More stories

  • in

    The 2018 European heatwave led to stem dehydration but not to consistent growth reductions in forests

    1.Rahmstorf, S. & Coumou, D. Increase of extreme events in a warming world. Proc. Natl Acad. Sci. 108, 17905–17909 (2011).CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    2.Barriopedro, D., Fischer, E. M., Luterbacher, J., Trigo, R. M. & Garcia-Herrera, R. The Hot Summer of 2010: Redrawing the temperature record map of Europe. Science 332, 220–224 (2011).CAS 
    PubMed 
    ADS 

    Google Scholar 
    3.Fischer, E. M. & Knutti, R. Detection of spatially aggregated changes in temperature and precipitation extremes. Geophys. Res. Lett. 41, 547–554 (2014).ADS 

    Google Scholar 
    4.Della-Marta, P. M., Haylock, M. R., Luterbacher, J. & Wanner, H. Doubled length of western European summer heat waves since 1880. J. Geophys. Res. 112, D15103 (2007).ADS 

    Google Scholar 
    5.Zscheischler, J. et al. Future climate risk from compound events. Nat. Clim. Chang. 8, 469–477 (2018).ADS 

    Google Scholar 
    6.Teskey, R. et al. Responses of tree species to heat waves and extreme heat events. Plant, Cell Environ. 38, 1699–1712 (2015).
    Google Scholar 
    7.Ciais, P. et al. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437, 529–533 (2005).CAS 
    PubMed 
    ADS 

    Google Scholar 
    8.Steppe, K., Sterck, F. & Deslauriers, A. Diel growth dynamics in tree stems: linking anatomy and ecophysiology. Trends Plant Sci. 20, 335–343 (2015).CAS 
    PubMed 

    Google Scholar 
    9.Peters, R. L. et al. Turgor—a limiting factor for radial growth in mature conifers along an elevational gradient. N. Phytol. 229, 213–229 (2021).CAS 

    Google Scholar 
    10.Meinzer, F. C., Johnson, D. M., Lachenbruch, B., McCulloh, K. A. & Woodruff, D. R. Xylem hydraulic safety margins in woody plants: Coordination of stomatal control of xylem tension with hydraulic capacitance. Funct. Ecol. 23, 922–930 (2009).
    Google Scholar 
    11.Anderegg, W. R. L., Berry, J. A. & Field, C. B. Linking definitions, mechanisms, and modeling of drought-induced tree death. Trends Plant Sci. 17, 693–700 (2012).CAS 
    PubMed 

    Google Scholar 
    12.Martínez‐Vilalta, J., Anderegg, W. R. L., Sapes, G. & Sala, A. Greater focus on water pools may improve our ability to understand and anticipate drought‐induced mortality in plants. N. Phytol. 223, 22–32 (2019).
    Google Scholar 
    13.Zweifel, R., Haeni, M., Buchmann, N. & Eugster, W. Are trees able to grow in periods of stem shrinkage? N. Phytol. 211, 839–849 (2016).
    Google Scholar 
    14.Dietrich, L., Zweifel, R. & Kahmen, A. Daily stem diameter variations can predict the canopy water status of mature temperate trees. Tree Physiol. 38, 941–952 (2018).PubMed 

    Google Scholar 
    15.Zweifel, R. et al. Why trees grow at night. N. Phytol. 231, 2174–2185 (2021).
    Google Scholar 
    16.Buras, A., Rammig, A. & Zang, C. S. Quantifying impacts of the 2018 drought on European ecosystems in comparison to 2003. Biogeosciences 17, 1655–1672 (2020).ADS 

    Google Scholar 
    17.Bastos, A. et al. Direct and seasonal legacy effects of the 2018 heat wave and drought on European ecosystem productivity. Sci. Adv. 6, eaba2724 (2020).CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    18.Peters, W., Bastos, A., Ciais, P. & Vermeulen, A. A historical, geographical, and ecological perspective on the 2018 European summer drought. Philos. Trans. R. Soc. B Biol. Sci. 375, 20190505 (2020).
    Google Scholar 
    19.Albergel, C. et al. Monitoring and Forecasting the Impact of the 2018 Summer Heatwave on Vegetation. Remote Sens. 11, 520 (2019).ADS 

    Google Scholar 
    20.Smith, N. E. et al. Spring enhancement and summer reduction in carbon uptake during the 2018 drought in northwestern. Eur. Philos. Trans. R. Soc. B Biol. Sci. 375, 20190509 (2020).CAS 

    Google Scholar 
    21.Brun, P. et al. Large‐scale early‐wilting response of Central European forests to the 2018 extreme drought. Glob. Chang. Biol. 26, 7021–7035 (2020).PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    22.Ramonet, M. et al. The fingerprint of the summer 2018 drought in Europe on ground-based atmospheric CO2 measurements. Philos. Trans. R. Soc. B Biol. Sci. 375, 20190513 (2020).CAS 

    Google Scholar 
    23.Bastos, A. et al. Impacts of extreme summers on European ecosystems: A comparative analysis of 2003, 2010 and 2018. Philos. Trans. R. Soc. B Biol. Sci. 375, 20190507 (2020).CAS 

    Google Scholar 
    24.Lin, Y.-S. et al. Optimal stomatal behaviour around the world. Nat. Clim. Chang. 5, 459–464 (2015).CAS 
    ADS 

    Google Scholar 
    25.Schuldt, B. et al. A first assessment of the impact of the extreme 2018 summer drought on Central European forests. Basic Appl. Ecol. 45, 86–103 (2020).
    Google Scholar 
    26.Rita, A. et al. The impact of drought spells on forests depends on site conditions: The case of 2017 summer heat wave in southern Europe. Glob. Chang. Biol. 26, 851–863 (2020).PubMed 
    ADS 

    Google Scholar 
    27.Hanewinkel, M., Cullmann, D. A., Schelhaas, M.-J., Nabuurs, G.-J. & Zimmermann, N. E. Climate change may cause severe loss in the economic value of European forest land. Nat. Clim. Chang. 3, 203–207 (2013).ADS 

    Google Scholar 
    28.Larysch, E., Stangler, D. F., Nazari, M., Seifert, T. & Kahle, H.-P. Xylem phenology and growth response of European beech, silver fir and scots pine along an elevational gradient during the extreme drought year 2018. Forests 12, 75 (2021).
    Google Scholar 
    29.Rohner, B., Kumar, S., Liechti, K., Gessler, A. & Ferretti, M. Tree vitality indicators revealed a rapid response of beech forests to the 2018 drought. Ecol. Indic. 120, 106903 (2021).
    Google Scholar 
    30.Scharnweber, T., Smiljanic, M., Cruz-García, R., Manthey, M. & Wilmking, M. Tree growth at the end of the 21st century – the extreme years 2018/19 as template for future growth conditions. Environ. Res. Lett. 15, 074022 (2020).ADS 

    Google Scholar 
    31.Kowalska, N. et al. Analysis of floodplain forest sensitivity to drought. Philos. Trans. R. Soc. B Biol. Sci. 375, 20190518 (2020).CAS 

    Google Scholar 
    32.Zweifel, R. et al. Baumwasserdefizite erreichten im Sommer 2018 Höchstwerte–war das aus dem All erkennbar. Schweiz Z. Forstwes. 171, 302–305 (2020).
    Google Scholar 
    33.Cuny, H. E. et al. Woody biomass production lags stem-girth increase by over one month in coniferous forests. Nat. Plants 1, 15160 (2015).CAS 
    PubMed 

    Google Scholar 
    34.D’Orangeville, L. et al. Drought timing and local climate determine the sensitivity of eastern temperate forests to drought. Glob. Chang. Biol. 24, 2339–2351 (2018).PubMed 
    ADS 

    Google Scholar 
    35.Delpierre, N., Berveiller, D., Granda, E. & Dufrêne, E. Wood phenology, not carbon input, controls the interannual variability of wood growth in a temperate oak forest. N. Phytol. 210, 459–470 (2016).CAS 

    Google Scholar 
    36.Babst, F. et al. Above-ground woody carbon sequestration measured from tree rings is coherent with net ecosystem productivity at five eddy-covariance sites. N. Phytol. 201, 1289–1303 (2014).CAS 

    Google Scholar 
    37.Zweifel, R. et al. Determinants of legacy effects in pine trees – implications from an irrigation‐stop experiment. N. Phytol. 227, 1081–1096 (2020).CAS 

    Google Scholar 
    38.Anderegg, W. R. L. et al. Pervasive drought legacies in forest ecosystems and their implications for carbon cycle models. Science 349, 528–532 (2015).CAS 
    PubMed 
    ADS 

    Google Scholar 
    39.Zweifel, R., Zimmermann, L. & Newbery, D. M. Modeling tree water deficit from microclimate: An approach to quantifying drought stress. Tree Physiol. 25, 147–156 (2005).CAS 
    PubMed 

    Google Scholar 
    40.Gleason, S. M. et al. Weak tradeoff between xylem safety and xylem-specific hydraulic efficiency across the world’s woody plant species. N. Phytol. 209, 123–136 (2016).CAS 

    Google Scholar 
    41.Duursma, R. A. et al. On the minimum leaf conductance: its role in models of plant water use, and ecological and environmental controls. N. Phytol. 221, 693–705 (2019).
    Google Scholar 
    42.Poyatos, R., Aguadé, D. & Martínez-Vilalta, J. Below-ground hydraulic constraints during drought-induced decline in Scots pine. Ann. Sci. 75, 100 (2018).
    Google Scholar 
    43.Johnson, D. M., McCulloh, K. A., Woodruff, D. R. & Meinzer, F. C. Hydraulic safety margins and embolism reversal in stems and leaves: Why are conifers and angiosperms so different? Plant Sci. 195, 48–53 (2012).CAS 
    PubMed 

    Google Scholar 
    44.Brodribb, T. J., McAdam, S. A. M., Jordan, G. J. & Martins, S. C. V. Conifer species adapt to low-rainfall climates by following one of two divergent pathways. Proc. Natl Acad. Sci. U.S.A 111, 14489–14493 (2014).CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    45.Choat, B. et al. Global convergence in the vulnerability of forests to drought. Nature 491, 752–755 (2012).CAS 
    PubMed 
    ADS 

    Google Scholar 
    46.Drake, J. E. et al. Trees tolerate an extreme heatwave via sustained transpirational cooling and increased leaf thermal tolerance. Glob. Chang. Biol. 24, 2390–2402 (2018).PubMed 
    ADS 

    Google Scholar 
    47.Anderegg, W. R. L., Trugman, A. T., Badgley, G., Konings, A. G. & Shaw, J. Divergent forest sensitivity to repeated extreme droughts. Nat. Clim. Chang. 10, 1091–1095 (2020).ADS 

    Google Scholar 
    48.Leuzinger, S., Zotz, G., Asshoff, R. & Korner, C. Responses of deciduous forest trees to severe drought in Central Europe. Tree Physiol. 25, 641–650 (2005).PubMed 

    Google Scholar 
    49.Brinkmann, N., Eugster, W., Zweifel, R., Buchmann, N. & Kahmen, A. Temperate tree species show identical response in tree water deficit but different sensitivities in sap flow to summer soil drying. Tree Physiol. 36, 1508–1519 (2016).PubMed 

    Google Scholar 
    50.Rosengren, U. et al. Functional biodiversity aspects on the nutrient sustainability in forests-Importance of root distribution. J. Sustain. 21, 77–100 (2006).
    Google Scholar 
    51.Salomón, R. L., Limousin, J.-M., Ourcival, J.-M., Rodríguez-Calcerrada, J. & Steppe, K. Stem hydraulic capacitance decreases with drought stress: implications for modelling tree hydraulics in the Mediterranean oak Quercus ilex. Plant. Cell Environ. 40, 1379–1391 (2017).PubMed 

    Google Scholar 
    52.Mencuccini, M. et al. Leaf economics and plant hydraulics drive leaf: wood area ratios. N. Phytol. 224, 1544–1556 (2019).
    Google Scholar 
    53.Guerrero-Ramírez, N. R. et al. Global root traits (GRooT). Database Glob. Ecol. Biogeogr. 30, 25–37 (2021).
    Google Scholar 
    54.Kattge, J. et al. TRY plant trait database—enhanced coverage and open access. Glob. Chang. Biol. 26, 119–188 (2020).PubMed 
    ADS 

    Google Scholar 
    55.van der Maaten, E. et al. Species distribution models predict temporal but not spatial variation in forest growth. Ecol. Evol. 7, 2585–2594 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    56.Körner, C. No need for pipes when the well is dry—a comment on hydraulic failure in trees. Tree Physiol. 39, 695–700 (2019).PubMed 

    Google Scholar 
    57.Walthert, L. et al. From the comfort zone to crown dieback: Sequence of physiological stress thresholds in mature European beech trees across progressive drought. Sci. Total Environ. 753, 141792 (2021).CAS 
    PubMed 
    ADS 

    Google Scholar 
    58.Preisler, Y., Tatarinov, F., Grünzweig, J. M. & Yakir, D. Seeking the “point of no return” in the sequence of events leading to mortality of mature trees. Plant. Cell Environ. 44, 1315–1328 (2021).CAS 
    PubMed 

    Google Scholar 
    59.Poyatos, R. et al. Global transpiration data from sap flow measurements: The SAPFLUXNET database. Earth Syst. Sci. Data 13, 2607–2649 (2021).ADS 

    Google Scholar 
    60.Steppe, K., von der Crone, J. S. & De Pauw, D. J. W. TreeWatch.net: A water and carbon monitoring and modeling network to assess instant tree hydraulics and carbon status. Front. Plant Sci. 7, 993 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    61.Sass-Klaassen, U. et al. A tree-centered approach to assess impacts of extreme climatic events on forests. Front. Plant Sci. 7, 1–6 (2016).
    Google Scholar 
    62.Cailleret, M. et al. A synthesis of radial growth patterns preceding tree mortality. Glob. Chang. Biol. 23, 1675–1690 (2017).PubMed 
    ADS 

    Google Scholar 
    63.Sparks, A. H., Hengl, T. & Nelson, A. GSODR: Global summary daily weather data in R. J. Open Source Softw. 2, 177 (2017).ADS 

    Google Scholar 
    64.Muñoz-Sabater, J. et al. ERA5-Land: An improved version of the ERA5 reanalysis land component. in Joint ISWG and LSA-SAF Workshop IPMA. 26–28 (2018).65.Granier, A. et al. Evidence for soil water control on carbon and water dynamics in European forests during the extremely dry year: 2003. Agric. Meteorol. 143, 123–145 (2007).
    Google Scholar 
    66.Karger, D. N. et al. Climatologies at high resolution for the earth’s land surface areas. Sci. Data 4, 170122 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    67.Cornes, R. C., van der Schrier, G., van den Besselaar, E. J. M. & Jones, P. D. An ensemble version of the E-OBS temperature and precipitation data sets. J. Geophys. Res. Atmos. 123, 9391–9409 (2018).
    Google Scholar 
    68.Frich, P. et al. Observed coherent changes in climatic extremes during the second half of the twentieth century. Clim. Res. 19, 193–212 (2002).ADS 

    Google Scholar 
    69.Alexander, L. V. et al. Global observed changes in daily climate extremes of temperature and precipitation. J. Geophys. Res. Atmos. 111, 1–22 (2006).
    Google Scholar 
    70.Knüsel, S., Peters, R. L., Haeni, M., Wilhelm, M. & Zweifel, R. Processing and extraction of seasonal tree physiological parameters from stem radius time series. Forests 12, 765 (2021).
    Google Scholar 
    71.Hedges, L. V., Gurevitch, J. & Curtis, P. S. The meta-analysis of response ratios in experimental ecology. Ecology 80, 1150–1156 (1999).
    Google Scholar 
    72.Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).
    Google Scholar 
    73.R. Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing. (2019). More

  • in

    A taxonomic, genetic and ecological data resource for the vascular plants of Britain and Ireland

