between 1.640 and 1.735 g cm−3. We cleaned and purified DNA in these fractions using isopropanol precipitation, quantified DNA using the Quant-IT PicoGreen dsDNA assay (Invitrogen) and a BioTek Synergy HT plate reader (BioTek Instruments Inc., Winooski, VT, USA), and quantified bacterial 16S gene copies using qPCR (primers: Supplementary Table 1) in triplicate. We used 8 µL reactions consisting of 0.2 mM of each primer, 0.01 U µL−1 Phusion HotStart II Polymerase (Thermo Fisher Scientific, Waltham, MA), 1× Phusion HF buffer (Thermo Fisher Scientific), 3.0 mM MgCl2, 6% glycerol, and 200 µL of dNTPs. We amplified DNA using a Bio-Rad CFX384 Touch real-time PCR detection system (Bio-Rad, Hercules, CA, USA) with the following cycling conditions: 95 °C at 1 min and 44 cycles of 95 °C (30 s), 64.5 °C (30 s), and 72 °C (1 min).We sequenced the 16S V4 region (primers: EMP standard 515F—806R; Supplementary Table 1) on an Illumina MiSeq (Illumina, Inc., San Diego, CA, USA). Sequences were amplified using the same reaction mix as qPCR amplification but cycling at 95 °C for 2 min followed by 15 cycles of 95 °C (30 s), 55 °C (30 s), and 60 °C (4 min). In addition to post-incubation soils, we extracted, amplified, and sequenced DNA of the bacterial community at the start of the incubation.Sequence processing and qSIP analysisThe raw sequence data of forward and reverse reads (FASTQ) were processed within the QIIME 2 environment (release 2018.6)29,30, denoising sequences with the available DADA2 pipeline31. We clustered the remaining sequences into amplicon sequence variants or ASVs (at 100% sequence identity) against the SILVA 132 database32 using an open-reference Naïve Bayes feature classifier33. We removed global singletons and doubleton ASVs, non-bacterial lineages, and samples with less than 4000 sequence reads. Removal of global singletons and doubletons resulted in the removal of 2241 unique ASVs from the feature table yielding 115,647 out of 117,888 (a retention of 98% of all ASVs) as well as the loss of 4018 sequences leaving 37,765,678 (a retention >99% of all sequences). We combined taxonomic information and ASV sequence counts with per-fraction qPCR and density measurements using the phyloseq package (version 1.24.2), in R (version 3.5.1)34. Because high-throughput sequencing produces relativized measures of abundance, we converted ASV sequencing abundances in each fraction to the number of 16S rRNA gene copies per g dry soil based on the known amount of dry soil added and the amount of DNA in each soil sample. All data and analytical code have been made publicly accessible35.To perform qSIP analysis and calculate per-capita growth rates of each ASV, we used our in-house qsip package (https://github.com/bramstone/qsip) based on previously published research7,10. Because rare and infrequent taxa are more likely to be lost in samples with poor sequencing depth with their absences affecting DNA density changes, we invoked a presence or absence-based filtering criteria on ASVs prior to calculation of per-capita growth rates. Within each ecosystem, we kept only ASVs that appeared in two of the three replicates of a treatment (18O, C, and C + N) and at that appeared in at least five of the fractions within each of those two replicates. ASVs filtered out of one treatment were allowed to appear in another if they met the frequency threshold.For all remaining ASVs (1081 representing less than 1% of all ASVs but 58% of all sequence reads), we calculated per-capita gross growth (i.e., cell division) rates observed in each replicate using an exponential growth model10. We applied these per-capita rates to the number of 16S rRNA gene copies to estimate the production of new 16S rRNA gene copies of each ASV per g dry soil per week using the following equation:$$frac{{rm{d}}{N}_{{rm{i}}}}{{{rm{d}}t}}={N}_{{rm{i,t}}}-{N}_{{rm{i,t}}}{e}^{-{g}_{{rm{i}}}t},$$
    (1)
    Where Ni,t is the number of 16S rRNA gene copies of taxon i at time t (here after 7 days) and gi represents the per-capita growth rate (calculated as a daily rate). See Supplementary Fig. 3 for results on the production of 16S gene copies.Calculation of 16S rRNA gene copy numbers and cell massIn parallel to taxonomic assignment, we compared quality-filtered 16S sequences against a database of 12,415 complete prokaryote genomes obtained from GenBank. From these genomes, we extracted data on 16S rRNA gene copy number, total genome size, and 16S gene sequence. We used BLAST to find matches against this database to the ASVs generated from QIIME 2 to make per-taxon assignments of 16S rRNA gene copy number and total genome size13. For ASVs that did not find an exact match, we assigned 16S rRNA gene copy number values and genome sizes based on the median values observed in the most specific possible taxonomic rank. We estimated the mass of individual cells for each population using published allometric scaling relationships between genome length and cellular mass from West and Brown:36$${{{log }}}_{10}({M}_{{rm{i}}})=frac{{{{log }}}_{10}left({G}_{{rm{i}}}right)-9.4}{0.24},$$
    (2)
    where Mi indicates cellular mass (g) and Gi indicates genome length (bp) for taxon i. We obtained this relationship by digitizing Fig. 436 using DataThief III and re-fitting the trend line in log–log space. We estimated that 20% of the cellular mass was carbon37. To validate this approach, cellular mass estimates and initial 16S copy number measurements were used to estimate population-level biomass C values which were summed and compared to initial community-level MBC. We found that these values overestimated initial MBC by an order of magnitude. As such, cellular carbon mass was divided by 10 in our final calculations. We applied cellular mass and 16S copy number estimates to the production of 16S copies to estimate the production of biomass carbon for each taxon during the incubation period (t):$${P}_{{rm{i}}}=frac{{rm{d}}{N}_{{rm{i}}}/{{rm{d}}t}}{C_{{rm{i}}}}cdot {M}_{{rm{i}}}cdot 0.2,$$
    (3)
    where Pi indicates production of biomass carbon (µg C g dry soil−1 week−1) and Ci indicates 16S copy number per cell for taxon i. The 0.2 coefficient represents an estimate that 20% of cellular mass is composed of carbon.Efficiency and respiration modelingWe estimated rates of respiration using qSIP-informed growth rates and community-level carbon use efficiency (CUE). CUE estimates were based on the incorporation of 18O-water into DNA as a measure of gross biomass production38,39 and measured CO2 in headspace gas from soil incubations. We calculated the production of 18O-labeled biomass carbon (18P) at the community-level for each sample by summing the products of per-taxon 18O enrichment (excess atom fraction, EAF) and relative abundance:$${, }^{18}{P}=mathop{sum }limits_{i=1}^{n}({,}^{18}{{{rm{EAF}}}}_{{rm{i}}}cdot {y}_{{rm{i}}})cdot {rm{DN}}{rm{A}}_{0}cdot fleft({{rm{MB}}}{rm{C}}_{0} sim {rm{DN}}{rm{A}}_{0}right),$$
    (4)
    where 18P indicates the gross production of 18O-labeled microbial biomass carbon per gram of dry soil per week, 18EAFi indicates the enrichment of DNA of taxon i and yi indicates its relative abundance, DNA0 indicates the concentration of DNA per gram of dry soil prior to incubation, and MBC0 indicates the microbial biomass carbon per gram of dry soil prior to incubation. Here, the MBC0 ~ DNA0 function indicates the linear relationship between MBC and DNA concentration. We used the output from Eq. 4 to calculate community CUE for each sample:$${{rm{CUE}}}=frac{{,}^{18}{{P}}}{(!{,}^{18}P+R)},$$
    (5)
    where R indicates the total CO2 respired per gram dry soil per week.We used the community CUE values from each sample (Eq. 5) to constrain/as upper and lower limits our estimates of per-taxon CUE. For a group of three replicates from a given ecosystem and treatment, we used the minimum and maximum observed community-level CUE values as the acceptable range of per-taxon CUE values. These constraints were used to control the shape of the function of per-taxon CUE and growth rate, though functions were modeled both with and without constraints (i.e., per-taxon CUE values were bounded only by 0 and 0.7). The range of community-level CUE values for each treatment were 0.18–0.53 for control soils, 0.04–0.13 for carbon amended soils and 0.03–0.08 for carbon and nitrogen amended soils and did not vary much between ecosystems. As a result of uncertainty in the literature about the relationship between growth rate and CUE14, several different relationships were postulated to model per-taxon CUE as a function of per-taxon growth rate: linear increase, linear decrease, exponential decrease, unimodal with peak CUE at growth rate of 0.5, and unimodal with peak CUE at a growth rate of 0.05 (the median of all per-taxon growth rates in the data). Comparisons between functions were made by calculating AIC values from per-taxon respiration, summed, and regressing against measured respiration values. Likewise, for each function, we tested how well per-taxon CUE estimates reconstructed community-level CUE by weighting the CUE value of each taxon by its relative abundance, summing, and regressing against community-level CUE. To select the best per-taxon CUE function, AIC values from both scaling efforts were combined. To make AIC values comparable, all respiration and CUE terms were z-transformed prior to regression scaling. To reflect our priority of estimating per-taxon respiration, AIC values from the respiration scaling regression models were multiplied by two and summed with AIC values from CUE scaling such that AICTotal = 2(AICResp) + AICCUE. Across these comparisons, the best estimate of per-taxon CUE was the unimodal function of growth rate, constrained by community-level CUE and peaking at growth rates of 0.5 (Table 1), such that:$${{rm{CUE}}}_{{rm{i}}}=-4({{rm{CUE}}}_{{rm{E}}{rm{:}}{rm{T}}{rm{:}}{{rm{range}}}})cdot {left({g}_{{rm{i}}}-0.5right)}^{2}+({{rm{CUE}}}_{{rm{E}}{rm{:}}{rm{T}}{rm{:}}{max }}),$$
    (6)
    where CUEi indicates per-taxon CUE, CUEE:T:max indicates the maximum CUE values observed for a group of replicates within a given ecosystem and treatment (E:T). With this function, higher per-capita growth rate values were parameterized to produce higher CUE values initially and then decrease reflecting a growth-CUE tradeoff14, here bound by the difference in maximum and minimum CUE values. We applied per-taxon CUE estimates from Eq. 6 to per-taxon growth rates to yield estimates of per-taxon respiration:$${r}_{{rm{i}}}={r}_{{rm{g,i}}}+{r}_{{rm{m,i}}}=left(frac{{g}_{{rm{i}}}}{{{rm{CUE}}}_{{rm{i}}}}-{g}_{{rm{i}}}right)+left(frac{{g}_{{rm{i}}}}{{{rm{CUE}}}_{{rm{i}}}}-{g}_{{rm{i}}}right)cdot beta,$$
    (7)
    where ri indicates per-capita respiration for taxon i, rg,i indicates growth-related respiration, rm,i indicates maintenance-related respiration, and β is a constant of 0.01 that represents the maintenance requirements as a proportion of total energy use40. We used these values of per-taxon, per-capita respiration rates to estimate per-taxon respiration per gram of dry soil per week:$${R}_{{rm{i}}}={P}_{{rm{i}}}cdot {r}_{{{rm{g,i}}}}+{P}_{{rm{i}}}cdot {r}_{{{rm{m,i}}}},$$
    (8)
    where Ri indicates respiration of CO2–C (µg C g dry soil−1 week−1) for taxon i.In addition to per-taxon respiration estimates based on 18O enrichment, we used another model for comparison. Here, respiration was calculated based on 16S abundance alone:$${R}_{{rm{i}}}={N}_{{rm{i}}}cdot f(R sim N+0),$$
    (9)
    where Ni indicates final 16S abundance for taxon i, R indicates microbial respiration of CO2-C (µg C g dry soil−1 week−1) and N indicates total 16S abundance at the end of the incubation. Here, the R ~ N function indicates the linear relationship, with an intercept of 0, between CO2 respiration and 16S gene concentration across all samples.Diversity, compositional, and statistical analysisFor patterns of evenness in bacterial carbon use and relative abundance, we used Pielou’s evenness which is the quotient of Shannon’s diversity and the observed richness. For each sample, we applied Pielou’s evenness to bacterial abundances as well as bacterial carbon use (relativized to sum to one, in both cases).We created a linear mixed model to test the relationship between the carbon use (the sum of biomass production and respiration) and relative abundance of bacterial genera from the dominant phyla, which accounted for >90% of all C flux. Here, we averaged carbon use and relative abundance for all replicates in a given ecosystem and treatment. We used the lme4 R package (version 1.1-20)41 and obtained p-values using the Satterthwaite method in the lmerTest R package (version 3.1-0)42. To limit pseudo-replication, we accounted for differences in carbon use across ecosystems and due to bacterial Genus by implementing random intercepts. We selected for the optimal random and fixed components by dropping individual terms and comparing models with likelihood ratio tests, disregarding models that failed to converge. Our final model fit was:$${{{log }}}_{10}({C}_{{rm{i}}}) sim {{{log }}}_{10}left({y}_{{rm{i}}}right)ast T+left(1|Eright)+(1|{{rm{Genus}}}),$$
    (10)
    where Ci indicates the relativized carbon use for taxon i (averaged across all three replicates in a given ecosystem and treatment), yi indicates the relative abundance of taxon i (averaged across all three replicates), T indicates soil treatment, and E indicates ecosystem.For differences in composition, we created species abundance tables using the traditional abundances, as well as measures of carbon use (growth and maintenance respiration) of each ASV in each sample. To account for differences in absolute abundances and flux rates between sites, we relativized all abundance tables. We summarized compositional differences using Bray–Curtis dissimilarities then identified multivariate centroids for all replicates in a site by treatment group. We tested the effect of site and nutrient amendment on the resulting group centroids using PERMANOVA tests implemented with the adonis function in the vegan package (version 2.5-3)43. We related compositional shifts in relative abundance to those in relativized growth and maintenance using Mantel tests with the mantel function in vegan.To test for changes in the type of soil C preferred by microbial genera (either 13C-labeled glucose or 12C soil carbon) in response to nitrogen addition, we used Levene’s test with the car package (version 3.0-10)44. Specifically, we analyzed the relationship between 13C use and 12C use (both relativized) on bacterial genera across all replicates and in C and C + N treatments using a linear model. We then extracted model residuals and tested whether variance was significantly different across treatments by focusing on the interaction between individual replicates and treatment. This produced a significance test describing treatment-level differences in 13C–12C use.Reporting summaryFurther information on research design is available in the Nature Research Reporting Summary linked to this article. More

