More stories

  • in

    Distinct soil bacterial patterns along narrow and broad elevational gradients in the grassland of Mt. Tianshan, China

    Environmental variable quantification along an altitudinal gradientThis study area included 22 sampling sites, and 66 samples, classified into three transects, namely Transect 1 (1047–1587 m), Transect 2 (876–3070 m), and Transect 3 (1602–2110 m). Significant differences in soil properties and plant parameters were observed along the three studied altitudinal transects (P  0.05%, while the remaining bacteria were merged into an “others” class. As shown in Fig. 1B, the proportion of Actinobacteria, Alphaproteobacteria and Gammaproteobacteria at each elevation was 45%, whereas Deltaproteabacteria, Acidobacteria_Subgroup_6, and Gemmatimonadetes were prevalent at low levels in most soil samples. At the genus level (Supplementary Fig. 1), 76 genera were detected in the research areas, with the dominant genera including norank_f_67-14_ o_Solirubrobacterales (5.72%), Rubrobacter (4.35%), Solirubrobacter (2.83%), Pseudonocardia (2.26%) and Bradyrhizobium (2.19%) and less than 0.01% of the bacterial genera were classified into others.Figure 1Bacterial community composition variations at the phylum (A) and class (B) levels in soil samples collected at different levels. These were done in R (v3.3.1, http://www.R-project.org).Full size imageBacterial community composition varies along elevation gradientsWe next sought to analyze the differences in relative bacterial abundance at the phylum level among Transects 1–3 (Fig. 2). Significant differences in the relative abundance of Actinobacteria, Proteobacteria, Acidobacteria, Verrucomicrobia, Firmicutes, and Rokubacteria were detected in samples from the different transects (Fig. 2A). The relative abundance of Actinobacteria and Firmicutes in Transect 1 (48.64% and 1.89%, respectively) was significantly higher than in Transect 2 (38.43% and 1.49%, respectively) and Transect 3 (39.63% and 0.98%, respectively) (P  More

  • in

    Whales in the way

    Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
    the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
    Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
    and JavaScript. More

  • in

    The discrepancy between fire ant recruitment to and performance on rodent carrion

    1.Carter, D. O., Yellowlees, D. & Tibbett, M. Cadaver decomposition in terrestrial ecosystems. Naturwissenschaften 94(1), 12–24 (2007).ADS 
    CAS 
    PubMed 

    Google Scholar 
    2.Weathers, K. C., Strayer, D. L. & Likens, G. E. Fundamentals of Ecosystem Science (Academic Press, 2012).
    Google Scholar 
    3.Payne, J. A. A summer carrion study of the baby pig Sus scrofa Linnaeus. Ecology 46(5), 592–602 (1965).
    Google Scholar 
    4.Anderson, G. S., Cervenka, V. J., Haglund, W. & Sorg, M. Insects associated with the body: Their use and analyses. Adv. Forens. Taphonomy 2, 1 (2002).
    Google Scholar 
    5.Smith, K. G. A manual of forensic entomology. (1986).6.Tomberlin, J. K., Benbow, M. E., Tarone, A. M. & Mohr, R. M. Basic research in evolution and ecology enhances forensics. Trends Ecol. Evol. 26(2), 53–55 (2011).PubMed 

    Google Scholar 
    7.Benbow, M. E., Tomberlin, J. K. & Tarone, A. M. Carrion Ecology, Evolution, and Their Applications (CRC Press, 2015).
    Google Scholar 
    8.Wilson, E. E., Mullen, L. M. & Holway, D. A. Life history plasticity magnifies the ecological effects of a social wasp invasion. Proc. Natl. Acad. Sci. 106(31), 12809–12813 (2009).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    9.Pechal, J. L. et al. Field documentation of unusual post-mortem arthropod activity on human remains. J. Med. Entomol. 52(1), 105–108 (2015).PubMed 

    Google Scholar 
    10.Campobasso, C. P., Marchetti, D., Introna, F. & Colonna, M. F. Postmortem artifacts made by ants and the effect of ant activity on decompositional rates. Am. J. Forens. Med. Pathol. 30(1), 84–87 (2009).
    Google Scholar 
    11.Eubanks, M. D., Lin, C. & Tarone, A. M. The role of ants in vertebrate carrion decomposition. Food Webs 18, e00109 (2019).
    Google Scholar 
    12.Cornaby, B. W. Carrion reduction by animals in contrasting tropical habitats. Biotropica 2, 51–63 (1974).
    Google Scholar 
    13.Andrade-Silva, J., Pereira, E. K. C., Silva, O., Delabie, J. H. C. & Rebelo, J. M. M. Ants (Hymenoptera: Formicidae) associated with pig carcasses in an urban area. Sociobiology 62(4), 527–532 (2015).
    Google Scholar 
    14.Chin, H. C. et al. Ants (Hymenoptera: Formicidae) associated with pig carcasses in Malaysia. Trop. Biomed. 26(1), 106–109 (2009).
    Google Scholar 
    15.Prado Castro, C., García, M. D., Palma, C. & Martínez-Ibáñez, M. D. First report on sarcosaprophagous Formicidae from Portugal (Insecta: Hymenoptera). Annales de la Société entomologique de France 50(1), 51–58 (2014).
    Google Scholar 
    16.Neto-Silva, A., Dinis-Oliveira, R. J. & Prado e Castro, C.,. Diversity of the Formicidae (Hymenoptera) carrion communities in Lisbon (Portugal): Preliminary approach as seasonal and geographic indicators. Forens. Sci. Res. 3(1), 65–73 (2018).
    Google Scholar 
    17.Payne, J. A., King, E. W. & Beinhart, G. Arthropod succession and decomposition of buried pigs. Nature 219(5159), 1180–1181 (1968).ADS 
    CAS 
    PubMed 