    The broad categories of data included in the repository are summarized in Online-only Table 2 and visualized in Fig. 2. Each category is explained in greater detail below, while full details together with accompanying notes are given in the repository (Database_structure.csv) and in Supplementary File 1. Online-only Table 2 gives an overview of data coverage per category, both across all species and for native species separately. A complete list of data sources is available in Supplementary File 2.Fig. 2Visualization of the attributes presented in the database.Full size imageGeneration of the species listTaxon names listed in the most recent and widely accepted New Flora of the British Isles’ index12 were digitized via the Optical Character Recognition Software ReadirisTM 17 (IRIS). Results from the digitization were transferred into a spreadsheet and obvious recognition errors were fixed. The resulting table contained 5,687 taxa and associated taxonomic authorities. A total of 360 unnamed hybrids were excluded, as well as species noted to have only questionable or unconfirmed records, leaving 5,038 species. Forty-one intergeneric hybrid species, 827 entries relating to (notho)subspecies, (notho)varieties, cultivars and forma were also removed along with 720 named hybrids. Species that were included by Stace12 but which he considered not to be part of the flora (i.e. listed as ‘other species’ and ‘other genera’, e.g. genus Tragus or Coreopsis verticillata) were also excluded. Seven species that were labelled ‘extinct’ in the flora were included as there were indications that the species might be in the process of reintroduction (e.g. Bromus interruptus, Bupleurum falcatum and Schoenoplectus pungens). Extinct native and archaeophyte species without any signs of reintroduction (e.g. Dryopteris remota) are also listed but no additional data are provided and they are not included in calculations of completeness of data (Online-only Table 2). The final number of extant species listed here is therefore 3,209 (comprising 1,468 natives, 1,690 aliens and 51 species with unknown status), plus 18 formally extinct species (natives and archaeophytes not seen in the study region since 1999). Species names and taxonomic authorities were revised according to the 2021 reprint of the New Flora of the British Isles, communicated to us by C.A.S. ahead of publication. Genera with less well-defined species – for example due to apomixis – contain additional information on subgenera, sections, and aggregates, as per Stace12. Since misidentifications are common in these groups, we include a column termed ‘unclear_species_marker’ that allows for these species to be quickly identified and excluded from analyses if appropriate. Such genera are often incompletely listed in our database since most microspecies are not sufficiently well defined.TaxonomyNomenclature of the list was checked by Global Names Resolver in the R package ‘taxize’20,21, using the International Plant Names Index (IPNI)22 as the data source, to remove any digitisation errors. Resolved names were used to determine accepted higher taxonomic hierarchy (family, order) again using taxize, with the National Center for Biotechnology Information (NCBI) database. Species that could not be resolved by the Global Names Resolver or did not yield matches in the NCBI database for their higher taxonomic ranks were manually checked for name matches in the World Checklist of Vascular Plants (WCVP)17. Species within the original species list that were found to be identical to a different spelling in WCVP were retained in the database. In such instances, and when slight spelling differences occurred, the columns ‘taxon_name‘ and ‘taxon_name_WCVP‘ differ. To improve clarity, each species is presented here with its unique identification number according to the WCVP (listed as ‘kew_id’) together with three additional columns (i.e. WCVP.URL, POWO.URL and IPNI.URL) which contain hyperlinks to the freely accessible taxon description websites of the (WCVP)17, Plants of the World Online (POWO)23 and (IPNI)22, respectively. Thus, while the taxon names used in the database correspond to those used by Stace12, changes in the accepted species name since publication can be traced in columns ‘taxonomic_status’ and ‘accepted_kew_id’. The family classification of WCVP follows APG IV24 for angiosperms, Christenhusz et al. (2011)25 for gymnosperms and Christenhusz & Chase (2014)26 for ferns and lycopods.Native statusWe offer three different datasets which describe the status of a species as native or non-native, and its level of establishment in BI. The first is extracted from Stace (2019)12, the second contains the status codes used in PLANTATT10 and the unpublished ALIENATT (pers. comm. author K.J.W.) dataset, and the third is extracted from Alien Plants13. The status from Stace12 and Stace & Crawley13 assigns a species to either native or alien status, with aliens subdivided into archaeophytes and neophytes at different levels of establishment (e.g. denizen, colonist etc., see Online-only Table 1). Status codes from the BSBI can be either AC (alien casual), AN (neophyte), AR (archaeophyte), N (native), NE (native endemic) or NA (native status doubtful).Functional traitsData for five ecologically relevant functional traits (i.e. seed mass, specific leaf area [SLA], leaf area, leaf dry matter content [LDMC] and vegetative height) were downloaded from public data available in the TRY database27 (for specific authors see Supplementary File 1 and Supplementary File 2). Averages were calculated using the available measurements downloaded for each species, excluding rows where the measurement was 0. In addition, the maximum vegetative height for each species is given, where available.Realized niche descriptionRealized niche descriptions based on assessments made on plants living in BI are given in the form of Ellenberg indicator values18, as published in PLANTATT10. Ellenberg indicator values place each species along an environmental gradient (e.g. light or salinity) by assigning a number on an ordinal scale, depending on the species preference for the specific gradient (Online-only Table 2). This information is often used to gain insights into environmental changes based on species occurrences28. For species listed under a previously accepted name in PLANTATT, the information was associated with the accepted synonym in Stace (2019)12. Due to the low coverage of PLANTATT for non-native species included in our list, we additionally include Ellenberg indicator values based on Central European assessments, as made available by Döring29. Each Ellenberg category is listed in a separate column, keeping the information from both data sources separate to avoid confounding of assessments based on two different regions (i.e. Britain and Ireland versus Central Europe).Life strategyTo characterize the life strategy of a species, we used the CSR scheme developed by Grime19, which classifies each species as either a competitor (C), stress tolerator (S), ruderal (R) or a combination of these (e.g. CS, SR). CSR classifications were obtained from the Electronic Comparative Plant Ecology database30. Due to the low coverage of available CSR assessments for species in our database (i.e. data available for just 460 out of 3,209 species) we imputed CSR strategies for a further 981 species using available functional trait data, following the method proposed by Pierce et al.31. The functional leaf traits required for this method – i.e. specific leaf area, leaf area, leaf dry matter content – were obtained from the TRY database27. Pre-existing30 and newly imputed CSR strategies are listed in separate columns.Growth form, succulence and life-formPlant growth form descriptions were obtained from the TRY database27 and filtered for those entries given by specific contributors (Online-only Table 2) to maintain consistent use of growth form categories. Information on whether a species was considered to be a succulent was obtained by screening the entire growth form information obtained from the TRY database for the phrase ‘succulence’ or ‘succulent’.Species life-form categories according to Raunkiaer32 were determined for each species in our dataset with regard to the typical life-form of the species as it grows in BI (pers. comm. M.J.M.C.).Associated biome and originInformation given in the Ecoflora database3 for the biome that each species is associated with was matched to the species names according to Stace12. The recognized biome categories follow Preston & Hill33 and are ‘Arctic montane’, ‘Boreal Montane’, ‘Boreo-Arctic Montane’, ‘Boreo-Temperate’, ‘Mediterranean’, ‘Mediterranean-Atlantic’, ‘Southern Temperate’, ‘Temperate’, ‘Wide Boreal’ and ‘Wide Temperate’.For non-native species, the assumed origin (i.e. the region that plants were most likely to have been introduced to BI from, rather than the full non-BI distribution of a species) was adapted from Stace12 into a brief description of their country or region of origin. In addition, these descriptions were manually allocated to the TDWG level 1 regions listed in the World Geographical Scheme for Recording Plant Distributions (WGSRPD, TDWG)34.Species distributionsDistribution metrics for each species are given as the number of 10-km square hectads in BI with records for the species in question within a specified time window. The data were derived from the BSBI Distribution Database35 and were extracted for each species, dividing the study region into Great Britain (incl. Isle of Man), Ireland and the Channel Islands, as previously partitioned for data available in PLANTATT10. The database was queried using species and hectads for grouping, showing only records ‘matching or within 2 km of county boundary’ and excluding ‘do-not-map-flagged occurrences’. The data were not corrected for sampling bias and should therefore only be used as an indication of trends.Hybrid propensityData on hybridization is provided for 641 species, obtained from the Hybrid flora of the British Isles36 which enumerates every hybrid reported in BI up until 2015 (pers. comm. M.R.B.). Each entry was transcribed manually, and then filtered to exclude (a) hybrids that have been recorded, but not formed in the British Isles, (b) triple hybrids (mainly reported for the genus Salix), (c) doubtful records, (d) hybrids between subspecific ranks, and (e) hybrids where at least one parent is not native (only archaeophytes included). This left 821 hybrid combinations for data aggregation. The metric chosen here is hybrid propensity, which is a per-species metric of how many other species a focal species hybridizes with (sensu Whitney et al., 201037). A scaled hybrid propensity metric is also given which was calculated by weighting the hybrid propensity score by the number of intrageneric combinations for a given genus, to account for the greater opportunities of hybridization in larger genera.DNA barcodesDNA barcode sequences for plant species present in BI are currently available for 1,413 species in our database. The information was derived from a dataset of rbcL, matK and ITS2 sequences compiled for the UK flora generated by the National Botanic Garden of Wales and the Royal Botanic Garden Edinburgh38,39 (pers. comm. L.J. and N.D.V.). The data are given as a hyperlink to the record’s page on the Barcode of Life Data Systems (BOLD40) which includes the DNA barcode sequences as well as scans of the herbarium specimen and information on the sample’s collection. Most species have multiple record pages associated with them, due to the sampling of more than one individual. We include a maximum of three BOLD accessions per species; the full range of individuals sampled can be accessed via the original publications38,39. DNA barcodes are almost exclusively available for native species. Future releases of our database will increase the coverage of the non-native flora significantly. Where species in the BOLD database are attributed to a species name that is considered synonymous with another name in our list, the hyperlink is matched to the latest nomenclature12. 1,421 species have at least one sequence associated with them and 935 species have sequence data for all three sequences (rbcL, matK and ITS2).Genome size and chromosome numbersGenome size data for 2,117 specimens (at least one measurement per species) were obtained from various sources. Measurements for a total of 467 species were newly estimated using plant material of known BI origin, often sourced  from the Millennium Seedbank of the Royal Botanic Gardens, Kew (RBG Kew)41. The measurements were made by flow cytometry using seeds or seedlings and following an established protocol42. Information on the extraction buffers and calibration standard species used are available in the file GS_Kew_BI.csv, along with peak CV values of the measurements as a quality control. Where more than one measurement is reported per species, the measurements were made on plant material from different populations or using different buffers. Previously published data for additional species were obtained from reports on the Czech flora43, the Dutch flora44, and prime values listed in the Plant DNA C-values database45,46. Since significant intraspecific differences in genome size between plant material from different geographical origins have previously been described, predominantly due to cytotype diversity in ploidy level47, genome size measurements from previously published sources were assessed with regard to the origin of the material. The column ‘from_BI_material’ (GS_BI.csv, BI_main.csv) allows users to filter for measurements made on material from BI to exclude a potential bias. The information was obtained from the original publication source of each measurement.Chromosome numbers for 1,410 species (at least one chromosome number per species) determined exclusively from material collected in BI were obtained from an extensive dataset compiled by R.J.G. from various published studies, unpublished theses and personal communications from trusted sources. The counts were made between 1898 and 2017, with a large proportion stemming from efforts to achieve greater coverage of the flora by a team of cytologists based at the University of Leicester and headed by R.J.G. Part of the dataset was previously incorporated into the BSBI’s data catalogue5 but has since undergone revisions to incorporate new information and changes in taxonomy. The dataset contained many measurements at subspecies level which were allocated to the species level taxon in our list. This served to include as much of the often considerable infraspecific variation as possible. Since some species for which chromosome counts have been reported elsewhere are lacking chromosome counts from British or Irish material, they are absent from this dataset. To fill such gaps, we also present chromosome numbers from reports on the Czech flora43, the Dutch flora44, and the Plant DNA C-values database45,46. More

  • in

    Seasonal pattern of food habits of large herbivores in riverine alluvial grasslands of Brahmaputra floodplains, Assam

    1.Krebs, C. J. Ecological Methodology 2nd edn. (Addison Welsey Educational Publishers Inc, 1999).
    Google Scholar 
    2.Tewari, R. & Rawat, G. S. Studies on the food and feeding habits of Swamp Deer (Rucervus duvaucelii duvaucelii) in Jhilmil Jheel conservation reserve, Haridwar, Uttarakhand, India. ISRN Zool. 2013, 1–6. https://doi.org/10.1155/2013/278213 (2013).Article 

    Google Scholar 
    3.Brodeur, R. D., Smith, B. E., McBride, R. S., Heintz, R. & Farley, E. New perspectives on the feeding ecology and trophic dynamics of fishes. Environ. Biol. Fishes. 100, 293–297. https://doi.org/10.1007/s10641-017-0594-1 (2017).Article 

    Google Scholar 
    4.Vesey-FitzGerald, D. F. Grazing succession among East African game animals. J. Mammal. 41, 161–172. https://doi.org/10.2307/1376351 (1960).Article 

    Google Scholar 
    5.Lamprey, H. F. Ecological separation of the large mammal species in the Tarangire game reserve, Tanganyika. Afr. J. Ecol. 1, 63–92. https://doi.org/10.1111/j.1365-2028.1963.tb00179.x (1963).Article 

    Google Scholar 
    6.Ahrestani, F. S. Asian Eden Large Herbivore Ecology in India (Wageningen University, 2009).
    Google Scholar 
    7.Bell, R. H. V. The use of herb layer by grazing ungulates in the Serengeti. In Animal Populations in Relation to their Food Resources (eds. Watson, A.) 111–124 (Blackwell Science, 1970).8.Jarman, P. The social organisation of antelopes in relation to their ecology. Behaviour 48, 215–267. https://doi.org/10.1163/156853974X00345 (1974).Article 

    Google Scholar 
    9.Hofmann, R. R. & Stewart, D. R. M. Grazer of browser: A classification based on the stomach structure and feeding habits of East African ruminants. Mammalia 36, 226–240 (1972).Article 

    Google Scholar 
    10.Bell, R. H. V. A grazing ecosystem in the Serengeti. Sci. Am. 225, 86–93 (1971).ADS 
    Article 

    Google Scholar 
    11.Kleiber, M. The Fire of Life. An Introduction to Animal Energetics (Krieger, 1932).
    Google Scholar 
    12.Demment, M. W. & Van Soest, P. J. A nutritional explanation for body-size patterns of ruminant and nonruminant herbivores. Am. Nat. 125, 641–672. https://doi.org/10.1086/284369 (1985).Article 

    Google Scholar 
    13.Hofmann, R. R. The Ruminant Stomach: Stomach Structure and Feeding Habits of East African Game Ruminants. East African Monograph in Biology, vol. 2, 1–364 (E.A. Lit. Bureau, 1973).14.Ahrestani, F. S., Heitkönig, I. M., Matsubayashi, H. & Prins, H. H. Grazing and browsing by large herbivores in South and Southeast Asia. In The Ecology of Large Herbivores in South and Southeast Asia, (eds. Ahrestani, F. S. & Sankaran, M.) 99–120. (Springer, 2016).15.Geist, V. On the relationship of social evolution and ecology in Ungulates. Am. Zool. 14, 205–220. https://doi.org/10.1093/icb/14.1.205 (1974).Article 

    Google Scholar 
    16.Clauss, M., Steuer, P., Müller, D. W. H., Codron, D. & Hummel, J. Herbivory and body size: Allometries of diet quality and gastrointestinal physiology, and implications for herbivore ecology and dinosaur gigantism. PLoS One 8, e68714. https://doi.org/10.1371/journal.pone.0068714 (2013).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    17.Ahrestani, F. S., Heitkönig, I. M. & Prins, H. H. Diet and habitat-niche relationships within an assemblage of large herbivores in a seasonal tropical forest. J. Trop. Ecol. 28, 385–394. https://doi.org/10.1017/S0266467412000302 (2012).Article 

    Google Scholar 
    18.Pradhan, N. M., Wegge, P., Moe, S. R. & Shrestha, A. K. Feeding ecology of two endangered sympatric mega-herbivores: Asian elephant Elephas maximus and greater one-horned rhinoceros Rhinoceros unicornis in lowland Nepal. Wildl. Biol. 14, 147–154. https://doi.org/10.2981/0909-6396(2008)14[147:feotes]2.0.co;2 (2008).Article 