  • in

    Drivers and implications of distance decay differ for ectomycorrhizal and foliar endophytic fungi across an anciently fragmented landscape

    1.Lutzoni F, Nowak MD, Alfaro ME, Reeb V, Miadlikowska J, Krug M, et al. Contemporaneous radiations of fungi and plants linked to symbiosis. Nat Commun. 2018;9:1–11.Article 
    CAS 

    Google Scholar 
    2.Smith SE and Read D. Mycorrhizal symbiosis, 3rd ed. New York, New York, USA; Academic Press: 2008.3.Rodriguez RJ, White JF, Arnold AE, Redman RS. Fungal endophytes: diversity and functional roles. N. Phytol. 2009;182:314–30.CAS 
    Article 

    Google Scholar 
    4.Arnold AE, Herre EA. Canopy cover and leaf age affect colonization by tropical fungal endophytes: ecological pattern and process in Theobroma cacao (Malvaceae). Mycologia. 2003;95:388–98.PubMed 
    Article 

    Google Scholar 
    5.Bailey JK, Deckert R, Schweitzer JA, Rehill BJ, Lindroth RL, Gehring C, et al. Host plant genetics affect hidden ecological players: links among Populus, condensed tannins, and fungal endophyte infection. Can J Bot. 2005;83:356–61.Article 

    Google Scholar 
    6.Arnold AE, Mejia LC, Kyllo D, Rojas EI, Maynard Z, Robbins N, et al. Fungal endophytes limit pathogen damage in a tropical tree. Proc Natl Acad Sci USA. 2003;100:15649–54.CAS 
    PubMed 
    Article 

    Google Scholar 
    7.Giauque H, Connor EW, Hawkes CV. Endophyte traits relevant to stress tolerance, resource use, and habitat of origin predict effects on host plants. N. Phytol. 2018;221:2239–49.Article 
    CAS 

    Google Scholar 
    8.Aschehoug E, Callaway R, Newcombe G, Tharayil N, Chen S. Fungal endophyte increases the allelopathic effects of an invasive forb. Oecologia. 2012;93:285–91.
    Google Scholar 
    9.U’Ren JM, Arnold AE. Diversity, taxonomic composition, and functional aspects of fungal communities in living, senesced, and fallen leaves at five sites across North America. PeerJ. 2016;4:e2768.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    10.Bennett JA, Maherali H, Reinhart KO, Lekberg Y, Hart MM, Klironomos J. Plant-soil feedbacks and mycorrhizal type influence temperate forest population dynamics. Science. 2017;355:181–4.CAS 
    PubMed 
    Article 

    Google Scholar 
    11.Sarmiento C, Zalamea PC, Dalling JW, Davis AS, Stump SM, U’Ren JM, et al. Soilborne fungi have host affinity and host-specific effects on seed germination and survival in a lowland tropical forest. Proc Natl Acad Sci USA. 2017;114:11458–63.CAS 
    PubMed 
    Article 

    Google Scholar 
    12.Song Z, Kennedy PG, Liew FJ, Schilling JS. Fungal endophytes as priority colonizers initiating wood decomposition. Funct Ecol. 2017;31:407–18.Article 

    Google Scholar 
    13.Patterson A, Flores-Rentería L, Whipple A, Whitham T, Gehring C. Common garden experiments disentangle plant genetic and environmental contributions to ectomycorrhizal fungal community structure. N. Phytol. 2018;221:493–502.Article 
    CAS 

    Google Scholar 
    14.Bonan GB. Forests and climate change: Forcings, feedbacks, and the climate benefit of forests. Science. 2008;320:1444–9.CAS 
    PubMed 
    Article 

    Google Scholar 
    15.USGCRP. Climate Science Special Report: Fourth National Climate Assessment, Volume I. Wuebbles DJ, Fahey DW, Hibbard KA, Dokken DJ, Stewart BC, Maycock TK, editors. Washington, DC, USA: U.S. Global Change Research Program; 2017. p. 470.16.van Mantgem PJ, Stephenson NL, Byrne JC, Daniels LD, Franklin JF, Fulé PZ, et al. Widespread increase of tree mortality rates in the western United States. Science. 2009;323:521–4.PubMed 
    Article 
    CAS 

    Google Scholar 
    17.Ganey JL, Vojta SC. Tree mortality in drought-stressed mixed-conifer and Ponderosa pine forests, Arizona, USA. Ecol Manag. 2011;261:162–8.Article 

    Google Scholar 
    18.Mathys A, Coops NC, Waring RH. Soil water availability effects on the distribution of 20 tree species in western North America. Ecol Manag. 2014;313:144–52.Article 

    Google Scholar 
    19.Roberts DR, Hamann A. Glacial refugia and modern genetic diversity of 22 western North American tree species. Philos Trans R Soc Lond B Biol Sci. 2015;282:20142903.
    Google Scholar 
    20.Peltier DMP, Ogle K. Legacies of more frequent drought in Ponderosa pine across the western United States. Glob Change Biol. 2019;25:3803–16.Article 