    Google Scholar 
    19.McNaughton, S. J. & Georgiadis, N. J. Ecology of African grazing and browsing mammals. Annu. Rev. Ecol. Syst. 17, 39–66. https://doi.org/10.1146/annurev.es.17.110186.000351 (1986).Article 

    Google Scholar 
    20.Owen-Smith, R. N. Adaptive Herbivore Ecology: From Resources to Populations in Variable Environments. Adaptive Herbivore Ecology (Cambridge University Press, 2002). https://doi.org/10.1017/CBO9780511525605.21.Olff, H., Ritchie, M. E. & Prins, H. H. T. Global environmental controls of diversity in large herbivores. Nature 415, 901–904. https://doi.org/10.1038/415901a (2002).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    22.Bailey, D. W. & Provenza, F. D. Mechanisms determining large-herbivore distribution. In Resource Ecology, vol. 23 (eds. Prins, H. H. T. & Van Langevelde, F.) 7–28 (Springer, 2008). https://doi.org/10.1007/978-1-4020-6850-8_2.23.Prins, H. H. T. & Van Langevelde, F. Assembling a diet from different places. In Resource Ecology, vol. 23 (eds. Prins, H. H. T. & Van Langevelde, F.) 129–155 (Springer, 2008). https://doi.org/10.1007/978-1-4020-6850-8_12.24.Fryxell, J. M. et al. Landscape scale, heterogeneity, and the viability of Serengeti grazers. Ecol. Lett. 8, 328–335. https://doi.org/10.1111/j.1461-0248.2005.00727.x (2005).Article 

    Google Scholar 
    25.Du Toit, J., Rogers, K. & Biggs, H. The Kruger Experience: Ecology and Management of Savanna Heterogeneity, vol. 29 (Island Press, 2003).26.Ripple, W. J. et al. Collapse of the world’s largest herbivores. Sci. Adv. 1, e1400103. https://doi.org/10.1126/sciadv.1400103 (2015).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    27.Menon, V. Indian Mammals: A Field Guide. (Hachette India, 2014).28.Reddy, C. S., Jha, C. S., Diwakar, P. G. & Dadhwal, V. K. Nationwide classification of forest types of India using remote sensing and GIS. Environ. Monit. Assess. 187, 777. https://doi.org/10.1007/s10661-015-4990-8 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    29.Wegge, P., Shrestha, A. K. & Moe, S. R. Dry season diets of sympatric ungulates in lowland Nepal: Competition and facilitation in alluvial tall grasslands. Ecol. Res. 21, 698–706. https://doi.org/10.1007/s11284-006-0177-7 (2006).Article 

    Google Scholar 
    30.WWF. Living Planet: Report 2016. Risk and Resilience in a New Era. (World Wide Fund for Nature International, 2016).31.Gebremedhin, B. et al. DNA metabarcoding reveals diet overlap between the endangered walia ibex and domestic goats: Implications for conservation. PLoS One 11, e0159133. https://doi.org/10.1371/journal.pone.0159133 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    32.Spooner, F. E., Pearson, R. G. & Freeman, R. Rapid warming is associated with population decline among terrestrial birds and mammals globally. Glob. Change Biol. 24, 4521–4531. https://doi.org/10.1111/gcb.14361 (2018).ADS 
    Article 

    Google Scholar 
    33.Texeira, M., Baldi, G. & Paruelo, J. An exploration of direct and indirect drivers of herbivore reproductive performance in arid and semi-arid rangelands by means of structural equation models. J. Arid Environ. 81, 26–34. https://doi.org/10.1016/j.jaridenv.2012.01.017 (2012).ADS 
    Article 

    Google Scholar 
    34.Kupika, O. L., Gandiwa, E., Kativu, S. & Nhamo, G. Impacts of climate change and climate variability on wildlife resources in southern Africa: Experience from selected protected areas in Zimbabwe. In Selected Studies in Biodiversity, (eds. Şen, B. & Grillo, O.) 1–23 (IntechOpen, 2018). https://doi.org/10.5772/intechopen.70470.35.Joyce, C. B., Simpson, M. & Casanova, M. Future wet grasslands: Ecological implications of climate change. Ecosyst. Health Sustain. 2, e01240. https://doi.org/10.1002/ehs2.1240 (2016).Article 

    Google Scholar 
    36.Vasu, N. K., & Singh, G. Grasslands of Kaziranga National Park: Problems and approaches for management. In Ecology and Management of Grassland Habitats in India, vol. 17 (eds. Rawat, G. S., Adhikari, B. S.) 104–113 (Wildlife Institute of India, 2015).37.Dublin, H. T. Vegetation dynamics in the Serengeti-Mara ecosystem: The role of elephants, fire, and other factors. In Serengeti II: Dynamics, Management, and Conservation of an Ecosystem, (eds. Sinclair, A. R. E. & Arcese, P.) 71–90 (University of Chicago Press, 1995).38.Sinclair, A. R. E. Equilibria in plant–herbivore interactions. In Serengeti II: Dynamics, Management, and Conservation of an Ecosystem, (eds. Sinclair, A. R. E. & Arcese, P.) 91–113 (University of Chicago Press, 1995).39.Augustine, D. J. & McNaughton, S. J. Ungulate effects on the functional species composition of plant communities: Herbivore selectivity and plant tolerance. J. Wildl. Manag. 62, 1165. https://doi.org/10.2307/3801981 (1998).Article 

    Google Scholar 
    40.Schmitt, M. H. & Shrader, A. M. Browser population-woody vegetation relationships in Savannas. In Savanna Woody Plants and Large Herbivores (eds. Scogings, F. P. & Sankaran, M.) 245–278 (Wiley, 2020). https://doi.org/10.1002/9781119081111.ch9.41.Konwar, P., Saikia, M. K. & Saikia, P. K. Abundance of food plant species and food habits of Rhinoceros unicornis Linn. in Pobitora Wildlife Sanctuary, Assam, India. J. Threat. Taxa. 1, 457–460. https://doi.org/10.11609/jott.o1640.457-60 (2009).Article 

    Google Scholar 
    42.Bhatta, R. Ecology and Conservation of Great Indian One-horned Rhino (Rhinoceros unicornis) in Pobitora Wildlife Sanctuary, Assam, India (Gauhati University, 2011).
    Google Scholar 
    43.Hazarika, B. C. & Saikia, P. K. Food habit and feeding patterns of great indian one-horned rhinoceros (Rhinoceros unicornis) in Rajiv Gandhi Orang National Park, Assam, India. ISRN Zool. 2012, 1–11. https://doi.org/10.5402/2012/259695 (2012).Article 

    Google Scholar 
    44.Dutta, D. K., Bora, P. J., Mahanta, R., Sharma, A. & Swargowari, A. Seasonal variations in food plant preferences of reintroduced Rhinos Rhinoceros unicornis (Mammalia: Perrissodactyla: Rhinocerotidae) in Manas National Park, Assam, India. J. Threat. Taxa. 8, 9525–9536. https://doi.org/10.11609/jott.2486.8.13.9525-9536 (2016).Article 

    Google Scholar 
    45.Brahmachary, R. L., Rakshit, B. & Mallik, B. Further attempts to determine the food habits of the Indian Rhinoceros at Kaziranga. J. Bombay Nat. Hist. Soc. 71, 295–299 (1974).
    Google Scholar 
    46.Banerjee, G. Habitat Use by the Great Indian Rhinoceros (Rhinoceros Unicornis) and Other Sympatric Large Herbivores in Kaziranga National Park, Assam, India (Wildlife Institute of India, 2001).
    Google Scholar 
    47.Patar, K. C. Behavioural Patterns of the One Horned Indian Rhinoceros (Spectrum Publication Guwahati, 2005).
    Google Scholar 
    48.Bawri, M. & Saikia, P. K. Preliminary study on the food plant species of Endangered Asiatic wild water buffalo Bubalus arnee Kerr in Kaziranga National Park, Assam India. NeBIO. 5, 49–55 (2014).
    Google Scholar 
    49.Sukumar, R. Ecology of the Asian elephant in southern India. I. Movement and habitat utilization patterns. J. Trop. Ecol. 5, 1–18. https://doi.org/10.1017/S0266467400003175 (1989).Article 

    Google Scholar 
    50.Schaller, G. B. The Deer and the Tiger. A Study of Wildlife in India, (University of Chicago Press, 1967). https://doi.org/10.7208/chicago/9780226736570.001.0001.51.Dhungel, S. K. & O’Gara, B. W. Ecology of the Hog Deer in Royal Chitwan National Park, Nepal. Wildl. Monogr. 119, 3–40. https://doi.org/10.2307/3830632 (1991).Article 

    Google Scholar 
    52.Johnsingh, A. J. T. & Manjrekar, N. Mammals of South Asia, 2 (Universities Press, 2016).
    Google Scholar 
    53.Sukumar, R. Ecology of the Asian elephant in southern India. II. Feeding habits and crop raiding patterns. J. Trop. Ecol. 6, 33–53. https://doi.org/10.1017/S0266467400004004 (1990).Article 

    Google Scholar 
    54.Baskaran, N., Balasubramanian, M., Swaminathan, S. & Desai, A. A. Feeding ecology of the Asian elephant Elephas maximus Linnaeus in the Nilgiri Biosphere Reserve, southern India. J. Bombay Nat. Hist. Soc. 107, 3–13 (2010).
    Google Scholar 
    55.Tuboi, C. & Hussain, S. A. Factors affecting forage selection by the endangered Eld’s deer and hog deer in the floating meadows of Barak-Chindwin Basin of North-east India. Mamm. Biol. 81, 53–60. https://doi.org/10.1016/j.mambio.2014.10.006 (2016).Article 

    Google Scholar 
    56.Kelton, S. D. & Skipworth, J. P. Food of sambar deer (Cervus unicolor) in a Manawatu (New Zealand) flax swamp. N. Z. J. Ecol. 10, 149–152 (1987).
    Google Scholar 
    57.Semiadi, G., Barry, T. N., Muir, P. D. & Hodgson, J. Dietary preferences of sambar (Cervus unicolor) and red deer (Cervus elaphus) offered browse, forage legume and grass species. J. Agric. Sci. 125, 99–107. https://doi.org/10.1017/S0021859600074554 (1995).Article 

    Google Scholar 
    58.Johnsingh, A. J. T. & Sankar, K. Food plants of chital, sambar and cattle on Mundanthurai Plateau, Tamil Nadu, south India. Mammalia 55, 57–66. https://doi.org/10.1515/mamm.1991.55.1.57 (1991).Article 

    Google Scholar 
    59.Steinheim, G., Wegge, P., Fjellstad, J. I., Jnawali, S. R. & Weladji, R. B. Dry season diets and habitat use of sympatric Asian elephants (Elephas maximus) and greater one-horned rhinoceros (Rhinocerus unicornis) in Nepal. J. Zool. 265, 377–385. https://doi.org/10.1017/S0952836905006448 (2005).Article 

    Google Scholar 
    60.Bakker, E. S., Ritchie, M. E., Olff, H., Milchunas, D. G. & Knops, J. M. H. Herbivore impact on grassland plant diversity depends on habitat productivity and herbivore size. Ecol. Lett. 9, 780–788. https://doi.org/10.1111/j.1461-0248.2006.00925.x (2006).Article 
    PubMed 

    Google Scholar 
    61.Edwards, G. R. & Crawley, M. J. Herbivores, seed banks and seedling recruitment in mesic grassland. J. Ecol. 87, 423–435. https://doi.org/10.1046/j.1365-2745.1999.00363.x (1999).Article 

    Google Scholar 
    62.Marquis, R. J. The role of herbivores in terrestrial trophic cascades. In: Trophic Cascades: Predators, Prey and the Changing Dynamics of Nature, (eds. Terborgh, J. & Estes, J. A.) 109–123, (Island Press, 2010).63.Parikh, G. L. et al. The influence of plant defensive chemicals, diet composition, and winter severity on the nutritional condition of a free-ranging, generalist herbivore. Oikos 126, 1–8. https://doi.org/10.1111/oik.03359 (2017).Article 

    Google Scholar 
    64.Yadava, M. K. Kaziranga National Park: Detailed Report on Issues and Possible Solutions of Long-Term Protection of the Greater One-horned Rhinoceros in Kaziranga National Park Pursuant to the Order of the Hon’ble Guwahati High Court. 1–402 (Government of Assam, India, 2014).65.Champion, H. G. & Seth, S. K. A Revised Survey of the Forest Types of India (Govt. of India Press, 1968).
    Google Scholar 
    66.Sharma, G. Studies on the mammalian diversity of Kaziranga National Park, Assam, India with their conservation status. J. New Biol. Rep. 7, 15–19 (2018).CAS 

    Google Scholar 
    67.Shrestha, R., Wegge, P. & Koirala, R. A. Summer diets of wild and domestic ungulates in Nepal Himalaya. J. Zool. 266, 111–119. https://doi.org/10.1017/S0952836905006527 (2005).Article 

    Google Scholar 
    68.Sparks, D. R. & Malechek, J. C. Estimating percentage dry weight in diets using a microscopic technique. J. Range Manag. 21, 264–265. https://doi.org/10.2307/3895829 (1968).Article 

    Google Scholar 
    69.Satkopan, S. Key to identification of plant remains in animal dropping. J. Bombay Nat. Hist. Soc. 69, 139–150 (1972).
    Google Scholar 
    70.Johnson, M. K., Wofford, H. H. & Pearson, H. A. Microhistological Techniques for Food Habits Analyses (U.S. Department of Agriculture, 1983).Book 

    Google Scholar 
    71.Jain, S. K. & Hajra, P. K. On the botany of Manas Wild Life Sanctuary in Assam. Bull. Bot. Surv. Ind. 17, 75–86 (1975).
    Google Scholar 
    72.Hajra, P. K. & Jain, S. K. Botany of Kaziranga and Manas (Surya International Publications, 1994).
    Google Scholar 
    73.Rahmani, A. R., Kasambe, R., Prabhu, S., Khot, R. & Bajaru, S. Biodiversity Studies at Kaziranga National Park. (2016).74.Vila, A. R., Galende, G. I. & Pastore, H. Feeding ecology of the endangered huemul (Hippocamelus bisulcus) in Los Alerces National Park, Argentina. Mastozool. Neotrop. 16, 423–431 (2009).
    Google Scholar 
    75.Borah, S. B., Sivasankar, T., Ramya, M. N. S. & Raju, P. L. N. Flood inundation mapping and monitoring in Kaziranga National Park, Assam using Sentinel-1 SAR data. Environ. Monit. Assess. https://doi.org/10.1007/s10661-018-6893-y (2018).Article 
    PubMed 

    Google Scholar 
    76.De Barba, M. et al. Comparing opportunistic and systematic sampling methods for non-invasive genetic monitoring of a small translocated brown bear population. J. Appl. Ecol. 47, 172–181. https://doi.org/10.1111/j.1365-2664.2009.01752 (2010).Article 

    Google Scholar 
    77.Jachmann, H. & Bell, R. H. V. The use of elephant droppings in assessing numbers, occupance and age structure: A refinement of the method. Afr. J. Ecol. 22, 127–141. https://doi.org/10.1111/j.1365-2028.1984.tb00686.x (1984).Article 

    Google Scholar 
    78.Chaturvedi, R. K. & Sankar, K. Laboratory Manual for the Physico-Chemical Analysis of Soil, Water and Plant (Wildlife Institute of India, 2006).
    Google Scholar 
    79.Colwell, R. K. & Elsensohn, J. E. EstimateS turns 20: Statistical estimation of species richness and shared species from samples, with non-parametric extrapolation. Ecography 37, 609–613. https://doi.org/10.1111/ecog.00814 (2014).Article 

    Google Scholar 
    80.Colwell, R. K. et al. Models and estimators linking individual-based and sample-based rarefaction, extrapolation and comparison of assemblages. J. Plant Ecol. 5, 3–21. https://doi.org/10.1093/jpe/rtr044 (2012).Article 

    Google Scholar 
    81.Dormann, C. F., Gruber, B. & Fründ, J. Introducing the bipartite package: Analysing ecological networks. R News 8, 8–11 (2008).
    Google Scholar 
    82.Barton, K. & Barton, M. K. Package ‘MuMIn’. R package version, 1 (2019).83.Harrell Jr, F. E. & Harrell Jr, M. F. E. Package ‘Hmisc’. CRAN2018, 2019, 235–236 (2019).84.Wei, T. et al. Package ‘corrplot’: Visualization of a correlation matrix. Statistician 56, 316–324 (2017).
    Google Scholar  More