    Google Scholar 
    21.McClaran MP, Brady WW. Arizona’s diverse vegetation and contributions to plant ecology. Rangelands. 1994;16:208–18.
    Google Scholar 
    22.Moir WH, Geils B, Benoit MA, Scurlock D. Ecology of southwestern Ponderosa pine forests. In: Block WM, Finch DM, tech. cords. Songbird ecology in southwestern Ponderosa pine forests: a literature review. Tucson AZ. Fort Collins CO: USDA Forest Service General Technical Report RM GTR-292, Rocky Mountain Forest and Range Experiment Station; 1997. pp. 3–17.23.Felger RS, Johnson MB. Trees of the northern Sierra Madre Occidental and sky islands of southwestern North America. In: DeBano FL, Ffolliott PF, Ortega-Rubio A, Gottfried GJ, Hamre RH, editors. Biodiversity and management of the Madrean Archipelago: The sky islands of southwestern United States and northwestern Mexico. Fort Collins, Colorado, USA: U.S. Department of Agriculture, U.S. Forest Service, Rocky Mountain Forest and Range Experiment Station; 1995. pp 71–83.24.Willyard A, Gernandt DS, Potter K, Hipkins V, Marquardt P, Mahalovich MF, et al. Pinus Ponderosa: a checkered past obscured four species. Am J Bot. 2017;104:161–81.PubMed 
    Article 

    Google Scholar 
    25.Massimo NC, Devan MMN, Arendt KR, Wilch MH, Riddle JM, Furr SH, et al. Fungal endophytes in above-ground tissues of desert plants: infrequence in culture, but highly diverse and distinctive symbionts. Micro Ecol. 2015;70:1–76.Article 
    CAS 

    Google Scholar 
    26.Huang YL, Bowman EA, Massimo NC, Garber NP, U’Ren JM, Sandberg DC, et al. Using collections data to infer biogeographic, environmental, and host structure in communities of endophytic fungi. Mycologia. 2018;110:47–62.PubMed 
    Article 

    Google Scholar 
    27.Bowman EA, Arnold AE. Distributions of ectomycorrhizal and foliar endophytic fungal communities associated with Pinus ponderosa along a spatially constrained elevation gradient. Am J Bot. 2018;105:687–99.PubMed 
    Article 

    Google Scholar 
    28.Bowman EA, Hayden DR, Arnold AE. Fire and local factors shape ectomycorrhizal fungal communities associated with Pinus ponderosa in mountains of the Madrean Sky Island Archipelago. Fungal Ecol. 2020;49:101013.Article 

    Google Scholar 
    29.Huang Y, Nandi Devan MM, U’Ren JM, Furr SH, Arnold AE. Pervasive effects of wildfire on foliar endophyte communities in montane forest trees. Micro Ecol. 2016;71:452–68.Article 

    Google Scholar 
    30.U’Ren JM, Lutzoni F, Miadlikowska J, Zimmerman NB, Carbone I, May G, et al. Host availability drives distributions of fungal endophytes in the imperiled boreal forest. Nat Ecol Evol. 2019;3:1–8.Article 

    Google Scholar 
    31.Peay KG, Bruns TD, Kennedy PG, Bergemann SE, Garbelotto M. A strong species-area relationship for eukaryotic soil microbes: island size matters for ectomycorrhizal fungi. Ecol Lett. 2007;10:470–80.PubMed 
    Article 

    Google Scholar 
    32.Peay KG, Schubert MG, Nguyen NH, Bruns TD. Measuring ectomycorrhizal fungal dispersal: macroecological patterns driven by microscopic propagules. Mol Ecol. 2012;21:4122–36.PubMed 
    Article 

    Google Scholar 
    33.Galante TE, Horton TR, Swaney DP. 95% of basidiospores fall within 1 m of the cap: a field-and modeling-based study. Mycologia. 2011;103:1175–83.PubMed 
    Article 

    Google Scholar 
    34.Oono R, Rasmussen A, Lefèvre E. Distance decay relationships in foliar fungal endophytes are driven by rare taxa. Environ Microbiol. 2017;19:2794–805.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    35.Fick SE, Hijmans RJ. Worldclim 2: New 1-km spatial resolution climate surfaces for global land areas. Int J Climatol. 2017;37:4302–15.Article 

    Google Scholar 
    36.Lilleskov E, Bruns TD, Horton TR, Taylor DL, Grogan P. Detection of forest stand-level spatial structure in ectomycorrhizal fungal communities. FEMS Microbiol Ecol. 2004;49:319–32.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    37.Shinneman DJ, Means RE, Potter KM, Hipkins VD. Exploring climate niches of Ponderosa pine (Pinus ponderosa Douglas ex Lawson) haplotypes in the western united states: implications for evolutionary history and conservation. PLoS One. 2016;11:e0151811.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    38.Agerer R. Characterization of ectomycorrhiza. Methods Microbiol. 1991;23:25–73.Article 

    Google Scholar 
    39.Agerer R. Anatomical characteristics of identified ectomycorrhizas: an attempt towards a natural classification. In: Varma A, Hock B, editor. Mycorrhiza. Berlin, Heidelberg, Germany: Springer; 1995. p 685–734.40.Agerer R. Exploration types of ectomycorrhizae. Mycorrhiza. 2001;11:107–14.Article 

    Google Scholar 
    41.Izzo A, Agbowo J, Bruns TD. Detection of plot-level changes in ectomycorrhizal communities across years in an old-growth mixed-conifer forest. N. Phytol. 2005;166:619–29.Article 

    Google Scholar 
    42.Smith ME, Douhan GW, Rizzo DM. Intra-specific and intra-sporocarp ITS variation of ectomycorrhizal fungi as assessed by rDNA sequencing of sporocarps and pooled ectomycorrhizal roots from a Quercus woodland. Mycorrhiza. 2007;18:15–22.CAS 
    PubMed 
    Article 

    Google Scholar 
    43.Monacell JT, Carbone I. Mobyle SNAP Workbench: A web-based analysis portal for population genetics and evolutionary genomics. Bioinformatics. 2014;30:1488–90.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    44.Arnold AE, Henk DA, Eells RL, Lutzoni F, Vilgalys R. Diversity and phylogenetic affinities of foliar fungal endophytes in loblolly pine inferred by culturing and environmental PCR. Mycologia. 2007;99:185–206.CAS 
    PubMed 
    Article 

    Google Scholar 
    45.Oita S, Carey J, Kline I, Ibáñez A, Yang N, Hom EFY, et al. Methodological approaches frame insights into endophyte richness and community composition. Microb Ecol. 2021; https://doi.org/10.1007/s00248-020-01654-y.46.U’Ren JM, Lutzoni F, Miadlikowska J, Laetsch AD, Arnold AE. Host and geographic structure of endophytic and endolichenic fungi at a continental scale. Am J Bot. 2012;99:898–914.PubMed 
    Article 

    Google Scholar 
    47.U’Ren JM, Dalling JW, Gallery RE, Maddison DR, Davis EC, Gibson CM, et al. Diversity and evolutionary origins of fungi associated with seeds of a neotropical pioneer tree: a case study for analysing fungal environmental samples. Mycol Res. 2009;113:432–49.PubMed 
    Article 
    CAS 

    Google Scholar 
    48.U’Ren JM, Arnold AE. DNA Extraction Protocol for Plant and Lichen Tissues Stored in CTAB. 2017a; https://doi.org/10.17504/protocols.io.fs8bnhw.49.U’Ren JM, Arnold AE. Illumina MiSeq Dual-barcoded Two-step PCR Amplicon Sequencing Protocol. 2017b; https://doi.org/10.17504/protocols.io.fs9bnh6.50.Daru BH, Bowman EA, Pfister DH, Arnold AE. A novel proof of concept for capturing the diversity of endophytic fungi preserved in herbarium specimens. Philos Trans R Soc Lond B Biol Sci. 2018;374:1–10.
    Google Scholar 
    51.Gardes M, Bruns TD. ITS primers with enhanced specificity for basidiomycetes – application to the identification of mycorrhizae and rusts. Mol Ecol. 1993;2:113–8.CAS 
    Article 

    Google Scholar 
    52.White TJ, Bruns T, Lee S, Taylor J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ, editors. PCR protocols: a guide to methods and applications. New York, USA: Academic Press; 1990. pp. 315–22.53.Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010;26:2460–1.CAS 
    Article 

    Google Scholar 
    54.Andrew S. FastQC: a quality control tool for high throughput sequence data. 2010. http://www.bioinformatics.babraham.ac.uk/projects/fastqc.55.Ewels P, Magnusson M, Lundin S, Käller M. MultiQC: Summarize analysis results for multiple tools and samples in a single report. Bioinformatics. 2016;32:3047–8.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    56.Chao A, Jost L. Coverage-based rarefaction and extrapolation: standardizing samples by completeness rather than size. Ecology. 2012;93:2533–47.PubMed 
    Article 

    Google Scholar 
    57.Okazaki Y, Fujinaga S, Tanaka A, Kohzu A, Oyagi H, Nakano S. Ubiquity and quantitative significance of bacterioplankton lineages inhabiting the oxygenated hypolimnion of deep freshwater lakes. ISME J. 2017;11:2279–93.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    58.Ngyuen NH, Smith D, Peay K, Kennedy P. Parsing ecological signal from noise in next generation amplicon sequencing. N. Phytol. 2015;205:1389–93.Article 
    CAS 

    Google Scholar 
    59.Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215:403–10.CAS 
    PubMed 
    Article 