  • in

    Growth at the limits: comparing trace metal limitation of a freshwater cyanobacterium (Dolichospermum lemmermannii) and a freshwater diatom (Fragilaria crotonensis)

    1.Galloway, J. N. et al. Trace metals in atmospheric deposition: A review and assessment. Atmos. Environ. 16, 1677–1700 (1982).CAS 
    ADS 

    Google Scholar 
    2.Dodds, W. K., Perkin, J. S. & Gerken, J. E. Human impact on freshwater ecosystem services: A global perspective. Environ. Sci. Technol. 47, 9061–9068 (2013).CAS 
    PubMed 
    ADS 

    Google Scholar 
    3.Rigosi, A., Carey, C. C., Ibelings, B. W. & Brookes, J. D. The interaction between climate warming and eutrophication to promote cyanobacteria is dependent on trophic state and varies among taxa. Limnol. Oceanogr. 59, 99–114 (2014).ADS 

    Google Scholar 
    4.Dokulil, M. T. & Teubner, K. Eutrophication and climate change: Present situation and future scenarios. In Eutrophication: Causes, Consequences and Control (eds Ansari, A. A. et al.) 1–16 (Springer, 2011).
    Google Scholar 
    5.Codd, G. A., Lindsay, J., Young, F. M., Morrison, L. F. & Metcalf, J. S. Harmful Cyanobacteria (Springer, 2005).
    Google Scholar 
    6.Harland, F. M. J., Wood, S. A., Moltchanova, E., Williamson, W. M. & Gaw, S. Phormidium autumnale growth and anatoxin-a production under iron and copper stress. Toxins (Basel). 5, 2504–2521 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    7.Zurawell, R. W., Chen, H., Burke, J. M. & Prepas, E. E. Hepatotoxic cyanobacteria: A review of the biological importance of microcystins in freshwater environments. J. Toxicol. Environ. Health B 8, 1–37 (2005).CAS 

    Google Scholar 
    8.Funari, E. & Testai, E. Human health risk assessment related to cyanotoxins exposure. Crit. Rev. Toxicol. 38, 97–125 (2008).CAS 
    PubMed 

    Google Scholar 
    9.Brooks, B. W. et al. Are harmful algal blooms becoming the greatest inland water quality threat to public health and aquatic ecosystems?. Environ. Toxicol. Chem. 35, 6–13 (2016).CAS 
    PubMed 

    Google Scholar 
    10.Pick, F. R. & Lean, D. R. S. The role of macronutrients (C, N, P) in controlling cyanobacterial dominance in temperate lakes. N. Z. J. Mar. Freshw. Res. 21, 425–434 (1987).CAS 

    Google Scholar 
    11.Schindler, A. D. W. Evolution of phosphorus limitation in lakes. Science 195, 260–262 (1977).CAS 
    PubMed 
    ADS 

    Google Scholar 
    12.Kumar, K., Mella-Herrera, R. A. & Golden, J. W. Cyanobacterial heterocysts. Cold Spring Harb. Perspect. Biol. 2, 1–20 (2010).
    Google Scholar 
    13.Paerl, H. W., Fulton, R. S., Moisander, P. H. & Dyble, J. Harmful freshwater algal blooms, with an emphasis on cyanobacteria. Sci. World J. 1, 76–113 (2001).CAS 

    Google Scholar 
    14.Paerl, H. W., Hall, N. S. & Calandrino, E. S. Controlling harmful cyanobacterial blooms in a world experiencing anthropogenic and climatic-induced change. Sci. Total Environ. 409, 1739–1745 (2011).CAS 
    PubMed 
    ADS 

    Google Scholar 
    15.Higgins, S. N. et al. Biological nitrogen fixation prevents the response of a eutrophic lake to reduced loading of nitrogen: Evidence from a 46-year whole-lake experiment. Ecosystems 21, 1088–1100 (2018).CAS 

    Google Scholar 
    16.Dolman, A. M. et al. Cyanobacteria and cyanotoxins: The influence of nitrogen versus phosphorus. PLoS ONE 7, e38757 (2012).CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    17.Schoffman, H., Lis, H., Shaked, Y. & Keren, N. Iron-nutrient interactions within phytoplankton. Front. Plant Sci. 7, 1223 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    18.Needoba, J. A., Foster, R. A., Sakamoto, C., Zehr, J. P. & Johnson, K. S. Nitrogen fixation by unicellular diazotrophic cyanobacteria in the temperate oligotrophic North Pacific Ocean. Limnol. Oceanogr. 52, 1317–1327 (2007).CAS 
    ADS 

    Google Scholar 
    19.Romero, I. C., Klein, N. J., Sañudo-Wilhelmy, S. A. & Capone, D. G. Potential trace metal co-limitation controls on N2 fixation and NO3- uptake in lakes with varying trophic status. Front. Microbiol. 4, 1–12 (2013).CAS 

    Google Scholar 
    20.Newton, W. E. Physiology, biochemistry, and molecular biology of nitrogen fixation. In Biology of the Nitrogen Cycle 109–129 (Elsevier B. V, 2007).
    Google Scholar 
    21.Salama, Z. A., El-Fouly, M. M., Lazova, G. & Popova, L. P. Carboxylating enzymes and carbonic anhydrase functions were suppressed by zinc deficiency in maize and chickpea plants. Acta Physiol. Plant. 28, 445–451 (2006).CAS 

    Google Scholar 
    22.Sültemeyer, D. Carbonic anhydrase in eukaryotic algae: Characterization, regulation, and possible function during photosynthesis. Can. J. Bot. 76, 962–972 (1998).
    Google Scholar 
    23.Vallee, B. L. & Auld, D. S. Zinc coordination, function, and structure of zinc enzymes and other proteins. Biochemistry 29, 5647–5659 (1990).CAS 
    PubMed 

    Google Scholar 
    24.Wu, F. Y. & Wu, C. W. Zinc in DNA replication and transcription. Annu. Rev. Nutr. 7, 251–272 (1987).CAS 
    PubMed 

    Google Scholar 
    25.Beyer, W., Imlay, J. & Fridovich, I. Superoxide dismutases. Prog. Nucleic Acid Res. Mol. Biol. 40, 221–253 (1991).CAS 
    PubMed 

    Google Scholar 
    26.Holm-Hansen, O., Gerloff, G. H. & Skogg, F. Cobalt as an essential element for blue-green algae. Physiol. Plant. 7, 665–675 (1954).CAS 

    Google Scholar 
    27.Sunda, W. G. & Huntsman, S. A. Cobalt and zinc interreplacement in marine phytoplankton: Biological and geochemical implications. Limnol. Oceanogr. 40, 1404–1417 (1995).CAS 
    ADS 

    Google Scholar 
    28.Steffens, G. C. M., Biewald, R. & Buse, G. Cytochrome c oxidase is three-copper, two-heme-A protein. Eur. J. Biochem. 164, 295–300 (1987).CAS 
    PubMed 

    Google Scholar 
    29.Price, R. C., Mortimer, N., Smith, I. E. M. & Maas, R. Whole-rock geochemical reference data for Torlesse and Waipapa terranes, North Island, New Zealand. N. Z. J. Geol. Geophys. 58, 213–228 (2015).CAS 

    Google Scholar 
    30.Downs, T. M., Schallenberg, M. & Burns, C. W. Responses of lake phytoplankton to micronutrient enrichment: A study in two New Zealand lakes and an analysis of published data. Aquat. Sci. 70, 347–360 (2008).CAS 

    Google Scholar 
    31.Bayer, T. K., Schallenberg, M. & Martin, C. E. Investigation of nutrient limitation status and nutrient pathways in Lake Hayes, Otago, New Zealand: A case study for integrated lake assessment. N. Z. J. Mar. Freshw. Res. 42, 285–295 (2008).CAS 

    Google Scholar 
    32.Glass, J. B., Axler, R. P., Chandra, S. & Goldman, C. R. Molybdenum limitation of microbial nitrogen assimilation in aquatic ecosystems and pure cultures. Front. Microbiol. 3, 1–11 (2012).
    Google Scholar 
    33.Sterner, R. W. et al. Phosphorus and trace metal limitation of algae and bacteria in Lake Superior. Limnol. Oceanogr. 49, 495–507 (2004).CAS 
    ADS 

    Google Scholar 
    34.Vrede, T. & Tranvik, L. J. Iron constraints on planktonic primary production in oligotrophic lakes. Ecosystems 9, 1094–1105 (2006).CAS 

    Google Scholar 
    35.North, R. L., Guildford, S. J., Smith, R. E. H., Havens, S. M. & Twiss, M. R. Evidence for phosphorus, nitrogen, and iron colimitation of phytoplankton communities in Lake Erie. Limnol. Oceanogr. 52, 315–328 (2007).CAS 
    ADS 

    Google Scholar 
    36.Kelly, L. T. et al. Trace metal and nitrogen concentrations differentially affect bloom forming cyanobacteria of the genus Dolichospermum. Aquat. Sci. 83, 1–11 (2021).
    Google Scholar 
    37.Sorichetti, R. J., Creed, I. F. & Trick, C. G. Iron and iron-binding ligands as cofactors that limit cyanobacterial biomass across a lake trophic gradient. Freshw. Biol. 61, 146–157 (2016).CAS 

    Google Scholar 
    38.Wood, S. A. et al. Contrasting cyanobacterial communities and microcystin concentrations in summers with extreme weather events: Insights into potential effects of climate change. Hydrobiologia 785, 71–89 (2017).CAS 

    Google Scholar 
    39.Li, X., Dreher, T. W. & Li, R. An overview of diversity, occurrence, genetics and toxin production of bloom-forming Dolichospermum (Anabaena) species. Harmful Algae 54, 54–68 (2016).CAS 
    PubMed 

    Google Scholar 
    40.Hawes, I. & Smith, R. Seasonal dynamics of epilithic periphyton in oligotrophic lake Taupo, New Zealand. N. Z. J. Mar. Freshw. Res. 28, 1–12 (1994).
    Google Scholar 
    41.Verburg, P. & Albert, A. Taupo Long Term Monitoring (Springer, 2018).
    Google Scholar 
    42.Marañón, E. Cell Size as a key determinant of phytoplankton metabolism and community structure. Ann. Rev. Mar. Sci. 7, 241–264 (2015).PubMed 

    Google Scholar 
    43.Kagami, M. & Urabe, J. Phytoplankton growth rate as a function of cell size: An experimental test in Lake Biwa. Limnology 2, 111–117 (2001).
    Google Scholar 
    44.Kraemer, S. M., Duckworth, O. W., Harrington, J. M. & Schenkeveld, W. D. C. Metallophores and trace metal biogeochemistry. Aquat. Geochem. 21, 159–195 (2015).CAS 

    Google Scholar 
    45.Twiss, M. R., Auclair, J.-C. & Charlton, M. N. An investigation into iron-stimulated phytoplankton productivity in epipelagic Lake Erie during thermal stratification using trace metal clean techniques. Can. J. Fish. Aquat. Sci. 57, 86–95 (2000).CAS 

    Google Scholar 
    46.Feng, Y., Fu, F. & Hutchins, D. A. Trace metal clean culture techniques. Res. Methods Environ. Physiol. Aquat. Sci. https://doi.org/10.1007/978-981-15-5354-7_36 (2021).Article 

    Google Scholar 
    47.Rhodes, L. et al. The Cawthron institute culture collection of micro-algae: A significant national collection. N. Z. J. Mar. Freshw. Res. 50, 291–316 (2016).
    Google Scholar 
    48.Bolch, C. J. S. & Blackburn, S. I. Isolation and purification of Australian isolates of the toxic cyanobacterium Microcystis aeruginosa Kütz. J. Appl. Phycol. 8, 5–13 (1996).
    Google Scholar 
    49.Worms, I., Simon, D. F., Hassler, C. S. & Wilkinson, K. J. Bioavailability of trace metals to aquatic microorganisms: Importance of chemical, biological and physical processes on biouptake. Biochimie 88, 1721–1731 (2006).CAS 
    PubMed 

    Google Scholar 
    50.Gobler, C. J., Hutchins, D. A., Fisher, N. S., Cosper, E. M. & Sañudo-Wilhelmy, S. A. Release and bioavailability of C, N, P, Se, and Fe following viral lysis of a marine chrysophyte. Limnol. Oceanogr. 42, 1492–1504 (1997).CAS 
    ADS 

    Google Scholar 
    51.Bell, W. & Mitchell, R. Chemotactic and growth responses of marine bacteria to algal extracellular products. Biol. Bull. 143, 265–277 (1972).
    Google Scholar 
    52.Seymour, J. R., Amin, S. A., Raina, J. B. & Stocker, R. Zooming in on the phycosphere: The ecological interface for phytoplankton-bacteria relationships. Nat. Microbiol. 2, 65 (2017).
    Google Scholar 
    53.Helliwell, K. E. et al. Cyanobacteria and eukaryotic algae use different chemical variants of Vitamin B12. Curr. Biol. 26, 999–1008 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    54.Anderson, M. A. & Morel, F. M. M. The influence of aqueous iron chemistry on the uptake of iron by the coastal diatom Thallasiosira weissflogii. Limnol. Oceanogr. 27, 789–813 (1982).CAS 
    ADS 

    Google Scholar 
    55.Lis, H., Kranzler, C., Keren, N. & Shaked, Y. A comparative study of Iron uptake rates and mechanisms amongst marine and fresh water Cyanobacteria: Prevalence of reductive Iron uptake. Life 5, 841–860 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    56.Bruland, K. W., Knauer, G. A. & Martin, J. H. Zinc in north-east Pacific water. Nature 271, 741–743 (1978).CAS 
    ADS 

    Google Scholar 
    57.Saeed, H. et al. Regulation of phosphorus bioavailability by iron nanoparticles in a monomictic lake. Sci. Rep. 8, 1–14 (2018).
    Google Scholar 
    58.Baken, S., Degryse, F., Verheyen, L., Merckx, R. & Smolders, E. Metal complexation properties of freshwater dissolved organic matter are explained by its aromaticity and by anthropogenic ligands. Environ. Sci. Technol. 45, 2584–2590 (2011).CAS 
    PubMed 
    ADS 

    Google Scholar 
    59.Campbell, P. G. C. Interactions between trace metals and aquatic organisms: A critique of the free-ion activity model. In Metal Speciation and Bioavailability in Aquatic Systems (eds Tessier, A. & Turner, D. R.) 45–102 (Wiley, 1995).
    Google Scholar 
    60.Scharek, R., Van Leeuwe, M. A. & De Baar, H. J. W. Responses of Southern Ocean phytoplankton to the addition of trace metals. Deep. Res. Part II 44, 209–227 (1997).CAS 

    Google Scholar 
    61.Facey, J. A., Apte, S. C. & Mitrovic, S. M. A review of the effect of trace metals on freshwater cyanobacterial growth and toxin production. Toxins (Basel). 11, 1–18 (2019).
    Google Scholar 
    62.Zhang, X. et al. Effect of micronutrients on algae in different regions of Taihu, a large, spatially diverse, hypereutrophic lake. Water Res. 151, 500–514 (2019).CAS 
    PubMed 

    Google Scholar 
    63.Wever, A. D. et al. Differential response of phytoplankton to additions of nitrogen, phosphorus and iron in Lake Tanganyika. Freshw. Biol. 53, 264–277 (2008).
    Google Scholar 
    64.Nalewajko, C. & Murphy, T. P. Effects of temperature, and availability of nitrogen and phosphorus on the abundance of Anabaena and Microcystis in Lake Biwa, Japan: An experimental approach. Limnology 2, 45–48 (2001).
    Google Scholar 
    65.Kagami, M., Gurung, T. B., Yoshida, T. & Urabe, J. To sink or to be lysed? Contrasting fate of two large phytoplankton species in Lake Biwa. Limnol. Oceanogr. 51, 2775–2786 (2006).ADS 

    Google Scholar 
    66.Hartig, J. H. & Wallen, D. G. The influence of light and temperature on growth and photosynthesis of fragilaria crotonensis kitton. J. Freshw. Ecol. 3, 371–382 (1986).
    Google Scholar 
    67.Tilman, D. Tests of resource competition theory using four species of Lake Michigan algae. Ecology 62, 802–815 (1981).
    Google Scholar 
    68.Tompkins, T. & Blinn, D. W. The effect of mercury on the growth rate of Fragilaria crotonensis kitton and Asterionella formosa Hass. Hydrobiologia 49, 111–116 (1976).CAS 

    Google Scholar 
    69.Kazamia, E. et al. Endocytosis-mediated siderophore uptake as a strategy for Fe acquisition in diatoms. Sci. Adv. 4, aar4536 (2018).ADS 

    Google Scholar 
    70.Strzepek, R. F. & Harrison, P. J. Photosynthetic architecture differs in coastal and oceanic diatoms. Nature 431, 689–692 (2004).CAS 
    PubMed 
    ADS 

    Google Scholar 
    71.Strzepek, R. F., Boyd, P. W. & Sunda, W. G. Photosynthetic adaptation to low iron, light, and temperature in Southern Ocean phytoplankton. Proc. Natl. Acad. Sci. U. S. A. 116, 4388–4393 (2019).CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    72.Raven, J. A. The iron and molybdenum use efficiencies of plant growth with different energy, carbon and nitrogen sources. New Phytol. 109, 279–287 (1988).CAS 

    Google Scholar 
    73.Kranzler, C., Rudolf, M., Keren, N. & Schleiff, E. Iron in cyanobacteria. Adv. Bot. Res. 65, 57–105 (2013).CAS 

    Google Scholar  More

  • in

    Phenotypic variation of fruit and ecophysiological traits among maqui (Aristotelia chilensis [Molina] Stuntz) provenances established in a common garden

    1.FAO. Superfruits: Myth or truth? in Proceedings International Symposium, Ho Chi Minh, Vietnam, 140 (2013).
    2.Chamberlain, J., Darr, D. & Meinhold, K. Rediscovering the contributions of forest and trees to transition global food system. Forests 11, 1098. https://doi.org/10.3390/f11101098 (2020).Article 

    Google Scholar 
    3.Vanzani, P. et al. Wild mediterranean plants as traditional food: A valuable source of antioxidants. J. Food Sci. 76, 46–51 (2011).Article 

    Google Scholar 
    4.Genskowsky, E. et al. Determination of polyphenolic profile, antioxidant activity and antibacterial properties of maqui [Aristotelia chilensis (Molina) Stuntz] a Chilean blackberry. J. Sci. Food Agric. 96, 4235–4242 (2016).CAS 
    Article 

    Google Scholar 
    5.Benedetti, S. Monografía de maqui, Aristotelia chilensis (Mol.) Stuntz 60 (Instituto Forestal, 2012).
    Google Scholar 
    6.Vogel, H., Razmilic, H., San Martin, I., Doll, U. & González, B. Plantas Medicinales Chilena. Experiencias de domesticación y cultivo de Boldo, Matico, Bailahuén, Canelo, Peumo y maqui. Editorial Universitaria de Talca, 192 (2005).7.Gironés-Vilaplana, A., Mena, P., García-Viguera, C. & Moreno, D. A novel beverage rich in antioxidant phenolics: Maqui berry (Aristotelia chilensis) and lemon juice. Food Sci. Tech. 47, 279–286 (2012).
    Google Scholar 
    8.Quispe-Fuentes, I., Vega-Gálvez, A., Vásquez, V., Uribe, E. & Astudillo, S. Mathematical modeling and quality properties of a dehydrated native Chilean berry. J. Food Process Eng. 40, 124–132 (2017).Article 

    Google Scholar 
    9.Fredes, C., Montenegro, G., Zoffoli, J., Gómez, M. & Robert, P. Polyphenol content and antioxidant activity of maqui during fruit development and maturation in central Chile. Chilean J. Agric. Res. 72, 582–589 (2012).Article 

    Google Scholar 
    10.Céspedes, C., El-Hafidi, M., Pavon, N. & Alarcon, J. Antioxidant and cardioprotective activities of phenolic extracts from fruits of Chilean blackberry Aristotelia chilensis (Elaeocarpaceae), Maqui. Food Chem. 107, 820–829 (2008).Article 

    Google Scholar 
    11.Céspedes, C., Alarcon, J., Avila, J. & Nieto, A. Anti-inflammatory activity of Aristotelia chilensis (stuntz) (Elaeocarpaceae). Boletín Latinoamericano y del Caribe de Plantas Medicinales y Aromáticas 9, 91–99 (2010).
    Google Scholar 
    12.Céspedes, C. et al. The chilean superfruit black-berry Aristotelia chilensis (Elaeocarpaceae), Maqui as mediator in inflammation-associated disorders. Food Chem. Toxicol. 108, 438–450 (2017).
    13.Muñoz, O. et al. Chemical study and anti-inflammatory, analgesic and antioxidant activities of the leaves of Aristotelia chilensis (Mol.) Stuntz, Elaeocarpaceae. J. Pharm. Pharmacol. 63, 849–859 (2011).Article 

    Google Scholar 
    14.Rojo, L. et al. In vitro and in vivo anti-diabetic effects of anthocyanins from maqui berry (Aristotelia chilensis). Food Chem. 131, 387–396 (2012).CAS 
    Article 

    Google Scholar 
    15.Zúñiga, G., Tapia, A., Arenas, A., Contreras, R. & Zuñiga-Libano, G. Phytochemistry and biological properties of Aristotelia chilensis a Chilean blackberry: A review. Phytochem. Rev. 16, 1081–1094. https://doi.org/10.1007/s11101-017-9533-1 (2017).CAS 
    Article 

    Google Scholar 
    16.Vogel, H. et al. Maqui (Aristotelia chilensis): Morpho-phenological characterization to design high-yielding cultivation techniques. J. Appl. Res. Med. Aromat. Plants. 1, 123–133 (2014).
    Google Scholar 
    17.Liu, Y. & El-Kassaby, Y. Phenotypic plasticity of natural Populus trichocarpa populations in response to temporally environmental change in a common garden. BMC Evol. Biol. 19, 231. https://doi.org/10.1186/s12862-019-1553-6 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    18.Villemereuil, P., Gaggiotti, O., Mouterde, M. & Till-Bottraud, I. Common garden experiment in the genomic era: New perspectives and opportunities. Heredity 116, 249–254 (2016).Article 

    Google Scholar 
    19.Torres-Ruiz, J. et al. Genetic differentiation in functional traits among European sessile oak populations. Tree Physiol. 39, 1736–1749. https://doi.org/10.1093/treephys/tpz090 (2019).Article 
    PubMed 

    Google Scholar 
    20.Sáenz-Romero, C., Kremer, A., Nagy, L., Kehlet, J. & Mátyás, C. Common garden comparison confirm inherited differences in sensitivity to climate change between forest tree species. PerrJ. 7, 6213. https://doi.org/10.7717/peerj.6213 (2019).Article 

    Google Scholar 
    21.Aspinwall, M. et al. Adaptation and acclimation both influence photosynthetic and respiratory temperature responses in Corymbia calophylla. Tree Physiol. 8, 1095–1112. https://doi.org/10.1093/treephys/tpx047 (2017).CAS 
    Article 

    Google Scholar 
    22.Knutzen, F., Meier, I. & Leuschner, C. Does reduced precipitation trigger physiological and morphological drought adaptations in European beech (Fagus sylvatica L.)? Comparing provenances across a precipitation gradient. Tree Physiol. 35, 949–963. https://doi.org/10.1093/treephys/tpv057 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    23.Mkwezalamba, I., Munthali, C. & Missanjo, E. Phenotypic variation in fruit morphology among provenances of Sclerocarya birrea (A. Rich.) Hochst. Int. J. Forestry Res. 1, 1–8. https://doi.org/10.1155/2015/735418 (2015).Article 

    Google Scholar 
    24.Sudrajat, D. Genetic variation of fruit, seed, and seedling characteristics among 11 populations of white Jabon in Indonesia. For. Sci. Tech. 12(1), 9–15. https://doi.org/10.1080/21580103.2015.1007896 (2016).Article 

    Google Scholar 
    25.Teklehaimanot, Z., Lanek, J. & Tomlinson, H. Provenance variation in morphology and leaflet anatomy of Parkia biglobosa and its relation to drought tolerance. Trees 13, 96–102. https://doi.org/10.1007/pl00009742 (1998).Article 

    Google Scholar 
    26.Åkerström, A., Jaakola, L., Bång, U. & Jäderlund, A. Effects of latitude-related factors and geographical origin on anthocyanidin concentrations in fruits of Vaccinium myrtillus L. (Bilberries). J. Agric. Food Chem. 58, 11939–11945. https://doi.org/10.1021/jf102407n (2010).CAS 
    Article 
    PubMed 

    Google Scholar 
    27.Lätti, A., Riihinen, K. & Kainulainen, P. Analysis of anthocyanin variation in wild populations of bilberry (Vaccinium myrtillus L.) in Finland. J. Agric. Food Chem. 56, 190–196. https://doi.org/10.1021/jf072857m (2008).CAS 
    Article 
    PubMed 

    Google Scholar 
    28.Uleberg, E. et al. Effects of temperature and photoperiod on yield and chemical composition of Northern and Southern Clones of Bilberry (Vaccinium myrtillus L.). J. Agric. Food Chem. 60, 10406–10414. https://doi.org/10.1021/jf302924m (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    29.Moya, M., González, B., Doll, U., Yuri, J. A. & Vogel, H. Different covers affect growth and development of three maqui clones (Aristotelia chilensis [Molina] Stuntz). J. Berry Res. 1, 1–10. https://doi.org/10.3233/jbr-180377 (2019).Article 

    Google Scholar 
    30.Cona, M. et al. New polymorphic nuclear microsatellites from Aristotelia chilensis (Mol.) Stuntz (Elaeocarpaceae). Chilean J. Agri. Res. 80, 153–160. https://doi.org/10.4067/S0718-58392020000200153 (2020).Article 

    Google Scholar 
    31.Hamrick, J. Response of forest trees to global environmental changes. For. Ecol. Manag. 197, 323–335. https://doi.org/10.1016/j.foreco.2004.05.023 (2004).Article 

    Google Scholar 
    32.Salgado, P., Prinz, K., Finkeldey, R., Ramírez, C. & Vogel, H. Genetic variability of Aristotelia chilensis (“maqui”) based on AFLP and chloroplast microsatellite markers. Gen. Resour. Crop Evol. 64, 2083–2091 (2017).CAS 
    Article 

    Google Scholar 
    33.Holderegger, R., Kamm, U. & Gugerli, F. Adaptive vs. neutral genetic diversity: Implications for landscape genetics. Landsc. Ecol. 21, 797–807. https://doi.org/10.1007/s10980-005-5245-9 (2006).Article 

    Google Scholar 
    34.O’Brien, E., Mazanex, R. & Krauss, S. Provenance variation of ecologically important traits of forest trees: implications for restoration. J. Appl. Ecol. 44, 583–593. https://doi.org/10.1111/j.1365-2664.2007.01313.x (2007).Article 

    Google Scholar 
    35.Singleton, V. & Rossi, J. Colorimetry of total phenolics withphosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 16, 144–158 (1965).CAS 

    Google Scholar 
    36.Giusti, M. & Wrolstad, R. Current protocols in food analytical chemistry. In Current Protocols in Food Analytical Chemistry (eds Wrolstad, R. et al.) F1.2.1-F1.2.13 (Wiley, 2001).
    Google Scholar 
    37.González, B., Vogel, H., Razmilic, I. & Wolfram, E. Polyphenol, anthocyanin and antioxidant content in different parts of maqui fruits (Aristotelia chilensis) during ripening and conservation treatments after harvest. Ind. Crops Prod. 76, 158–165. https://doi.org/10.1016/j.indcrop.2015.06.038 (2015).CAS 
    Article 

    Google Scholar 
    38.Winn, M., Araman, P. & Lee, S-M. UrbanCrowns: An assessment and monitoring tool for urban trees. Gen. Tech. Rep. SRS-135. Asheville, NC: U.S. Department of Agriculture, Forest Service, Southern Research Station, 10 (2011).39.Welham, S., Cullis, B., Gogel, B., Gilmour, A. & Thompson, R. Prediction in linear mixed models. Aust. N. Z. J. Stat. 46, 325–347 (2004).MathSciNet 
    Article 

    Google Scholar 
    40.Bastías, A. et al. Identification and characterization of microsatellite loci in Maqui (Aristotelia chilensis (Molina) Stuntz) using next-generation sequencing (NGS). PLoS ONE 11, e0159825. https://doi.org/10.1371/journal.pone.0159825 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    41.Espinoza, S. et al. Influence of provenance origin on the early performance of two sclerophyllous Mediterranean species established in burned drylands. Sci. Rep. 11, 6212. https://doi.org/10.1038/s41598-021-85599-3 (2021).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    42.Vander Mijnsbrugge, K., Bischoff, A. & Smith, B. A question of origin: Where and how to collect seed for ecological restoration. Basic Appl. Ecol. 11, 300–311. https://doi.org/10.1016/j.baae.2009.09.002 (2010).Article 

    Google Scholar 
    43.Gao, S. B. et al. Phenotypic plasticity vs. local adaptation in quantitative traits differences of Stipa grandis in semi-arid steppe, China. Sci. Rep. 8, 3148. https://doi.org/10.1038/s41598-018-21557-w (2018).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    44.Lusk, C. & Del Pozo, A. Survival and growth of seedlings of 12 Chilean rainforest trees in two light environments: Gas exchange and biomass distribution correlates. Aust. Ecol. 27, 173–182. https://doi.org/10.1046/j.1442-9993.2002.01168.x (2002).Article 

    Google Scholar 
    45.Brito, C., Bown, H., Fuentes, J., Franck, N. & Perez-Quezada, J. Mesophyll conductance constrains photosynthesis in three common sclerophyllous species in Central Chile. Rev. Chilena de Historia Natural. https://doi.org/10.1186/s40693-014-0008-0 (2014).Article 

    Google Scholar 
    46.Prado, C. & Damascos, M. Gas exchange and leaf specific mass of different foliar cohorts of the wintergreen shrub Aristotelia chilensis (Mol.) Stuntz (Eleocarpaceae) fifteen days before the flowering and the fall of the old cohort. Braz. Arch. Biol. Tech. 44, 277–282 (2001).Article 

    Google Scholar 
    47.Repetto-Giavalli, F., Cavieres, L. & Simonetti, J. Respuestas foliares de Aristotelia chilensis (Molina) Stuntz (Elaeocarpaceae) a la fragmentación del bosque maulino. Revista Chilena Hist. Nat. 80, 469–477 (2007).
    Google Scholar 
    48.Bustan, A. et al. Fruit load governs transpiration of olive trees. Tree Physiol. 36, 380–391. https://doi.org/10.1093/treephys/tpv138 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    49.Wünsche, J. & Lakso, A. Apple tree physiology—Implications for orchard and tree management. Compact Fruit Tree 33, 82–88 (2000).
    Google Scholar 
    50.Kelc, D., Vindis, P., Lakota, M. Measurements of Photosynthesis and Transpiration on Apple Trees, Chapter 18 in DAAAM International Scientific Book 2015. in (ed. Katalinic, B.), 199–208. (DAAAM International, 2015). https://doi.org/10.2507/daaam.scibook.2015.18. (ISBN 978-3-902734-05-1, ISSN 1726–9687).51.Lortie, C. & Aarssen, L. The specialization hypothesis for phenotypic plasticity in plants. Int. J. Plant Sci. 157, 484–487. https://doi.org/10.1086/297365 (1996).Article 

    Google Scholar 
    52.Nemeskéri, E. & Helyes, L. Physiological responses of selected vegetable crop species to water stress. Agronomy 9, 447. https://doi.org/10.3390/agronomy9080447 (2019).CAS 
    Article 