    Google Scholar 
    60.Kõljalg U, Nilsson RH, Abarenkov K, Tedersoo L, Taylor AFS, Bahram M, et al. Towards a unified paradigm for sequence-based identification of fungi. Mol Ecol. 2013;22:5271–7.PubMed 
    Article 
    CAS 

    Google Scholar 
    61.Huson DH, Mitra S, Ruscheweyh H-J, Weber N, Schuster SC. Integrative analysis of environmental sequences using MEGAN4. Genome Res. 2011;21:1552–60.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    62.Carbone I, White JB, Miadlikowska J, Arnold AE, Miller MA, Magain N, et al. T-BAS version 2.1: Tree-Based Alignment Selector toolkit for evolutionary placement of DNA sequences and viewing alignments and specimen metadata on curated and custom trees. Microbiol Resour Announc. 2019;8:e00328–19.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    63.Legendre P, Legendre L. Numerical Ecology, 3rd ed. Amsterdam, the Netherlands: Elsevier; 2012.64.Dray S, Legendre P, Peres-Neto PR. Spatial modelling: a comprehensive framework for principal coordinate analysis of neighbour matrices (PCNM). Ecol Model. 2006;196:483–93.Article 

    Google Scholar 
    65.Legendre P, Borcard D, Roberts DW. Variation partitioning involving orthogonal spatial eigenfunction submodels. Ecology. 2012;93:1234–40.PubMed 
    Article 

    Google Scholar 
    66.Lichstein J. Multiple regression on distance matrices: A multivariate spatial analysis tool. Plant Ecol. 2007;188:117–31.Article 

    Google Scholar 
    67.Gower JC. A general coefficient of similarity and some of its properties. Biometrics. 1971;27:857–74.Article 

    Google Scholar 
    68.Zimmerman N, Vitousek P. Fungal endophyte communities reflect environmental structuring across a Hawaiian landscape. Proc Natl Acad Sci USA. 2012;109:13022–7.CAS 
    PubMed 
    Article 

    Google Scholar 
    69.Garfin G, Jardine A, Merideth R, Black M, LeRoy S. Assessment of climate change in the southwest United States: a report prepared for the National Climate Assessment. Washington, DC, USA: Island Press; 2013.70.Rehfeldt GE, Jaquish BC, López-Upton J, Sáenz-Romero C, St. Clair JB, Leites LP, et al. Comparative genetic responses to climate for the varieties of Pinus ponderosa and Pseudotsuga menziesii: Realized climate niches. Ecol Manag. 2014;324:126–37.Article 

    Google Scholar 
    71.Vander Wall SB. On the relative contributions of wind versus animals to seed dispersal of four Sierra Nevada pines. Ecology. 2008;89:1837–49.Article 

    Google Scholar 
    72.Timling I, Dahlberg A, Walker DA, Gardes M, Charcosset JY, Welker JM, et al. Distribution and drivers of ectomycorrhizal fungal communities across the North American Artic. Ecosphere. 2012;3:3258–72.Article 

    Google Scholar 
    73.Bruns TD, Bidartondo MI, Taylor DL. Host specificity in ectomycorrhizal communities: what do the exceptions tell us? Integr Comp Biol. 2002;42:352–9.PubMed 
    Article 

    Google Scholar 
    74.Izzo A, Agbowo J, Bruns TD. Detection of plot-level changes in ectomycorrhizal communities across years in an old-growth mixed-conifer forest. N. Phytol. 2005;2:619–30.Article 

    Google Scholar 
    75.Talbot JM, Bruns TD, Smith DP, Branco S, Glassman SI, Erlandson S, et al. Independent roles of ectomycorrhizal and saprotrophic communities in soil organic matter decomposition. Soil Biol Biochem. 2013;57:282–91.CAS 
    Article 

    Google Scholar 
    76.Matsuoka S, Mori AS, Kawaguchi E, Hobara S, Osono T. Disentangling the relative importance of host tree community, abiotic environment, and spatial factors on ectomycorrhizal fungal assemblages along an elevation gradient. FEMS Microbiol Ecol. 2016;92:fiw044.PubMed 
    Article 
    CAS 

    Google Scholar 
    77.Varenius K, Lindahl BD, Dahlberg A. Retention of seed trees fails to lifeboat ectomycorrhizal fungal diversity in harvested Scots pine forests. FEMS Microbiol Ecol. 2017;93:fix105.
    Google Scholar 
    78.Harrison JG, Griffin EA. The diversity and distribution of endophytes across biomes, plant phylogeny and host tissues: how far have we come and where do we go from here? Environ Microbiol. 2020;22:2107–23.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    79.Oita S, Ibánez A, Lutzoni F, Miadlikowska J, Geml J, Lewis LA, et al. Climate and seasonality drive the richness and composition of tropical fungal endophytes at a landscape scale. Commun Biol. 2021;4:313.80.Saunders M, Glenn AE, Kohn LM. Exploring the evolutionary ecology of fungal endophytes in agricultural systems: using functional traits to reveal mechanisms in community processes. Evol Appl. 2010;3:525–37.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    81.Lau MK, Arnold AE, Johnson NC. Factors influencing communities of foliar fungal endophytes in riparian woody plants. Fungal Ecol. 2013;6:365–78.Article 

    Google Scholar 
    82.U’Ren JM, Riddle JM, Monacell JT, Carbone I, Miadlikowska J, Arnold AE. Tissue storage and primer selection influence pyrosequencing-based inferences of diversity and community composition of endolichenic and endophytic fungi. Mol Ecol Resour. 2014;14:1032–48.PubMed 

    Google Scholar 
    83.Oono R, Lefèvre E, Simha A, Lutzoni F. A comparison of the community diversity of foliar fungal endophytes between seedlings and adult loblolly pines (Pinus taeda). Fungal Biol. 2015;119:1–12.Article 

    Google Scholar 
    84.Raizen NL Fungal endophyte diversity in foliage of native and cultivated Rhododendron species determined by culturing, ITS sequencing, and pyrosequencing. Master’s Thesis. Corvallis, USA: Oregon State University; 2013.85.Higgins KL, Coley PD, Kursar TA, Arnold AE. Culturing and direct PCR suggest prevalent host generalism among diverse fungal endophytes of tropical forest grasses. Mycologia. 2011;103:247–60.PubMed 
    Article 

    Google Scholar 
    86.Harrington AH, Del Olmo-Ruiz M, U’Ren JM, Garcia K, Pignatta D, Wespe N, et al. Coniochaeta endophytica sp. nov., a foliar endophyte associated with healthy photosynthetic tissue of Platycladus orientalis (Cupressaceae). Plant Fungal Syst. 2019;64:65–79.Article 

    Google Scholar 
    87.Ganley RJ, Newcombe G. Fungal endophytes in seeds and needles of Pinus monticola. Mycol Res. 2006;110:318–27.PubMed 
    Article 

    Google Scholar 
    88.Gray AE. A molecular characterization of the fungal endophytes within the needles of ponderosa pine (Pinus ponderosa). M.S. thesis. Cheney, WA: Eastern Washington University; 2016.89.Hinejima M, Hobson KR, Otsuka T, Wood DL, KuBo I. Antimicrobial terpenes from oleoresin of ponderosa pine tree Pinus ponderosa: a defense mechanism against microbial invasion. J Chem Ecol. 1992;18:1809–18.Article 

    Google Scholar  More

  • in

    A lasting symbiosis: how Vibrio fischeri finds a squid partner and persists within its natural host

    1.Koch, E. & McFall-Ngai, M. Model systems for the study of how symbiotic associations between animals and extracellular bacterial partners are established and maintained. Drug Discov. Today Dis. Models 28, 3–12 (2018).PubMed 
    Article 

    Google Scholar 
    2.Lee, K. H. & Ruby, E. G. Effect of the squid host on the abundance and distribution of symbiotic Vibrio fischeri in nature. Appl. Environ. Microbiol. 60, 1565–1571 (1994).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    3.Kremer, N. et al. Initial symbiont contact orchestrates host-organ-wide transcriptional changes that prime tissue colonization. Cell Host Microbe 14, 183–194 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    4.Bongrand, C. & Ruby, E. G. Achieving a multi-strain symbiosis: strain behavior and infection dynamics. ISME J. 13, 698–706 (2019).PubMed 
    Article 

    Google Scholar 
    5.McFall-Ngai, M. J. The importance of microbes in animal development: lessons from the squid-vibrio symbiosis. Annu. Rev. Microbiol. 68, 177–194 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    6.Jones, B. W. & Nishiguchi, M. K. Counterillumination in the Hawaiian bobtail squid, Euprymna scolopes Berry (Mollusca: Cephalopoda). Mar. Biol. 144, 1151–1155 (2004).Article 