    Google Scholar 
    53.Tian, M., Yu, G., He, N. & Hou, J. Leaf morphological and anatomical traits from tropical to temperate coniferous forests: Mechanisms and influencing factors. Sci. Rep. https://doi.org/10.1038/srep19703 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    54.Poorter, H., Niinemets, Ü., Poorter, L., Wright, I. J. & Villar, R. Causes and consequences of variation in leaf mass per area (LMA): A meta-analysis. New Phytol. 182, 565–588. https://doi.org/10.1111/j.1469-8137.2009.02830.x (2009).Article 
    PubMed 

    Google Scholar 
    55.Allegro, G., Pastore, C., Valentini, G. & Filippetti, I. The evolution of phenolic compounds in Vitis vinifera L. red berries during ripening: Analysis and role on wine sensory—A review. Agronomy 11, 999. https://doi.org/10.3390/agronomy11050999 (2021).CAS 
    Article 

    Google Scholar 
    56.Chagné, D. et al. Genetic and environmental control of fruit maturation, dry matter and firmness in apple (Malus × domestica Borkh.). Hortic. Res. 1, 14046. https://doi.org/10.1038/hortres.2014.46 (2014).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    57.Gashu, K. et al. Temperature shift between vineyards modulates berry phenology and primary metabolism in a varietal collection of wine grapevine. Front. Plant Sci. 11, 588739. https://doi.org/10.3389/fpls.2020.588739 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    58.Suter, B., Destrac Irvine, A., Gowdy, M., Dai, Z. & van Leeuwen, C. Adapting wine grape ripening to global change requires a multi-trait approach. Front. Plant Sci. 12, 624867. https://doi.org/10.3389/fpls.2021.624867 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    59.Nesmith, D. Fruit development period of several Southern Highbush Blueberry Cultivars. Int. J. Fruit Sci. 12, 249–255. https://doi.org/10.1080/15538362.2011.619430 (2012).Article 

    Google Scholar 
    60.Romero-Román, M. et al. Native species facing climate changes: Response of Calafate Berries To Low Temperature and UV radiation. Foods. 10, 196. https://doi.org/10.3390/foods10010196 (2021).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    61.Cabrera, S., Bozzo, S. & Fuenzalida, H. Variations in UV radiation in Chile. J. Photochem. Photobiol. 28, 137–142 (1995).CAS 
    Article 

    Google Scholar 
    62.Ebel, R. C., Proebsting, E. L. & Evans, R. G. Deficit irrigation to control vegetative growth in apple and monitoring fruit growth to schedule irrigation. HortScience 30, 1229–1232. https://doi.org/10.21273/hortsci.30.6.1229 (1995).Article 

    Google Scholar 
    63.Fereres, E. & Soriano, M. A. Deficit irrigation for reducing agricultural water use. J. Exp. Bot. 58(2), 147–159. https://doi.org/10.1093/jxb/erl165 (2007).CAS 
    Article 
    PubMed 

    Google Scholar 
    64.Barnuud, N., Zerihun, A., Gibberd, M. & Bates, B. Berry composition and climate: Responses and empirical models. Inter. J. Biometeor. 58, 1207–1223. https://doi.org/10.1007/s00484-013-0715-2 (2014).ADS 
    Article 

    Google Scholar 
    65.Spinardi, A., Cola, G., Gardana, C. & Mignani, I. Variation of anthocyanin content and profile throughout fruit development and ripening of highbush blueberry cultivars grown at two different altitudes. Front. Plant Sci. 10, 1045. https://doi.org/10.3389/fpls.2019.01045 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    66.Stevenson, D. & Scalzo, J. Anthocyanin composition and content of blueberries from around the world. J. Berry Res. 2, 179–189. https://doi.org/10.3233/JBR-2012-038 (2012).CAS 
    Article 

    Google Scholar 
    67.Zarrouk, O. et al. Grape ripening is regulated by deficit irrigation/elevated temperatures according to cluster position in the canopy. Front. Plant Sci. https://doi.org/10.3389/fpls.2016.01640 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    68.Prange, R. K. & DeEll, J. R. Preharvest factors affecting postharvest quality of berry crops. HortScience 32, 824–830. https://doi.org/10.21273/hortsci.32.5.824 (1997).Article 

    Google Scholar 
    69.Mignard, O., Beguería, S., Reig, G. & Fonti, C. Genetic origin and climate determine fruit quality and antioxidant traits on apple (Malus × domestica Borkh). Sci. Hortic. 285, 110142. https://doi.org/10.1016/j.scienta.2021.110142 (2021).CAS 
    Article 

    Google Scholar 
    70.González-Villagra, J., Rodrigues-Salvador, A., Nunes-Nesi, A., Cohen, J. & Reyes-Díaz, M. Age-related mechanism and its relationship with secondary metabolism and abscisic acid in Aristotelia chilensis plants subjected to drought stress. Plant Physiol. Biochem. 124, 136–145. https://doi.org/10.1016/j.plaphy.2018.01.010 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    71.Calderan, A. et al. Managing moderate water deficit increased anthocyanin concentration and proanthocyanidin galloylation in “Refošk” grapes in Northeast Italy. Agric. Water Manage. 246, 106684. https://doi.org/10.1016/j.agwat.2020.106684 (2021).Article 

    Google Scholar 
    72.Yáñez, M., Seiler, J. & Fox, T. Crown physiological responses of loblolly pine clones and families to silvicultural intensity: Assessing the effect of crown ideotype. For. Ecol. Manage. 398, 25–36. https://doi.org/10.1016/j.foreco.2017.05.002 (2017).Article 

    Google Scholar  More

  • in

    Microbial diversity in intensively farmed lake sediment contaminated by heavy metals and identification of microbial taxa bioindicators of environmental quality

    1.Vareda, J. P., Valente, A. J. M. & Durães, L. Assessment of heavy metal pollution from anthropogenic activities and remediation strategies: A review. J. Environ. Manage. 246, 101–118 (2019).CAS 
    PubMed 

    Google Scholar 
    2.Chanamé, F., Custodio, M., Poma-Chávez, C. & Huamán, A. Nutrient concentrations and trophic state of three Andean lakes from Junín, Perú. Rev. Ambient Agua 15, 1–9 (2020).
    Google Scholar 
    3.Bhardwaj, R., Gupta, A. & Garg, J. K. Evaluation of heavy metal contamination using environmetrics and indexing approach for River Yamuna, Delhi stretch, India. Water Sci. 31, 52–66 (2017).
    Google Scholar 
    4.Custodio, M. et al. Human risk from exposure to heavy metals and arsenic in water from rivers with mining influence in the Central Andes of Peru. Water (Switzerland) 12, 1–20 (2020).
    Google Scholar 
    5.Arisekar, U., Jeya, R., Shalini, R. & Jeyasekaran, G. Human health risk assessment of heavy metals in aquatic sediments and freshwater fish caught from Thamirabarani River, the Western Ghats of South Tamil Nadu. Mar. Pollut. Bull. 159, 111496 (2020).CAS 
    PubMed 

    Google Scholar 
    6.Chabukdhara, M. & Nema, A. K. Assessment of heavy metal contamination in Hindon River sediments: A chemometric and geochemical approach. Chemosphere 87, 945–953 (2012).CAS 
    PubMed 
    ADS 

    Google Scholar 
    7.Chai, L. et al. Heavy metals and metalloids in the surface sediments of the Xiangjiang River, Hunan, China: Distribution, contamination, and ecological risk assessment. Environ. Sci. Pollut. Res. 24, 874–885 (2017).CAS 

    Google Scholar 
    8.Liu, T. T. & Yang, H. Comparative analysis of the total and active bacterial communities in the surface sediment of Lake Taihu. FEMS Microbiol. Ecol. 96, 1–11 (2020).CAS 
    ADS 

    Google Scholar 
    9.Custodio, M. et al. Evaluation of surface sediment quality in rivers with fish farming potential (Peru) using indicators of contamination, accumulation and ecological risk of heavy metals and arsenic. J. Ecol. Eng. 22, 78–87 (2021).
    Google Scholar 
    10.Zhang, Z. et al. Assessment of heavy metal contamination, distribution and source identification in the sediments from the Zijiang River, China. Sci. Total Environ. 645, 235–243 (2018).CAS 
    PubMed 
    ADS 

    Google Scholar 
    11.Sojka, M., Jaskula, J. & Siepak, M. Heavy metals in bottom sediments of reservoirs in the lowland area of western Poland: Concentrations, distribution, sources and ecological risk. Water (Switzerland) 11, 1–20 (2018).
    Google Scholar 
    12.Xu, Z., Te, S. H., Xu, C., He, Y. & Gin, K. Y. H. Variations of bacterial community composition and functions in an estuary reservoir during spring and summer alternation. Toxins (Basel) 10, 1–22 (2018).CAS 

    Google Scholar 
    13.Xiao, F. et al. The impact of anthropogenic disturbance on bacterioplankton communities during the construction of Donghu Tunnel (Wuhan, China). Microb. Ecol. 77, 277–287 (2019).CAS 
    PubMed 

    Google Scholar 
    14.Wang, B. et al. Bacterial community responses to tourism development in the Xixi National Wetland Park, China. Sci. Total Environ. 720, 137570 (2020).CAS 
    PubMed 
    ADS 

    Google Scholar 
    15.Deng, W. et al. Heavy metals, antibiotics and nutrients affect the bacterial community and resistance genes in chicken manure composting and fertilized soil. J. Environ. Manage. 257, 109980 (2020).CAS 
    PubMed 

    Google Scholar 
    16.Gubelit, Y. et al. Nutrient and metal pollution of the eastern Gulf of Finland coastline: Sediments, macroalgae, microbiota. Sci. Total Environ. 550, 806–819 (2016).CAS 
    PubMed 
    ADS 

    Google Scholar 
    17.Wang, J. et al. Contribution of heavy metal in driving microbial distribution in a eutrophic river. Sci. Total Environ. 712, 136295 (2020).CAS 
    PubMed 
    ADS 

    Google Scholar 
    18.Liao, H. et al. Profiling microbial communities in a watershed undergoing intensive anthropogenic activities. Sci. Total Environ. 647, 1137–1147 (2019).CAS 
    PubMed 
    ADS 

    Google Scholar 
    19.Liu, J. et al. Spatiotemporal dynamics of the archaeal community in coastal sediments: Assembly process and co-occurrence relationship. ISME J. 14, 1463–1478 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    20.Liao, H., Yen, J. Y., Guan, Y., Ke, D. & Liu, C. Differential responses of stream water and bed sediment microbial communities to watershed degradation. Environ. Int. 134, 105198 (2020).CAS 
    PubMed 

    Google Scholar 
    21.Song, H., Li, Z., Du, B., Wang, G. & Ding, Y. Bacterial communities in sediments of the shallow Lake Dongping in China. J. Appl. Microbiol. 112, 79–89 (2012).CAS 
    PubMed 

    Google Scholar 
    22.Ligi, T. et al. Characterization of bacterial communities in soil and sediment of a created riverine wetland complex using high-throughput 16S rRNA amplicon sequencing. Ecol. Eng. 72, 56–66 (2014).
    Google Scholar 
    23.Wilmes, P. et al. Natural acidophilic biofilm communities reflect distinct organismal and functional organization. ISME J. 3, 266–270 (2009).CAS 
    PubMed 

    Google Scholar 
    24.Mavromatis, K. et al. Use of simulated data sets to evaluate the fidelity of metagenomic processing methods. Nat. Methods. 4, 495–500 (2007).CAS 
    PubMed 

    Google Scholar 
    25.Yuan, X., Zhang, L., Li, J., Wang, C. & Ji, J. Sediment properties and heavy metal pollution assessment in the river, estuary and lake environments of a fluvial plain, China. CATENA 119, 52–60 (2014).CAS 

    Google Scholar 
    26.Lin, Q., Liu, E., Zhang, E., Li, K. & Shen, J. Spatial distribution, contamination and ecological risk assessment of heavy metals in surface sediments of Erhai Lake, a large eutrophic plateau lake in southwest China. CATENA 145, 193–203 (2016).CAS 

    Google Scholar 
    27.Guo, T. et al. Distribution of arsenic and its biotransformation genes in sediments from the East China Sea. Environ. Pollut. 253, 949–958 (2019).CAS 
    PubMed 

    Google Scholar 
    28.Taylor, S. R. & Mclennan, S. M. The geochemical the continental evolution crust. Rev. Miner. Geochem. 33, 241–265 (1995).
    Google Scholar 
    29.Lastauskienė, E. et al. The impact of intensive fish farming on pond sediment microbiome and antibiotic resistance gene composition. Front. Vet. Sci. 8, 1–12 (2021).
    Google Scholar 
    30.Ragab, S., Sikaily, A. E., Nemr, A. E. & Sea, R. Concentrations and sources of pesticides and PCBs in surficial sediments of the Red Sea coast, Egypt. Egypt. J. Aquat. Res. 42, 365–374 (2016).
    Google Scholar 
    31.Kavita, V. & Pandey, J. Heavy metal accumulation in surface sediments of the Ganga River (India): Speciation, fractionation, toxicity, and risk assessment. Environ. Monit. Assess. 191, 20 (2019).
    Google Scholar 
    32.Haghnazar, H. et al. Chemosphere Potentially toxic elements contamination in surface sediment and indigenous aquatic macrophytes of the Bahmanshir River, Iran: Appraisal of phytoremediation capability. 285, (2021).33.Perera, P. C. T., Sundarabarathy, T. V., Sivananthawerl, T., Kodithuwakku, S. P. & Edirisinghe, U. Arsenic and cadmium contamination in water, sediments and fish is a consequence of paddy cultivation: Evidence of river pollution in Sri Lanka. Achiev. Life Sci. 10, 144–160 (2016).
    Google Scholar 
    34.Kalantzi, I., Rico, A., Mylona, K., Pergantis, S. A. & Tsapakis, M. Fish farming, metals and antibiotics in the eastern Mediterranean Sea: Is there a threat to sediment wildlife?. Sci. Total Environ. 764, 142843 (2021).CAS 
    PubMed 
    ADS 

    Google Scholar 
    35.Monroy, M., Maceda-Veiga, A. & de Sostoa, A. Metal concentration in water, sediment and four fish species from Lake Titicaca reveals a large-scale environmental concern. Sci. Total Environ. 487, 233–244 (2014).CAS 
    PubMed 
    ADS 

    Google Scholar 
    36.Rodbell, D. T., Delman, E., Abbott, M., Besonen, M. & Tapia, P. The heavy metal contamination of Lake Junín National Reserve, Peru: An unintended consequence of the juxtaposition of hydroelectricity and mining. GSA Today 24, 4–10 (2014).
    Google Scholar 
    37.Ni, C. et al. High concentrations of bioavailable heavy metals impact freshwater sediment microbial communities. Ann. Microbiol. 66, 1003–1012 (2016).CAS 

    Google Scholar 
    38.Huang, W. et al. Comparison among the microbial communities in the lake, lake wetland, and estuary sediments of a plain river network. Microbiologyopen https://doi.org/10.1002/mbo3.644 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    39.Abia, A. L. K., Alisoltani, A., Keshri, J. & Ubomba-Jaswa, E. Metagenomic analysis of the bacterial communities and their functional profiles in water and sediments of the Apies River, South Africa, as a function of land use. Sci. Total Environ. 616–617, 326–334 (2018).PubMed 
    ADS 

    Google Scholar 
    40.Guo, X. et al. Characteristics of microbial community indicate anthropogenic impact on the sediments along the Yangtze Estuary and its coastal area, China. Sci. Total Environ. 648, 306–314 (2019).CAS 
    PubMed 
    ADS 

    Google Scholar 
    41.Betiku, O. C. et al. Evaluation of microbial diversity of three recreational water bodies using 16S rRNA metagenomic approach. Sci. Total Environ. 771, 144773 (2021).CAS 
    PubMed 
    ADS 

    Google Scholar 
    42.Zhang, T. et al. Suspended particles phoD alkaline phosphatase gene diversity in large shallow eutrophic Lake Taihu. Sci. Total Environ. 728, 138615 (2020).CAS 
    PubMed 
    ADS 