    Google Scholar 
    7.Graf, J. & Ruby, E. G. Host-derived amino acids support the proliferation of symbiotic bacteria. Proc. Natl Acad. Sci. USA 95, 1818–1822 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    8.McFall-Ngai, M. J. & Ruby, E. G. Developmental biology in marine invertebrate symbioses. Curr. Opin. Microbiol. 3, 603–607 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    9.Moriano-Gutierrez, S. et al. The noncoding small RNA SsrA is released by Vibrio fischeri and modulates critical host responses. PLoS Biol. 18, e3000934 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    10.Schwartzman, J. A. & Ruby, E. G. Stress as a normal cue in the symbiotic environment. Trends Microbiol. 24, 414–424 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    11.Nyholm, S. V. & McFall-Ngai, M. J. A lasting symbiosis: how the Hawaiian bobtail squid finds and keeps its bioluminescent bacterial partner. Nat. Rev. Microbiol. https://doi.org/10.1038/s41579-021-00567-y (2021).12.Schwartzman, J. A. et al. The chemistry of negotiation: rhythmic, glycan-driven acidification in a symbiotic conversation. Proc. Natl Acad. Sci. USA 112, 566–571 (2015). In this study, the host’s delivery of chitin-derived N-acetylglucosamine is shown to develop 4 weeks after hatching, and this chitin is apparently delivered by haemocytes that lyse in the crypts only at night. A nocturnal acidification of the crypts results, and a model for how this outcome enhances bioluminescence is described.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.Heath-Heckman, E. A. et al. Bacterial bioluminescence regulates expression of a host cryptochrome gene in the squid-vibrio symbiosis. mBio https://doi.org/10.1128/mBio.00167-13 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    14.Koropatnick, T. A. et al. Microbial factor-mediated development in a host-bacterial mutualism. Science 306, 1186–1187 (2004).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    15.Bouskra, D. et al. Lymphoid tissue genesis induced by commensals through NOD1 regulates intestinal homeostasis. Nature 456, 507–510 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    16.Thaiss, C. A. et al. Transkingdom control of microbiota diurnal oscillations promotes metabolic homeostasis. Cell 159, 514–529 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    17.Ruby, E. G. Symbiotic conversations are revealed under genetic interrogation. Nat. Rev. Microbiol. 6, 752–762 (2008).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    18.Bongrand, C. & Ruby, E. G. The impact of Vibrio fischeri strain variation on host colonization. Curr. Opin. Microbiol. 50, 15–19 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    19.Colton, D. M. & Stabb, E. V. Rethinking the roles of CRP, cAMP, and sugar-mediated global regulation in the Vibrionaceae. Curr. Genet. 62, 39–45 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    20.Mandel, M. J. & Dunn, A. K. Impact and Influence of the natural Vibrio-squid symbiosis in understanding bacterial-animal interactions. Front. Microbiol. 7, 1982 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    21.Aschtgen, M. S. et al. Insights into flagellar function and mechanism from the squid-vibrio symbiosis. NPJ Biofilms Microbiomes 5, 32 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    22.Stabb, E. V. & Visick, K. L. in The Prokaryotes (eds Rosenberg, E., DeLong, E. F., Lory, S., Stackebrandt, E. & Thompson, F.) 497–532 (Springer, 2013).23.Nawroth, J. C. et al. Motile cilia create fluid-mechanical microhabitats for the active recruitment of the host microbiome. Proc. Natl Acad. Sci. USA 114, 9510–9516 (2017). This work provides the first glimpse into the cilium-driven fluid mechanics that position V. fischeri cells to reach and settle in ‘quiet zones’ on the light organ surface, permitting a selective ‘recruitment’ of this microorganism from the planktonic environment.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    24.Altura, M. A. et al. The first engagement of partners in the Euprymna scolopes-Vibrio fischeri symbiosis is a two-step process initiated by a few environmental symbiont cells. Environ. Microbiol. 15, 2937–2950 (2013). Aggregations of only a few V. fischeri cells are observed to initiate normal host responses, and reveal that aggregation is a two-part process that begins with bacterial attachment to the cilia.PubMed 
    PubMed Central 

    Google Scholar 
    25.Nyholm, S. V., Stabb, E. V., Ruby, E. G. & McFall-Ngai, M. J. Establishment of an animal-bacterial association: recruiting symbiotic vibrios from the environment. Proc. Natl Acad. Sci. USA 97, 10231–10235 (2000).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    26.Yip, E. S., Geszvain, K., DeLoney-Marino, C. R. & Visick, K. L. The symbiosis regulator RscS controls the syp gene locus, biofilm formation and symbiotic aggregation by Vibrio fischeri. Mol. Microbiol. 62, 1586–1600 (2006).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    27.Koehler, S. et al. The model squid-vibrio symbiosis provides a window into the impact of strain- and species-level differences during the initial stages of symbiont engagement. Environ. Microbiol. https://doi.org/10.1111/1462-2920.14392 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    28.Morris, A. R. & Visick, K. L. Control of biofilm formation and colonization in Vibrio fischeri: a role for partner switching? Environ. Microbiol. 12, 2051–2059 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    29.Norsworthy, A. N. & Visick, K. L. Gimme shelter: how Vibrio fischeri successfully navigates an animal’s multiple environments. Front. Microbiol. 4, 356 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    30.Shibata, S., Yip, E. S., Quirke, K. P., Ondrey, J. M. & Visick, K. L. Roles of the structural symbiosis polysaccharide (syp) genes in host colonization, biofilm formation, and polysaccharide biosynthesis in Vibrio fischeri. J. Bacteriol. 194, 6736–6747 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    31.Yip, E. S., Grublesky, B. T., Hussa, E. A. & Visick, K. L. A novel, conserved cluster of genes promotes symbiotic colonization and sigma-dependent biofilm formation by Vibrio fischeri. Mol. Microbiol. 57, 1485–1498 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    32.Bassis, C. M. & Visick, K. L. The cyclic-di-GMP phosphodiesterase BinA negatively regulates cellulose-containing biofilms in Vibrio fischeri. J. Bacteriol. 192, 1269–1278 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    33.Chavez-Dozal, A., Hogan, D., Gorman, C., Quintanal-Villalonga, A. & Nishiguchi, M. K. Multiple Vibrio fischeri genes are involved in biofilm formation and host colonization. FEMS Microbiol. Ecol. 81, 562–573 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    34.Tischler, A. H., Lie, L., Thompson, C. M. & Visick, K. L. Discovery of calcium as a biofilm-promoting signal for Vibrio fischeri reveals new phenotypes and underlying regulatory complexity. J. Bacteriol. 200, e00016–e00018 (2018). This article expands our understanding of the regulatory controls and signals leading to biofilm formation by identifying calcium as a signal that induces a coordinate upregulation of Syp- and cellulose-dependent biofilm formation and revealing the sensor kinase HahK as a new biofilm regulator.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    35.Ziemba, C., Shabtai, Y., Piatkovsky, M. & Herzberg, M. Cellulose effects on morphology and elasticity of Vibrio fischeri biofilms. NPJ Biofilms Microbiomes 2, 1 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    36.Ray, V. A., Driks, A. & Visick, K. L. Identification of a novel matrix protein that promotes biofilm maturation in Vibrio fischeri. J. Bacteriol. 197, 518–528 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    37.Shibata, S. & Visick, K. L. Sensor kinase RscS induces the production of antigenically distinct outer membrane vesicles That depend on the symbiosis polysaccharide locus in Vibrio fischeri. J. Bacteriol. 194, 185–194 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    38.Hussa, E. A., Darnell, C. L. & Visick, K. L. RscS functions upstream of SypG to control the syp locus and biofilm formation in Vibrio fischeri. J. Bacteriol. 190, 4576–4583 (2008).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    39.Mandel, M. J., Wollenberg, M. S., Stabb, E. V., Visick, K. L. & Ruby, E. G. A single regulatory gene is sufficient to alter bacterial host range. Nature 458, 215–218 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    40.Ray, V. A., Eddy, J. L., Hussa, E. A., Misale, M. & Visick, K. L. The syp enhancer sequence plays a key role in transcriptional activation by the sigma54-dependent response regulator SypG and in biofilm formation and host colonization by Vibrio fischeri. J. Bacteriol. 195, 5402–5412 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    41.Visick, K. L. & Skoufos, L. M. Two-component sensor required for normal symbiotic colonization of Euprymna scolopes by Vibrio fischeri. J. Bacteriol. 183, 835–842 (2001).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    42.Norsworthy, A. N. & Visick, K. L. Signaling between two interacting sensor kinases promotes biofilms and colonization by a bacterial symbiont. Mol. Microbiol. 96, 233–248 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    43.Thompson, C. M., Marsden, A. E., Tischler, A. H., Koo, J. & Visick, K. L. Vibrio fischeri biofilm formation prevented by a trio of regulators. Appl. Environ. Microbiol. https://doi.org/10.1128/AEM.01257-18 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    44.Brooks, J. F. II & Mandel, M. J. The histidine kinase BinK Is a negative regulator of biofilm formation and squid colonization. J. Bacteriol. 198, 2596–2607 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    45.Pankey, M. S. et al. Host-selected mutations converging on a global regulator drive an adaptive leap by bacteria to symbiosis. eLife https://doi.org/10.7554/eLife.24414 (2017). Evolutionary pathways that can lead to symbiotic colonization are revealed in this elegant study that follows the serial passage of a non-colonizing strain through many E. scolopes juveniles, resulting in altered, symbiosis-competent strains.Article 

    Google Scholar 
    46.Morris, A. R., Darnell, C. L. & Visick, K. L. Inactivation of a novel response regulator is necessary for biofilm formation and host colonization by Vibrio fischeri. Mol. Microbiol. 82, 114–130 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    47.Morris, A. R. & Visick, K. L. The response regulator SypE controls biofilm formation and colonization through phosphorylation of the syp-encoded regulator SypA in Vibrio fischeri. Mol. Microbiol. 87, 509–525 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    48.Brooks, J. F. II et al. Global discovery of colonization determinants in the squid symbiont Vibrio fischeri. Proc. Natl Acad. Sci. USA 111, 17284–17289 (2014). This large-scale investigation of colonization factors provides important information on genetic requirements for symbiosis and provides a wealth of data for hypothesis generation that will foster many subsequent studies.CAS 
    PubMed 
    Article 