    Google Scholar 
    43.Shen, M. et al. Trophic status is associated with community structure and metabolic potential of planktonic microbiota in Plateau Lakes. Front. Microbiol. 10, 1–15 (2019).
    Google Scholar 
    44.Quero, G. M., Cassin, D., Botter, M., Perini, L. & Luna, G. M. Patterns of benthic bacterial diversity in coastal areas contaminated by heavy metals, polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs). Front. Microbiol. 6, 1–15 (2015).
    Google Scholar 
    45.Wang, Y. et al. Comparison of the levels of bacterial diversity in freshwater, intertidal wetland, and marine sediments by using millions of illumina tags. Appl. Environ. Microbiol. 78, 8264–8271 (2012).CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    46.Long, Y. et al. The response of microbial community structure and sediment properties to anthropogenic activities in Caohai wetland sediments. Ecotoxicol. Environ. Saf. 211, 111936 (2021).CAS 
    PubMed 

    Google Scholar 
    47.Yao, X., Zhang, J., Tian, L. & Guo, J. The effect of heavy metal contamination on the bacterial community structure at Jiaozhou Bay, China. Braz. J. Microbiol. 48, 71–78 (2017).CAS 
    PubMed 

    Google Scholar 
    48.Hur, M. & Park, S. J. Identification of microbial profiles in heavy-metal-contaminated soil from full-length 16s rRNA reads sequenced by a pacbio system. Microorganisms 7, 25 (2019).
    Google Scholar 
    49.Zhuang, M., Sanganyado, E., Li, P. & Liu, W. Distribution of microbial communities in metal-contaminated nearshore sediment from Eastern Guangdong, China. Environ. Pollut. 250, 482–492 (2019).CAS 
    PubMed 

    Google Scholar 
    50.Gu, Y. et al. Degradation shaped bacterial and archaeal communities with predictable taxa and their association patterns in Zoige wetland at Tibet plateau. Sci. Rep. 8, 1–11 (2018).ADS 

    Google Scholar 
    51.Newton, R. J., Jones, S. E., Eiler, A., McMahon, K. D. & Bertilsson, S. A guide to the natural history of freshwater lake bacteria. Microbiol. Mol. Biol. Rev. 75, 25 (2011).
    Google Scholar 
    52.Hu, A. et al. Strong impact of anthropogenic contamination on the co-occurrence patterns of a riverine microbial community. Environ. Microbiol. 19, 4993–5009 (2017).CAS 
    PubMed 

    Google Scholar 
    53.Ren, Z. et al. Taxonomic and functional differences between microbial communities in Qinghai Lake and its input streams. Front. Microbiol. 8, 1–14 (2017).
    Google Scholar 
    54.Yin, X. et al. Cadmium isotope constraints on heavy metal sources in a riverine system impacted by multiple anthropogenic activities. Sci. Total Environ. 750, 141233 (2021).CAS 
    PubMed 
    ADS 

    Google Scholar 
    55.Yan, C. et al. Integrating high-throughput sequencing and metagenome analysis to reveal the characteristic and resistance mechanism of microbial community in metal contaminated sediments. Sci. Total Environ. 707, 136116 (2020).CAS 
    PubMed 
    ADS 

    Google Scholar 
    56.Coclet, C. et al. Trace metal contamination impacts predicted functions more than structure of marine prokaryotic biofilm communities in an anthropized coastal area. Front. Microbiol. 12, 1–16 (2021).
    Google Scholar 
    57.Esri Inc. ArcMap 10.8. Esri Inc. (2020). https://www.esri.com/en-us/arcgis/products/arcgis-pro/overview.58.Avalos, G. et al. Climate Change in the Mantaro River Basin (MINEN, 2013).
    Google Scholar 
    59.APHA. Standard methods for the examination of water and wastewater. Stand. Methods 541, 25 (2012).
    Google Scholar 
    60.Singh, H., Pandey, R., Singh, S. K. & Shukla, D. N. Assessment of heavy metal contamination in the sediment of the River Ghaghara, a major tributary of the River Ganga in Northern India. Appl. Water Sci. 7, 4133–4149 (2017).CAS 
    ADS 

    Google Scholar 
    61.El-Amier, Y. A., Elnaggar, A. A. & El-Alfy, M. Evaluation and mapping spatial distribution of bottom sediment heavy metal contamination in Burullus Lake, Egypt. Egypt. J. Basic Appl. Sci. https://doi.org/10.1016/j.ejbas.2016.09.005 (2016).Article 

    Google Scholar 
    62.Miller, D. N., Bryant, J. E., Madsen, E. L. & Ghiorse, W. C. Evaluation and optimization of DNA extraction and purification procedures for soil and sediment samples. Appl. Environ. Microbiol. 65, 4715–4724 (1999).CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    63.Custodio, M. et al. Metagenomic data on the composition of bacterial communities in lake environment sediments for fish farming by next generation Illumina sequencing. Data Br. 32, 106228 (2020).
    Google Scholar 
    64.Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    65.Wood, D. E. & Salzberg, S. L. Kraken: Ultrafast metagenomic sequence classification using exact alignments. Genome Biol. 15, 25 (2014).
    Google Scholar 
    66.Edgar, R. C. UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10, 996–998 (2013).CAS 
    PubMed 

    Google Scholar 
    67.Gan, Y. et al. Multiple factors impact the contents of heavy metals in vegetables in high natural background area of China. Chemosphere 184, 1388–1395 (2017).CAS 
    PubMed 
    ADS 

    Google Scholar 
    68.Diallo, M. D. et al. Polymerase chain reaction denaturing gradient gel electrophoresis analysis of the N2-fixing bacterial diversity in soil under Acacia tortilis ssp. raddiana and Balanites aegyptiaca in the dryland part of Senegal. Environ. Microbiol. 6, 400–415 (2004).CAS 

    Google Scholar 
    69.R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna (2020). https://www.R-project.org/.70.Li, C. et al. Effects of heavy metals on microbial communities in sediments and establishment of bioindicators based on microbial taxa and function for environmental monitoring and management. Sci. Total Environ. 749, 141555 (2020).CAS 
    PubMed 
    ADS 

    Google Scholar 
    71.Murtaza, N. et al. Analysis of the effects of dietary pattern on the oral microbiome of elite endurance athletes. Nutrients 11, 1–12 (2019).MathSciNet 

    Google Scholar  More

  • in

    Jointly modeling marine species to inform the effects of environmental change on an ecological community in the Northwest Atlantic

    Species dataSpecies CPUE data were obtained from the National Oceanographic and Atmospheric Administration (NOAA) Northeast Fishery Science Center (NEFSC) U.S. NES bottom trawl survey, which, for almost 50 years, has collected abundance data for over 250 fish species in the spring and fall. The survey employs a stratified random design, with stations allocated proportionally to the stratum area. A 12 mm mesh coded liner is used to retain small-bodied and juvenile fish. All fish caught are weighed and counted18. We downloaded the data from OceanAdapt.com, which calibrates the CPUE for each species depending on survey ship. We cleaned the data for the years from 1998 to 2020, excluding years prior to 1997 due to many missing values for chlorophyll (Chla). We only included strata that were consistently sampled in the spring and fall. To account for the seasonal migrations of many of the studied species, we modeled spring and fall seasons separately. We present the results for the fall CPUE, with the spring results and presence/absence results in the supplemental materials. We selected species that were present in at least 400 tows and with a biomass of at least 0.5 kg/tow (CPUE) in more than 100 tows. Finally, we removed roughly 400 tows per season with missing environmental covariates (see below). In the fall, we selected 30 species with 5217 observations, and in the spring, we selected 24 species with 5935 observations (see Supplemental Tables S1, S2).Environmental dataThe study region includes Southern New England and The Gulf of Maine. We selected environmental covariates known to influence marine fish distributions and abundances. Depth, temperature (bottom and surface) and salinity (bottom and surface) were measured in situ during trawl surveys. Missing values were augmented with the data-assimilative HYbrid Coordinate Ocean Model (HYCOM) daily and then monthly data. HYCOM is an oceanographic model that produces 32 vertical layers including ocean temperature, salinity, sea surface height, and wind stress as well as other 3- and 4-dimensional variables. The system uses the Navy Coupled Ocean Data Assimilation (NCODA) system19 for data assimilation. NCODA uses the model forecast as a first guess in a multivariate optimal interpolation (MVOI) scheme and assimilates available satellite altimeter observations (along track obtained via the Naval Oceanographic Office Altimeter Data Fusion Center satellite) and in situ sea surface temperature as well as available in situ vertical temperature and salinity profiles from expendable bathythermographs, Argo floats, and moored buoys20. Seven HYCOM models (HYCOM + NCODA Global 1/12° Reanalysis GLBu0.08 Expts 19.0, 19.1, 90.9, 91.0, 91.1, 91.2) were temporally concatenated to create a continuous dataset of BT and salinity, ranging from 1992 to 2017. These model runs differed slightly in their configurations (time steps, advection scheme, mixing, vertical structure, slight change in NCODA, and MVOI transition to 3-dimensional analysis in 2013), but the differences are not expected to influence the applicability of the output21. The numbers of filled in missing values were 787 (7.0%) surface salinity (SSAL), 735 (6.5%) surface temperature (SST), 809 (7.2%) bottom temperature (BT), and 850 (7.6%) bottom salinity (BSAL). Chla was obtained from the MODIS satellite (monthly rasters from 2003 to 2019) on a monthly time step22, with missing values filled using the SeaWIFS satellite23 (1998 to 2009). Temperature, salinity and Chla data that were not collected in situ were downloaded using Google Earth Engine (HYCOM and MODIS)24. Benthic substrate (grain size in mm, referred to as SEDSIZE), subregion (Gulf of Maine or Southern New England), benthic land position (high, low, mid), and seabed form data (depression, high flat, high slope, low slope, mid flat, side slope, steep) were obtained from the Nature Conservancy’s Northwest Atlantic Marine Ecoregional Assessment25 (Supplemental Fig. S1).GJAMTo study the influence of the environmental covariates on the joint distribution of marine fish and invertebrate species we use the generalized joint attribute model (GJAM)12 and the corresponding R package (Version 2.5)26. Briefly, this multivariate Bayesian model allows us to jointly model the marine fish community and accounts for responses to the environment that can include combinations of continuous and discrete responses (e.g., CPUE and zeros) and the dependence between species. GJAM returns all parameters on the observation scale, in this case, CPUE and presence-absence. Products of model fitting include a species‐by‐species covariance matrix (Σ), species responses to predictor variables (B), and predicted responses. The species‐by‐species covariance matrix Σ captures residual codependence between species after removing the main structure explained by the model (also referred to as the residual correlation matrix). As a result, Σ allows for conditional prediction of some species under different scenarios for the abundances of others27.CPUE is termed continuous abundance (CA) data in GJAM, meaning that observations are continuous with discrete zeros. Let yis be the CPUE for species s at location i. For CA data GJAM expands the tobit model for (univariate) regression to the multivariate setting, where a latent variable wis is equal to yis when yis is positive and zero otherwise,$$y_{i,s}^{0} = left{ {begin{array}{*{20}l} {w_{is} ,} hfill & {w_{is} > 0quad {text{continuous}}} hfill \ {0,} hfill & {w_{is} le 0quad {text{discrete zero}}} hfill \ end{array} } right.$$
    (1)
    The length-S vector of all species responses wi is continuous on the real line, and thus can be modeled with a multivariate normal. The model for wi is$$begin{aligned} left. {{mathbf{w}}_{i} } right|{mathbf{x}}_{i, } {mathbf{y}}_{i} & sim ,MVNleft( {{varvec{mu}}_{i} ,{Sigma }} right) times mathop prod limits_{s = 1}^{S} {mathcal{I}}_{is} \ u_{{varvec{i}}} & = {mathbf{B}}^{prime } {mathbf{x}}_{{varvec{i}}} \ {mathcal{I}}_{is} & = mathop prod limits_{k in C} I_{is,k}^{{Ileft( {y_{is} = k} right)}} left( {1 – I_{is,k} } right)^{{Ileft( {y_{is} ne k} right)}} \ end{aligned}$$
    (2)
    $$begin{aligned} {mathcal{I}}_{is} & = I(w_{is} le 0)^{{Ileft( {y_{is} = 0} right)}} left[ {1 – Ileft( {w_{is} le 0} right)} right]^{{Ileft( {y_{is} > 0} right)}} \ & quad I(w_{is} > 0)^{{Ileft( {y_{is} > 0} right)}} left[ {(1 – I(w_{is} > 0)} right]^{{Ileft( {y_{is} = 0} right)}} \ end{aligned}$$where the indicator function (I(cdot )) is equal to 1 when its argument is true and 0 otherwise. For presence-absence data, ({mathbf{p}}_{{varvec{i}}{varvec{s}}}boldsymbol{ }=boldsymbol{ }left(-boldsymbol{infty },boldsymbol{ }0,boldsymbol{ }boldsymbol{infty }right).) This is equivalent to Chib and Greenberg’s28 probit model which can be written as ({mathcal{I}}_{is}=I({w}_{is} >{0)}^{Ileft({y}_{is} >0right)}I({w}_{is}le {0)}^{1-{y}_{is}}).The mean vector ({varvec{mu}}_{i} = {mathbf{B}}^{prime } {mathbf{x}}_{{varvec{i}}}) contains the Q × S matrix of coefficients B and the length-Q design vector xi. Σ is a S × S covariance matrix. There is a correlation matrix associated with Σ,$${mathbf{R}}_{{S,S^{prime } }} = frac{{{{varvec{Sigma}}}_{{S,S^{prime } }} }}{{sqrt {{{varvec{Sigma}}}_{S,S} {{varvec{Sigma}}}_{{S^{prime } ,S^{prime } }} } }}$$
    (3)
    The predictive distribution is obtained as$$left[tilde{Y }left| tilde{X }right.right]=int left[ tilde{Y }left| tilde{X }right.,widehat{theta }right]left[widehat{theta } left|X, Yright.right]$$
    (4)
    The integrand contains the likelihood (Eq. (2)) followed by the posterior distribution for parameters, (widehat{theta }= left{widehat{mathbf{B}},boldsymbol{ }widehat{{varvec{Sigma}}}right}). Input (tilde{X }) can equal X (in-sample prediction) or not (out-of-sample prediction). We fitted both CPUE (continuous abundance) and presence-absence versions of the model. As a Bayesian method, GJAM provides probabilistic estimates of parameters with full dependence in data, including jointly distributed species. Model fitting is performed using Gibbs sampling, which is a Markov chain Monte Carlo (MCMC) technique.The sensitivity of an individual response variable s to an individual predictor q is given by the coefficient βqs (individual coefficients from the B matrix). The sensitivity that applies to the full response matrix is given by$${mathbf{f}} = diagleft( {{mathbf{B}}{Sigma }^{ – 1} {mathbf{B}}^{prime } } right)$$
    (5)
    The Q × S matrix B contains relationships of each species to the environment, the “signal”, but not to each another. Matrix E summarizes species similarities in terms of their response to an environment (stackrel{sim }{mathbf{x}}) and is given by$${mathbf{E}=mathbf{B}}^{boldsymbol{^{prime}}}mathbf{V}mathbf{B}$$
    (6)
    where V is a covariance matrix for (stackrel{sim }{mathbf{x}})(a vector of predictors) and contributes the environmental component of variation in (stackrel{sim }{mathbf{y}}). Similar species in E have similar columns in B. Those similarities and differences are amplified for predictors (stackrel{sim }{mathbf{x}}) with large variance. Conversely, species differences in B do not matter for variables in X that do not vary. The covariance in predictors could come from observed data, i.e., the variance of X (see12 for more details).Prior distributions for this study are non-informative. This is particularly helpful for the covariance, lending stability to Gibbs sampling and avoiding dominance by a prior. In cases this particular case, the direction of the prior effect may be known, but the magnitude is not.Variable selectionUnlike the familiar univariate setting, variable selection has to consider which species are included in the model. In a univariate model, there is one response and perhaps a number of potential predictor variables from which to choose. As in a univariate model, variable selection focuses on predictors held in the n by p design matrix X. Rather than a response vector, the multivariate model includes the n by S response matrix Y. Unlike the univariate model, the overall fit and predictive capacity depends not only on what is in X, but also on the species that are included in Y, each of which would be best explained by a different combination of variables. Rare species having no signal will not provide cross-correlations and thus can offer little learning from an analysis. For this reason, there may be no reason to include them in model fitting. Given that many species may be rare, and rare types will not be explained by the model, there will be decisions about what variables to include on both sides of the likelihood (i.e., predictors and responses).These considerations mean that simple rules for variable selection, such as the combination yielding the lowest DIC, may not be sensible. The combination of variables that yields the lowest DIC could miss variables that are important for subsets of species. In principle, one poorly-fitted species could dominate variable selection. The best model for responses ranging from rare to abundant will depend on precisely which species are included, both rare and abundant. Thus, in order to select variables, we utilize inverse prediction—predicting the environment from species – and the overall community sensitivity12.Inverse prediction provides a comprehensive estimate of the environmental importance for the entire community, because it determines the capacity of the community to predict (through the fitted model) the environment; it inverts the model12. A variable predicted by the community explains important variation in one to many species. A variable that is not predicted by the community does not explain important variation in any of them. To look at the importance of environmental variables for the entire community, we started with the saturated model that included the predictors BT, SST, depth, BSAL, SSAL, Chla, SEDSIZE, subregion, benthic position and an interaction between depth and BT, BSAL, SST and SSAL (Fig. 1a). Sensitivity was highest for the interaction between BT and depth and lowest for Chla and sediment size (see right subpanel on Fig. 1a for sensitivity). Inverse prediction confirmed that sediment size and Chla contribute little to community biomass, because the community cannot “predict” them (see left and middle subpanels on Fig. 1a for sensitivity). Inverse prediction results from a second model (Fig. 1b) showed that SSAL and the third model for benthic position also (Fig. 1c) contribute little to the community response. Using the combination of sensitivity and inverse prediction we obtained the final model that includes BT, depth, BSAL, SST, subregion and an interaction between depth and BT, BSAL and SST (Fig. 1d). Inverse prediction indicates that the CPUE predicts the environment well. In the final model, sensitivity is highest for depth. Subregion remains as a two-level factor and there is strong inverse prediction for that variable as well (Fig. 1d). In the variable-selection stage, each model was run on the entire fall dataset for 5000 iterations and a burn-in of 800. Inverse prediction results from the spring model indicated similar patterns; thus, the same variables were used for the spring and fall.Figure 1Inverse prediction and sensitivity for combinations of environmental parameters in GJAM. Starting with the most complicated model (a), sensitivity was highest for the interaction between BT and depth and lowest for Chla and sediment size (a). Inverse prediction confirms that sediment size and Chla contribute little to community biomass (a) and those are removed in the second model (b). SSAL contributes little to community response and are removed in the third model (c), The final model (d) includes terms that have strong inverse prediction and overall sensitivity. Inverse prediction for continuous and factor variables is on the left and center of each box, and overall sensitivity is on the right.Full size imageWe compare the model selected above using inverse prediction to a model selected using the more traditional method of out-of-sample prediction. For out-of-sample prediction, we fitted all combinations of 11 environmental variables (BT, BSAL, SST, SSAL, Chla, depth, sediment size, subregion, position, seabed form) plus interaction terms between depth and SEDSIZE, BT, BSAL, SST, SSAL and chlorophyll. These models were run with 1000 iterations and a burn-in of 400. All models included BT, BSAL, SST, SSAL, chlorophyll A and depth, as these variables have been shown to be important for these species. In total, 1,024 possible models were evaluated by training each potential model on 70% of the data (n = 3652 in the fall, n = 4155 in the spring), evaluating in-sample performance with DIC, and then testing out-of-sample performance on the remaining 30% (n = 1565 in the fall, n = 1780 in the spring). The 10 models with the lowest DIC in-sample were selected, and the final model was selected out of those 10 with the lowest out-of-sample R2. The selected model for fall CPUE had the following terms: ~ BT + depth + BSAL + SST + SSAL + chla + depth*BT + depth*SEDSIZE + depth*SSAL + depth*chla + SEDSIZE + Benthic position. Recall that inverse prediction selected a simpler model including the following terms: BT + depth + BSAL + SST + Subregion + depth*BT + depth*BSAL + depth*SST. The inclusion of SEDSIZE and benthic position in the model selected via out-of-sample prediction is probably a result of these predictor variables being important for a subset of species (i.e. benthic species29), but not the community as a whole. When we have a large number of response variables, as in this study, we need to consider the variables that are more important on a community level, rather than just for a few species. Thus, we use the model selected via inverse prediction for the remainder of the study.We fitted the selected model with 70% of the data for 20,000 iterations with a burn-in of 8,000 iterations (n = 3652 in the fall, n = 4155 in the spring). Out-of-sample prediction was performed on the remaining 30% (n = 1565 in the fall, n = 1780 in the spring) of the dataset and predicted versus observed values were evaluated (Supplemental Figs. S2 and S3) as well as residual versus fitted values (Supplemental Figs. S4 and S5). As has been shown in other research30,31, aggregating noisy predictions based on similar environmental preferences can improve performance, especially for larger datasets. Thus, we generated an aggregated data set that uses a k-means clustering of predictors (Supplemental Figs. S8 and S9). We performed the same analysis for the spring and the fall as well as with the presence absence data and recorded AUC as well as precision for each species (Supplemental Figs. S6 and S7). Precision is defined as the arithmetic mean of precision (proportion of predicted presences actually observed as presences) across all threshold values (at an interval of 0.01).Final modelWe ran the final model on 100% of the data with 20,000 iterations and a burn-in of 8000 iterations for the spring and fall for CPUE as well as presence absence for a total of 4 models. From the final model we obtained coefficients for the species-environment responses, β, covariance between species in how they respond to the environment E, and the residual correlation from the fitted model, R. We subtracted the absolute values from the presence/absence residual correlation matrix from the absolute values of the CPUE residual correlation matrix to observe where these results diverged. For MCMC chains and convergence of the final model as well as example models from both methods of variable selection see Supplemental Figs. S10–S12).Comparison to SSDMsWe built single species distribution models for each species in the form of GAMs using the mgcv package in R32. GAMs are a semiparametric extension of the generalized linear model and are a common modeling technique for species distribution modeling in this ecosystem33. For each species, we ran one GAM with CPUE as the response variable with a log-linked tweedie distribution that had penalized regression splines, a REML smoothing parameter with an outer Newton optimizer, 10 knots, and omitted NAs. We also ran GAMs for each species with a binary response variable indicating species presence with a binomial error distribution and a logit link function, penalized regression splines, a REML smoothing parameter with an outer Newton optimizer, 10 knots, and omitted NAs. We compared the out of sample observed versus predicted values for GAMs versus GJAM using RMSPE, R2, AUC, and precision. Root Mean Squared Prediction Error (RMSPE) is a measure of the average squared difference between the observed and predicted values, measured in the same units as the input data (kg/tow). R2 is a measure of the average squared difference between the observed and predicted values and is unitless. R2 is calculated as (1 − sum((predicted − observed)2)/sum((observed − mean(observed))2)) The ROC curve is a measure of model performance which plots true positive rate versus false positive rate, and the area under the ROC curve (AUC) provides a single measure of accuracy. A pairwise Wilcoxon test was used to compare means. We also compare the significance of predictors in both the GJAM model and GAM models. In this example, significance is defined for GJAM as a credible interval of the beta estimation that does not cross zero, and for the GAM as a p-value less than 0.0534.Spatial and temporal autocorrelationExamining the spatial and temporal autocorrelation of the modeled residuals can help specify missing endogenous (habitat selection or density dependence) and exogenous (covariate) effects that may be missing from the model. Thus, for each species modeled, we plot the spatial autocorrelation of residuals using a semi-variogram for the year 2015 and the temporal autocorrelation of the residuals using a partial autocorrelation function (PACF). We present the results for each species in the fall in the Supplemental materials (Supplemental Figs. S27–S57).All analysis and figure creation was performed in R version 3.6.235. Figures were created using the following R packages: ggplot236, ggpubr37, corrplot38, gridExtra39, cowplot40, lessR41, and ggcorrplot42. More

  • in

    High frequency of social polygyny reveals little costs for females in a songbird

    Study area and study populationData come from a long-term study of a pied flycatcher population breeding in nestboxes in central Spain (ca. 41°N, 3°W, 1200–1300 m.a.s.l.). The longitudinal data cover the period 1990–2016 (no data for 2003) and include records for 1436 males (yearly mean and SD: 107.4 and 34.2) and 1641 females (yearly mean and SD: 119.7 and 28.6). The study area consists of two plots in two different montane habitats separated by 1.1 km, including 237 nestboxes with an average occupancy rate around 54% (SD = 0.11). One habitat is an old deciduous oak (Quercus pyrenaica) forest, and the other one is a managed mixed coniferous (mainly Pinus sylvestris) forest. The nestboxes have remained in the same position since 1988 (pinewood) and 1995 (oakwood) (for details, see42,43).Fieldwork and data collectionNestboxes were regularly (every 3rd–4th day) checked during the breeding season (from mid-April to the beginning of July) to determine the date of the first egg laid, clutch size, hatching date, and the number of fledglings. Parents were captured with a nestbox trap while incubating (females) or feeding 8-day-old nestlings (both sexes; for details, see43 and marked with a numbered metal ring (both sexes). We used a unique combination of colour rings (males only) for individual identification before capture. Many breeding birds (53%) hatched in the nestboxes, and, therefore, their exact age was known44. Unringed breeders were aged as first-year or older based on plumage traits following ageing criteria described in44,]45. All nestlings were ringed at 13 days of age.Polygamous males were detected when captured and/or individually identified while repeatedly feeding young in two nests (see24 for details on capture protocol and mating status classification). We distinguished three classes of females according to their male mating status: (i) monogamous female, i.e. mated with a monogamous male; (ii) primary female, the first mated female of a polygynous male; and (iii) secondary female, the second mated female of a polygynous male. However, in some nests, it was not possible to know with certainty the mating status of the female (14.3% of times) or the male (3.7% of times, see below for how we dealt with this source of uncertainty).Ethics declarationThe study was reviewed by the ethical committees at the Doñana Biological Station and the Consejo Superior de Investigaciones Científicas headquarters (Spain) and adhered to Spain standards. All methods were carried out in accordance with relevant guidelines and regulations. Birds were caught and ringed with permission from the Spanish Ministry of Agriculture, Food, Fisheries, and Environment’s Ringing Office. The study complied with (Animal Research: Reporting of In Vivo Experiments) guidelines46.Multi-event capture-recapture modelsWe used multi-event capture-recapture (MECR hereafter) models47 to test, separately for females and males, how the mating status affected the probability of surviving (and not leaving the area permanently) and the probability of changing, or not, from one mating status to another. The MECR models accommodate uncertainty in state assignment by distinguishing between what is observed (the event) and what is inferred (the state). This approach allows estimating the effects of mating status on the parameters (e.g. probabilities of local survival and change in mating status) while accounting for the uncertainty, as outlined above, due to the unknown mating status of some captured individuals.MECR models are defined by three types of parameters: Initial State probabilities, Transition probabilities and Event probabilities (details in Appendices S5). As these parameter types may be broken into steps, we considered two Transition steps, Local survival and Mating Status Change, and two Event steps, Recapture and Mating Status Assignment. Accordingly, we considered the following parameters of the MECR model: (i) Initial State, the probability of being in a specific mating status at the first encounter (in our case the first known breeding event of an individual); (ii) Local survival, the probability of surviving and not emigrating permanently from the study area between year t and year t + 1; (iii) Mating Status Change, the probability that a live bird changes state between year t and t + 1; (iv) Recapture: the probability of recapture of a live and not permanently emigrated individual; (v) Mating Status Assignment: the probability that the mating status of a captured individual is ascertained in the field (assuming no state misclassification). In this study, we will use the term “parameter” to denote any of the probabilities (see i-v above) estimated in the MECR model. Also, note that, as is often the case, we cannot distinguish the probability of site fidelity from that of surviving. For simplicity, we will often use the term “survival” to refer to “local survival”.We used the encounter histories of all identified birds breeding in the study area at least once between 1990 and 2016. We ran separate analyses for each sex, considering four biological states for females: live monogamous breeder (MBF), live primary breeder (PBF), live secondary breeder (SBF) and dead or permanently emigrated (†); and five events, numbered as they appear in the encounter histories: (0) non-captured, (1) captured as a monogamous breeder, (2) captured as a primary breeder, (3) captured as a secondary breeder and (4) captured in an unknown mating status. Females of unknown mating status were those for which we did not know the mate’s identity after repeated identification attempts at the nestbox (see details in24). These females could be of any mating status, and the mate being absent (e.g. dead after pairing) or very sporadically visiting the nest. For males, however, we considered three biological states: live monogamous breeder (MBM), live polygynous breeder (PBM) and dead or permanently emigrated (†), mediated by four events: (0) non-captured, (1) captured as a monogamous breeder, (2) captured as a polygynous breeder, (3) captured in an unknown mating status. Males of unknown mating status were identified by reading their colour-rings combinations near a nestbox and not captured or seen again during the breeding season. For both sexes, we established two age classes: 1-year-old individuals (1-yo hereafter: 41.74% females; 26.46% males) and individuals older than 1 year ( > 1-yo hereafter: 58.26% females; 73.54% males) that we included as a control variable in our capture-recapture models. This classification allowed the inclusion of non-local breeders (immigrants) in our analyses.Models were built and fitted to the data using E-SURGE 2.2.048. As our data were annually collected and we had no data for 2003, we selected the “Unequal Time Intervals” option to account for the 2002–2004 interval. Details on the probabilistic framework and the limitations of the modelling approach are given in Appendix S4.Goodness of fitBefore running the capture-recapture analysis, we preliminary assessed the goodness of fit (GOF) of a general model to the data. Since GOF tests are not available for multi-event models, we tested the GOF of the Cormack-Jolly-Seber (CJS), a model accounting for just two states, alive and dead, and for temporal variation in survival (Transition) and recapture (Event) probabilities, using U-CARE 2.3.249. This approach is conservative because the CJS is coarser than the MECR model. Thus, if the former fits the data well, the latter will fit them. All the GOF tests were run for males and females separately. The global tests were not significant for both males [c2 = 72.57, df = 103, p = 0.99; N(0,1) statistic for transient ( > 0) =  − 0.49, p = 0.69; N(0,1) signed statistic for trap-dependence = − 0.84, p = 0.99] and females [c2 = 76.13, df = 122, p = 0.99; N(0,1) statistic for transient ( > 0) = − 2.51, p = 0.69; N(0,1) signed statistic for trap-dependence = − 1.22, p = 0.22], indicating acceptable fits of the Cormack-Jolly-Seber models to the data. For the complete results of 3.SR (transience) and 2.CT (trap-dependence) tests, see Appendix S5.Model selectionModel selection was based on Akaike Information Criterion corrected for small sample sizes (AICc)50. For each sex, in a preliminary analysis, we built a global model checking that there were no parameter identifiability issues48. The structure of the global model was: Initial State (mating status × time), Local survival (age + (mating status × time)), Mating Status Change (age × mating status), Recapture (mating status × time), Mating status Assignment (mating status × time).Our modelling approach consisted of two steps. In step one, starting from the global model, we followed a backwards model selection procedure to test various combinations of variables potentially influencing each parameter of the MECR model while simplifying the model’s structure. According to the classic approach for which the recapture part of the model is modelled before that of survival51,52, we followed the following order of model selection: Initial State, Mating Status Assignment, Recapture, Mating Status Change, and Local survival. After testing the model structure (set of effects) for a parameter, we set the best structure (lower AICc) for that parameter, and we then tested the models for the following parameter. Thus, at the end of step one, we examined the effect of mating status on the biologically relevant parameters, that is, on Local survival and Mating Status Change. In step two, we used the simplified model resulting from step one (final model 1) to test whether the frequency of the FSP differentially affected the biologically relevant parameters according to the mating status. First, we tested the effects of FSP on Mating Status Change and then on Local survival (by keeping in MSC the same structure of final model 1). In the Results section, we reported parameter’ estimates from a model that combined the best final structure (lowest AICc) found on all the parameters, when not stated otherwise.Linear regression analysis of FSP and fledging success of hatchlingsWe used a GLM model to test whether the FSP depends on the yearly average proportion of hatchlings that fledged. We used the simulateResiduals function of the DHARMa53 package in R54 to confirm the absence of over-dispersion and the good fit of the model. More