    Google Scholar 
    49.Thompson, C. M. & Visick, K. L. Assessing the function of STAS domain protein SypA in Vibrio fischeri using a comparative analysis. Front. Microbiol. 6, 760 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    50.Rotman, E. R. et al. Natural strain variation reveals diverse biofilm regulation in squid-colonizing Vibrio fischeri. J. Bacteriol. https://doi.org/10.1128/JB.00033-19 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    51.Bongrand, C. et al. A genomic comparison of 13 symbiotic Vibrio fischeri isolates from the perspective of their host source and colonization behavior. ISME J. 10, 2907–2917 (2016). This study of the genomes and behaviours of a collection of a number of squid symbionts propelled the field from the near-exclusive study of a single isolate, ES114, into new and exciting directions with the genomic sequencing of dominant strains that contain numerous additional genetic sequences and factors.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    52.Newell, P. D., Boyd, C. D., Sondermann, H. & O’Toole, G. A. A c-di-GMP effector system controls cell adhesion by inside-out signaling and surface protein cleavage. PLoS Biol. 9, e1000587 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    53.Christensen, D. G., Marsden, A. E., Hodge-Hanson, K., Essock-Burns, T. & Visick, K. L. LapG mediates biofilm dispersal in Vibrio fischeri by controlling maintenance of the VCBS-containing adhesin LapV. Mol. Microbiol. 114, 742–761 (2020). This article addresses a major long-standing question concerning the initiation of the light organ association; specifically, how do aggregated V. fischeri cells release themselves and migrate into host tissue? One factor may be an adhesin-cleaving protease, which is kept in check by a c-di-GMP-responsive protein, and can promote symbiont dispersal from biofilms.CAS 
    PubMed 
    Article 

    Google Scholar 
    54.Fidopiastis, P. M. et al. Characterization of a Vibrio fischeri aminopeptidase and evidence for its influence on an early stage of squid colonization. J. Bacteriol. 194, 3995–4002 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    55.Davidson, S. K., Koropatnick, T. A., Kossmehl, R., Sycuro, L. & McFall-Ngai, M. J. No means ‘yes’ in the squid-vibrio symbiosis: nitric oxide (NO) during the initial stages of a beneficial association. Cellul. Microbiol. 6, 1139–1151 (2004).CAS 
    Article 

    Google Scholar 
    56.Wang, Y. et al. Vibrio fischeri flavohaemoglobin protects against nitric oxide during initiation of the squid-Vibrio symbiosis. Mol. Microbiol. 78, 903–915 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    57.Stabb, E. V. Should they stay or should they go? Nitric oxide and the clash of regulators governing Vibrio fischeri biofilm formation. Mol. Microbiol. 111, 1–5 (2019).CAS 
    PubMed 

    Google Scholar 
    58.Thompson, C. M., Tischler, A. H., Tarnowski, D. A., Mandel, M. J. & Visick, K. L. Nitric oxide inhibits biofilm formation by Vibrio fischeri via the nitric oxide sensor HnoX. Mol. Microbiol. 111, 187–203 (2019). This publication provides insight into the complex role in symbiosis of the squid-produced defence molecule NO by uncovering its ability to inhibit biofilm formation via the NO sensor HnoX, a finding that suggests that NO may influence the location or timing of biofilm formation and/or promote dispersal during symbiotic initiation.CAS 
    PubMed 
    Article 

    Google Scholar 
    59.Singh, P., Brooks, J. F. II., Ray, V. A., Mandel, M. J. & Visick, K. L. CysK plays a role in Biofilm formation and colonization by Vibrio fischeri. Appl. Environ. Microbiol. 81, 5223–5234 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    60.Raina, J. B., Fernandez, V., Lambert, B., Stocker, R. & Seymour, J. R. The role of microbial motility and chemotaxis in symbiosis. Nat. Rev. Microbiol. 17, 284–294 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    61.Brennan, C. A., DeLoney-Marino, C. R. & Mandel, M. J. Chemoreceptor VfcA mediates amino acid chemotaxis in Vibrio fischeri. Appl. Environ. Microbiol. 79, 1889–1896 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    62.Graf, J., Dunlap, P. V. & Ruby, E. G. Effect of transposon-induced motility mutations on colonization of the host light organ by Vibrio fischeri. J. Bacteriol. 176, 6986–6991 (1994).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    63.Millikan, D. S. & Ruby, E. G. FlrA, a sigma54-dependent transcriptional activator in Vibrio fischeri, is required for motility and symbiotic light-organ colonization. J. Bacteriol. 185, 3547–3557 (2003).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    64.Millikan, D. S. & Ruby, E. G. Vibrio fischeri flagellin A is essential for normal motility and for symbiotic competence during initial squid light organ colonization. J. Bacteriol. 186, 4315–4325 (2004).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    65.Wolfe, A. J., Millikan, D. S., Campbell, J. M. & Visick, K. L. Vibrio fischeri sigma54 controls motility, biofilm formation, luminescence, and colonization. Appl. Environ. Microbiol. 70, 2520–2524 (2004).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    66.O’Shea, T. M. et al. Magnesium promotes flagellation of Vibrio fischeri. J. Bacteriol. 187, 2058–2065 (2005).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    67.Ruby, E. G. & Asato, L. M. Growth and flagellation of Vibrio fischeri during initiation of the sepiolid squid light organ symbiosis. Arch. Microbiol. 159, 160–167 (1993).CAS 
    PubMed 
    Article 

    Google Scholar 
    68.Beeby, M. et al. Diverse high-torque bacterial flagellar motors assemble wider stator rings using a conserved protein scaffold. Proc. Natl Acad. Sci. USA 113, E1917–E1926 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    69.Deloney-Marino, C. R. & Visick, K. L. Role for cheR of Vibrio fischeri in the Vibrio-squid symbiosis. Can. J. Microbiol. 58, 29–38 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    70.Ruby, E. G. et al. Complete genome sequence of Vibrio fischeri: a symbiotic bacterium with pathogenic congeners. Proc. Natl Acad. Sci. USA 102, 3004–3009 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    71.Nikolakakis, K., Monfils, K., Moriano-Gutierrez, S., Brennan, C. A. & Ruby, E. G. Characterization of the Vibrio fischeri fatty acid chemoreceptors, VfcB and VfcB2. Appl. Environ. Microbiol. 82, 696–704 (2015).PubMed 
    Article 
    CAS 

    Google Scholar 
    72.Mandel, M. J. et al. Squid-derived chitin oligosaccharides are a chemotactic signal during colonization by Vibrio fischeri. Appl. Environ. Microbiol. 78, 4620–4626 (2012). While it was long-expected that V. fischeri might sense and be attracted to squid-produced molecules to facilitate directed migration into the light organ crypts, this work is the first to identify squid-produced molecules, chitin oligosaccharides, that function as a chemotactic signal promoting colonization.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    73.Bennett, B. D., Essock-Burns, T. & Ruby, E. G. HbtR, a heterofunctional homolog of the virulence regulator TcpP, facilitates the transition between symbiotic and planktonic lifestyles in Vibrio fischeri. mBio https://doi.org/10.1128/mBio.01624-20 (2020). Comparisons of V. fischeri with the related pathogen Vibrio cholerae reveal that a regulator conserved among Vibrio spp. plays very different roles in the interactions of these two microorganisms with their respective hosts.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    74.Brennan, C. A. et al. A model symbiosis reveals a role for sheathed-flagellum rotation in the release of immunogenic lipopolysaccharide. eLife 3, e01579 (2014). A surprising role for flagellar rotation in the release of lipopolysaccharide molecules that promote squid development is revealed in this work, providing a novel function for the flagellar sheath.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    75.Stabb, E. V. & Millikan, D. S. in Defensive Mutualism in Microbial Symbiosis Vol. 27 (eds White, J. F. & Torres, M. S.) 85–98 (CRC Press, 2009).76.Bose, J. L., Rosenberg, C. S. & Stabb, E. V. Effects of luxCDABEG induction in Vibrio fischeri: enhancement of symbiotic colonization and conditional attenuation of growth in culture. Arch. Microbiol. 190, 169–183 (2008).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    77.Visick, K. L., Foster, J., Doino, J., McFall-Ngai, M. & Ruby, E. G. Vibrio fischeri lux genes play an important role in colonization and development of the host light organ. J. Bacteriol. 182, 4578–4586 (2000).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    78.Verma, S. C. & Miyashiro, T. Niche-specific impact of a symbiotic function on the persistence of microbial symbionts within a natural host. Appl. Environ. Microbiol. 82, 5990–5996 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    79.Dunn, A. K., Millikan, D. S., Adin, D. M., Bose, J. L. & Stabb, E. V. New rfp- and pES213-derived tools for analyzing symbiotic Vibrio fischeri reveal patterns of infection and lux expression in situ. Appl. Environ. Microbiol. 72, 802–810 (2006).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    80.Essock-Burns, T., Bongrand, C., Goldman, W. E., Ruby, E. G. & McFall-Ngai, M. J. Interactions of symbiotic partners drive the development of a complex biogeography in the squid-vibrio symbiosis. mBio 11, e00853-20 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    81.Sycuro, L. K., Ruby, E. G. & McFall-Ngai, M. Confocal microscopy of the light organ crypts in juvenile Euprymna scolopes reveals their morphological complexity and dynamic function in symbiosis. J. Morphol. 267, 555–568 (2006).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    82.Koch, E. J., Miyashiro, T., McFall-Ngai, M. J. & Ruby, E. G. Features governing symbiont persistence in the squid-vibrio association. Mol. Ecol. 23, 1624–1634 (2014).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    83.Wollenberg, M. S., Preheim, S. P., Polz, M. F. & Ruby, E. G. Polyphyly of non-bioluminescent Vibrio fischeri sharing a lux-locus deletion. Environ. Microbiol. 14, 655–668 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    84.Chun, C. K. et al. Effects of colonization, luminescence, and autoinducer on host transcription during development of the squid-vibrio association. Proc. Natl Acad. Sci. USA 105, 11323–11328 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    85.McFall-Ngai, M., Heath-Heckman, E. A., Gillette, A. A., Peyer, S. M. & Harvie, E. A. The secret languages of coevolved symbioses: insights from the Euprymna scolopes-Vibrio fischeri symbiosis. Semin. Immunol. 24, 3–8 (2012).PubMed 
    Article 

    Google Scholar 
    86.Moriano-Gutierrez, S. et al. Critical symbiont signals drive both local and systemic changes in diel and developmental host gene expression. Proc. Natl Acad. Sci. USA 116, 7990–7999 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    87.Verma, S. C. & Miyashiro, T. Quorum sensing in the squid-Vibrio symbiosis. Int. J. Mol. Sci. 14, 16386–16401 (2013).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    88.Stabb, E. V., Schaefer, A., Bose, J. L. & Ruby, E. G. in Chemical Communication Among Bacteria (eds Winans, S. C. & Bassler, B. L.) 233–250 (ASM Press, 2008).89.Lupp, C. & Ruby, E. G. Vibrio fischeri uses two quorum-sensing systems for the regulation of early and late colonization factors. J. Bacteriol. 187, 3620–3629 (2005).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    90.Kimbrough, J. H. & Stabb, E. V. Comparative analysis reveals regulatory motifs at the ainS/ainR pheromone-signaling locus of Vibrio fischeri. Sci. Rep. 7, 11734 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    91.Kimbrough, J. H. & Stabb, E. V. Substrate specificity and function of the pheromone receptor AinR in Vibrio fischeri ES114. J. Bacteriol. 195, 5223–5232 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    92.Studer, S. V., Mandel, M. J. & Ruby, E. G. AinS quorum sensing regulates the Vibrio fischeri acetate switch. J. Bacteriol. 190, 5915–5923 (2008).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    93.Cao, X. et al. The novel sigma factor-like regulator RpoQ controls luminescence, chitinase activity, and motility in Vibrio fischeri. mBio https://doi.org/10.1128/mBio.00285-11 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    94.Studer, S. V. et al. Non-native acylated homoserine lactones reveal that LuxIR quorum sensing promotes symbiont stability. Environ. Microbiol. 16, 2623–2634 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    95.Boettcher, K. J. & Ruby, E. G. Depressed light emission by symbiotic Vibrio fischeri of the sepiolid squid Euprymna scolopes. J. Bacteriol. 172, 3701–3706 (1990).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    96.Septer, A. N. & Stabb, E. V. Coordination of the arc regulatory system and pheromone-mediated positive feedback in controlling the Vibrio fischeri lux operon. PLoS ONE 7, e49590 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    97.Stabb, E. V. Could positive feedback enable bacterial pheromone signaling to coordinate behaviors in response to heterogeneous environmental cues? mBio https://doi.org/10.1128/mBio.00098-18 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    98.Bose, J. L. et al. Bioluminescence in Vibrio fischeri is controlled by the redox-responsive regulator ArcA. Mol. Microbiol. 65, 538–553 (2007).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    99.Lyell, N. L. et al. Cyclic AMP receptor protein regulates pheromone-mediated bioluminescence at multiple levels in Vibrio fischeri ES114. J. Bacteriol. 195, 5051–5063 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    100.Lyell, N. L., Dunn, A. K., Bose, J. L. & Stabb, E. V. Bright mutants of Vibrio fischeri ES114 reveal conditions and regulators that control bioluminescence and expression of the lux operon. J. Bacteriol. 192, 5103–5114 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    101.Septer, A. N., Lyell, N. L. & Stabb, E. V. The iron-dependent regulator fur controls pheromone signaling systems and luminescence in the squid symbiont Vibrio fischeri ES114. Appl. Environ. Microbiol. 79, 1826–1834 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    102.Stoudenmire, J. L. et al. An iterative, synthetic approach to engineer a high-performance PhoB-specific reporter. Appl. Environ. Microbiol. https://doi.org/10.1128/AEM.00603-18 (2018). This study not only provides a road map for synthetic promoter engineering in V. fischeri but also uncovers evidence for possible microenvironments present within different crypts of the E. scolopes light organ.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    103.Bose, J. L. et al. Contribution of rapid evolution of the luxR-luxI intergenic region to the diverse bioluminescence outputs of Vibrio fischeri strains isolated from different environments. Appl. Environ. Microbiol. 77, 2445–2457 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    104.Dunn, A. K. Vibrio fischeri metabolism: symbiosis and beyond. Adv. Microb. Physiol. 61, 37–68 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    105.Schwartzman, J. A. & Ruby, E. G. A conserved chemical dialog of mutualism: lessons from squid and vibrio. Microbes Infect. 18, 1–10 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    106.Pan, S. et al. Model-enabled gene search (MEGS) allows fast and direct discovery of enzymatic and transport gene functions in the marine bacterium Vibrio fischeri. J. Biol. Chem. 292, 10250–10261 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    107.Thompson, L. R. et al. Transcriptional characterization of Vibrio fischeri during colonization of juvenile Euprymna scolopes. Environ. Microbiol. 19, 1845–1856 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    108.Wier, A. M. et al. Transcriptional patterns in both host and bacterium underlie a daily rhythm of anatomical and metabolic change in a beneficial symbiosis. Proc. Natl Acad. Sci. USA 107, 2259–2264 (2010). In the first dual transcriptional study of an animal host and its symbionts, gene expression in both partners is shown to be regulated over a day–night cycle, revealing a daily remodelling of the crypt epithelial cells and a night-time provision of chitin to the symbionts.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    109.Sun, Y., Verma, S. C., Bogale, H. & Miyashiro, T. NagC represses N-acetyl-glucosamine utilization genes in Vibrio fischeri within the light organ of Euprymna scolopes. Front. Microbiol. 6, 741 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    110.Wasilko, N. P. et al. Sulfur availability for Vibrio fischeri growth during symbiosis establishment depends on biogeography within the squid light organ. Mol. Microbiol. 111, 621–636 (2019). This study sheds light on both the nutritional adaptability of V. fischeri and the complex biogeography of the light organ by demonstrating that this symbiont uses different sulfur sources within different regions of the light organ.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    111.Septer, A. N. et al. Bright luminescence of Vibrio fischeri aconitase mutants reveals a connection between citrate and the Gac/Csr regulatory system. Mol. Microbiol. 95, 283–296 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    112.Lyell, N. L. & Stabb, E. V. Symbiotic characterization of Vibrio fischeri ES114 mutants that display enhanced luminescence in culture. Appl. Environ. Microbiol. 79, 2480–2483 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    113.Lyell, N. L. et al. An expanded transposon mutant library reveals that Vibrio fischeri delta-aminolevulinate auxotrophs can colonize Euprymna scolopes. Appl. Environ. Microbiol. https://doi.org/10.1128/AEM.02470-16 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    114.Colton, D. M., Stoudenmire, J. L. & Stabb, E. V. Growth on glucose decreases cAMP-CRP activity while paradoxically increasing intracellular cAMP in the light-organ symbiont Vibrio fischeri. Mol. Microbiol. 97, 1114–1127 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    115.Miyashiro, T. et al. The N-acetyl-D-glucosamine repressor NagC of Vibrio fischeri facilitates colonization of Euprymna scolopes. Mol. Microbiol. 82, 894–903 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    116.Adin, D. M., Visick, K. L. & Stabb, E. V. Identification of a cellobiose utilization gene cluster with cryptic beta-galactosidase activity in Vibrio fischeri. Appl. Environ. Microbiol. 74, 4059–4069 (2008).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    117.Pan, M., Schwartzman, J. A., Dunn, A. K., Lu, Z. & Ruby, E. G. A single host-derived glycan impacts key regulatory nodes of symbiont metabolism in a coevolved mutualism. mBio 6, e00811 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    118.Boettcher, K. J., McFall-Ngai, M. J. & Ruby, E. G. Bioluminescence in the symbiotic squid Euprymna scolopes is controlled by a daily biological rhythm. J. Comp. Physiol. 179, 65–73 (1996).Article 

    Google Scholar 
    119.Kremer, N. et al. The dual nature of haemocyanin in the establishment and persistence of the squid-vibrio symbiosis. Proc. Biol. Sci. 281, 20140504 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    120.Stabb, E. V. Shedding light on the bioluminescence “paradox”. ASM News 71, 223–229 (2005).
    Google Scholar 
    121.Septer, A. N., Bose, J. L., Dunn, A. K. & Stabb, E. V. FNR-mediated regulation of bioluminescence and anaerobic respiration in the light-organ symbiont Vibrio fischeri. FEMS Microbiol. Lett. 306, 72–81 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    122.Dunn, A. K. Alternative oxidase activity reduces stress in Vibrio fischeri cells exposed to nitric oxide. J. Bacteriol. https://doi.org/10.1128/JB.00797-17 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    123.Dunn, A. K. & Stabb, E. V. Genetic analysis of trimethylamine N-oxide reductases in the light organ symbiont Vibrio fischeri ES114. J. Bacteriol. 190, 5814–5823 (2008).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    124.Septer, A. N., Wang, Y., Ruby, E. G., Stabb, E. V. & Dunn, A. K. The haem-uptake gene cluster in Vibrio fischeri is regulated by Fur and contributes to symbiotic colonization. Environ. Microbiol. 13, 2855–2864 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    125.Graf, J. & Ruby, E. G. Novel effects of a transposon insertion in the Vibrio fischeri glnD gene: defects in iron uptake and symbiotic persistence in addition to nitrogen utilization. Mol. Microbiol. 37, 168–179 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    126.Eickhoff, M. J. & Bassler, B. L. Vibrio fischeri siderophore production drives competitive exclusion during dual-species growth. Mol. Microbiol. 114, 244–261 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    127.Ferretti, P. et al. Mother-to-infant microbial transmission from different body sites shapes the developing infant gut microbiome. Cell Host Microbe 24, 133–145 e135 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    128.Zheng, H. et al. Division of labor in honey bee gut microbiota for plant polysaccharide digestion. Proc. Natl Acad. Sci. USA 116, 25909–25916 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    129.Aschtgen, M. S. et al. Rotation of Vibrio fischeri flagella produces outer membrane vesicles that induce host development. J. Bacteriol. 198, 2156–2165 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    130.Aschtgen, M. S., Wetzel, K., Goldman, W., McFall-Ngai, M. & Ruby, E. Vibrio fischeri-derived outer membrane vesicles trigger host development. Cell. Microbiol. 18, 488–499 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    131.Lynch, J. B. et al. Ambient pH alters the protein content of outer membrane vesicles, driving host development in a beneficial symbiosis. J. Bacteriol. https://doi.org/10.1128/JB.00319-19 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    132.Franzenburg, S. et al. Distinct antimicrobial peptide expression determines host species-specific bacterial associations. Proc. Natl Acad. Sci. USA 110, E3730–E3738 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    133.Chen, F. et al. Bactericidal permeability-increasing proteins shape host-microbe interactions. mBio 8, e00040-17 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    134.Heath-Heckman, E. A. et al. Shaping the microenvironment: evidence for the influence of a host galaxin on symbiont acquisition and maintenance in the squid-Vibrio symbiosis. Environ. Microbiol. 16, 3669–3682 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    135.Wang, Y. et al. H-NOX-mediated nitric oxide sensing modulates symbiotic colonization by Vibrio fischeri. Proc. Natl Acad. Sci. USA 107, 8375–8380 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    136.Schwartzman, J. A. et al. Acidic pH promotes lipopolysaccharide modification and alters colonization in a bacteria-animal mutualism. Mol. Microbiol. 112, 1326–1338 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    137.Kwong, W. K. & Moran, N. A. Gut microbial communities of social bees. Nat. Rev. Microbiol. 14, 374–384 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    138.Murfin, K. E. et al. Xenorhabdus bovienii strain diversity impacts coevolution and symbiotic maintenance with Steinernema spp. nematode hosts. mBio 6, e00076 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    139.Wollenberg, M. S. & Ruby, E. G. Population structure of Vibrio fischeri within the light organs of Euprymna scolopes squid from two Oahu (Hawaii) populations. Appl. Environ. Microbiol. 75, 193–202 (2009). This is the first comparative genome-level study of light organ symbionts both between and within adult squid, suggesting that on average each crypt of an organ is colonized by one or two V. fischeri cells, potentially creating crypt-separated, clonal lineages within a polyclonal organ.CAS 
    PubMed 
    Article 

    Google Scholar 
    140.Tomich, M., Planet, P. J. & Figurski, D. H. The tad locus: postcards from the widespread colonization island. Nat. Rev. Microbiol. 5, 363–375 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    141.Gyllborg, M. C., Sahl, J. W., Cronin, D. C. III., Rasko, D. A. & Mandel, M. J. Draft genome sequence of Vibrio fischeri SR5, a strain isolated from the light organ of the Mediterranean squid Sepiola robusta. J. Bacteriol. 194, 1639 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    142.Bongrand, C. et al. Using colonization assays and comparative genomics to discover symbiosis behaviors and factors in Vibrio fischeri. mBio https://doi.org/10.1128/mBio.03407-19 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    143.Coryell, R. L. et al. Phylogeographic patterns in the Philippine archipelago influence symbiont diversity in the bobtail squid-Vibrio mutualism. Ecol. Evol. 8, 7421–7435 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    144.Soto, W., Rivera, F. M. & Nishiguchi, M. K. Ecological diversification of Vibrio fischeri serially passaged for 500 generations in novel squid host Euprymna tasmanica. Microb. Ecol. 67, 700–721 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    145.Soto, W., Travisano, M., Tolleson, A. R. & Nishiguchi, M. K. Symbiont evolution during the free-living phase can improve host colonization. Microbiology 165, 174–187 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    146.Fidopiastis, P. M., von Boletzky, S. & Ruby, E. G. A new niche for Vibrio logei, the predominant light organ symbiont of squids in the genus Sepiola. J. Bacteriol. 180, 59–64 (1998).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    147.Dillon, M. M., Sung, W., Lynch, M. & Cooper, V. S. Periodic variation of mutation rates in bacterial genomes associated with replication timing. mBio https://doi.org/10.1128/mBio.01371-18 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    148.Dillon, M. M., Sung, W., Sebra, R., Lynch, M. & Cooper, V. S. Genome-wide biases in the rate and molecular spectrum of spontaneous mutations in Vibrio cholerae and Vibrio fischeri. Mol. Biol. Evol. 34, 93–109 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    149.Wollenberg, M. S. & Ruby, E. G. Phylogeny and fitness of Vibrio fischeri from the light organs of Euprymna scolopes in two Oahu, Hawaii populations. ISME J. 6, 352–362 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    150.Koch, E. J. et al. The cytokine MIF controls daily rhythms of symbiont nutrition in an animal-bacterial association. Proc. Natl Acad. Sci. USA 117, 27578–27586 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    151.Sun, Y. et al. Intraspecific competition impacts Vibrio fischeri strain diversity during initial colonization of the squid light organ. Appl. Environ. Microbiol. 82, 3082–3091 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    152.Speare, L. et al. Bacterial symbionts use a type VI secretion system to eliminate competitors in their natural host. Proc. Natl Acad. Sci. USA 115, E8528–E8537 (2018). The finding that V. fischeri engages in biological ‘warfare’ to become the sole colonizer of a given crypt has provided new insight into the dynamics and processes controlling light organ population structure and strain competition in nature.CAS 
    PubMed 
    Article 

    Google Scholar 
    153.Speare, L., Smith, S., Salvato, F., Kleiner, M. & Septer, A. N. Environmental viscosity modulates interbacterial killing during habitat transition. mBio https://doi.org/10.1128/mBio.03060-19 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    154.Guckes, K. R. et al. Incompatibility of Vibrio fischeri strains during symbiosis establishment depends on two functionally redundant hcp genes. J. Bacteriol. https://doi.org/10.1128/JB.00221-19 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    155.Guckes, K. R., Cecere, A. G., Williams, A. L., McNeil, A. E. & Miyashiro, T. The bacterial enhancer binding protein VasH promotes expression of a Type VI secretion system in Vibrio fischeri during symbiosis. J. Bacteriol. https://doi.org/10.1128/JB.00777-19 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    156.Bultman, K. M., Cecere, A. G., Miyashiro, T., Septer, A. N. & Mandel, M. J. Draft genome sequences of type VI secretion system-encoding Vibrio fischeri strains FQ-A001 and ES401. Microbiol. Resour. Announc. https://doi.org/10.1128/MRA.00385-19 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    157.Doino, J. A. & McFall-Ngai, M. J. A transient exposure to symbiosis-competent bacteria induces light organ morphogenesis in the host squid. Biol. Bull. 189, 347–355 (1995).CAS 
    PubMed 
    Article 

    Google Scholar 
    158.Dunn, A. K., Martin, M. O. & Stabb, E. V. Characterization of pES213, a small mobilizable plasmid from Vibrio fischeri. Plasmid 54, 114–134 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    159.Lyell, N. L., Dunn, A. K., Bose, J. L., Vescovi, S. L. & Stabb, E. V. Effective mutagenesis of Vibrio fischeri by using hyperactive mini-Tn5 derivatives. Appl. Environ. Microbiol. 74, 7059–7063 (2008).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    160.Stoudenmire, J. L., Black, M., Fidopiastis, P. M. & Stabb, E. V. Mutagenesis of Vibrio fischeri and other marine bacteria using hyperactive mini-Tn5 derivatives. Methods Mol. Biol. 2016, 87–104 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    161.Pollack-Berti, A., Wollenberg, M. S. & Ruby, E. G. Natural transformation of Vibrio fischeri requires tfoX and tfoY. Environ. Microbiol. 12, 2302–2311 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    162.Visick, K. L., Hodge-Hanson, K. M., Tischler, A. H., Bennett, A. K. & Mastrodomenico, V. Tools for rapid genetic engineering of Vibrio fischeri. Appl. Environ. Microbiol. https://doi.org/10.1128/AEM.00850-18 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    163.Burgos, H. L. et al. Multiplexed competition in a synthetic squid light organ microbiome using barcode-tagged gene deletions. mSystems 5, e00846-20 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    164.Brooks, J. F. II, Gyllborg, M. C., Kocher, A. A., Markey, L. E. & Mandel, M. J. TfoX-based genetic mapping identifies Vibrio fischeri strain-level differences and reveals a common lineage of laboratory strains. J. Bacteriol. 197, 1065–1074 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    165.Califano, G. et al. Draft genome sequence of Aliivibrio fischeri strain 5LC, a bacterium retrieved from gilthead seabream (Sparus aurata) larvae reared in aquaculture. Genome Announc. 3, e00593-15 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    166.Hehemann, J.-H. et al. Adaptive radiation by waves of gene transfer leads to fine-scale resource partitioning in marine microbes. Nat. Commun. 7, 12860 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    167.Nikolakakis, K., Lehnert, E., McFall-Ngai, M. J. & Ruby, E. G. Use of hybridization chain reaction-fluorescent in situ hybridization to track gene expression by both partners during initiation of symbiosis. Appl. Environ. Microbiol. 81, 4728–4735 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar  More