    Google Scholar 
    18.Meyer, F., Monroe, M. D., Williams, H. N. & Goddard, J. Solenopsis invicta x richteri (Hymenoptera: Formicidae) necrophagous behavior causes post-mortem lesions in pigs which serve as oviposition sites for Diptera. Forens. Sci. Int. Rep. 2, 100067 (2020).
    Google Scholar 
    19.De Jong, G. D., Meyer, F. & Goddard, J. Relative roles of blow flies (Diptera: Calliphoridae) and invasive fire ants (Hymenoptera: Formicidae: Solenopsis spp.) in carrion decomposition. J. Med. Entomol. 58(3), 1074–1082 (2021).PubMed 

    Google Scholar 
    20.Early, M. & Goff, M. L. Arthropod succession patterns in exposed carrion on the island of O’ahu, Hawaiian Islands, USA. J. Med. Entomol. 23(5), 520–531 (1986).CAS 
    PubMed 

    Google Scholar 
    21.Stoker, R. L., Grant, W. E. & Bradleigh Vinson, S. Solenopsis invicta (Hymenoptera: Formicidae) effect on invertebrate decomposers of carrion in central Texas. Environ. Entomol. 24(4), 817–822 (1995).
    Google Scholar 
    22.Ekanem, M. S. & Dike, M. C. Arthropod succession on pig carcasses in southeastern Nigeria. Papeis Avulsos de Zoologia 50, 561–570 (2010).
    Google Scholar 
    23.Lindgren, N. K., Bucheli, S. R., Archambeault, A. D. & Bytheway, J. A. Exclusion of forensically important flies due to burying behavior by the red imported fire ant (Solenopsis invicta) in southeast Texas. Forensic Sci. Int. 204(1–3), e1–e3 (2011).PubMed 

    Google Scholar 
    24.Pereira, E. K. C. et al. Solenopsis saevissima (Smith) (Hymenoptera: Formicidae) activity delays vertebrate carcass decomposition. Sociobiology 64(3), 369–372 (2017).
    Google Scholar 
    25.Dussutour, A. & Simpson, S. J. Description of a simple synthetic diet for studying nutritional responses in ants. Insectes Soc. 55(3), 329–333 (2008).
    Google Scholar 
    26.Csata, E. & Dussutour, A. Nutrient regulation in ants (Hymenoptera: Formicidae): A review. Myrmecol. News 29, 111–124 (2019).
    Google Scholar 
    27.Tschinkel, W. R. The Fire Ants (Belknap Press, 2013).
    Google Scholar 
    28.Paula, M. C. et al. Action of ants on vertebrate carcasses and blow flies (Calliphoridae). J. Med. Entomol. 53(6), 1283–1291 (2016).PubMed 

    Google Scholar 
    29.Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9(2), 378–400 (2017).
    Google Scholar 
    30.Hartig, F. DHARMa: residual diagnostics for hierarchical (multi-level/mixed) regression models. R package version 0.2 4, (2019).31.Fox, J. & Weisberg, S. An R Companion to Applied Regression (Sage publications, 2018).
    Google Scholar 
    32.Hothorn, T., Bretz, F. & Westfall, P. Simultaneous inference in general parametric models. Biometr. J. 50(3), 346–363 (2008).MathSciNet 
    MATH 

    Google Scholar 
    33.Porter, S. D., Bhatkar, A., Mulder, R., Vinson, B. S. & Clair, D. J. Distribution and density of polygyne fire ants (Hymenoptera: Formicidae) in Texas. J. Econ. Entomol. 84(3), 866–874 (1991).CAS 
    PubMed 

    Google Scholar 
    34.Cook, S. C., Eubanks, M. D., Gold, R. E. & Behmer, S. T. Colony-level macronutrient regulation in ants: mechanisms, hoarding and associated costs. Anim. Behav. 79(2), 429–437 (2010).
    Google Scholar 
    35.Smith, C. R. & Tschinkel, W. R. Ant fat extraction with a Soxhlet extractor. Cold Spring Harbor Protocols 7, 5243 (2009).
    Google Scholar 
    36.Wills, B. D. et al. Effect of carbohydrate supplementation on investment into offspring number, size, and condition in a social insect. PLoS ONE 10(7), e0132440 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    37.Bockoven, A. A., Wilder, S. M. & Eubanks, M. D. Intraspecific variation among social insect colonies: persistent regional and colony-level differences in fire ant foraging behavior. PLoS ONE 10(7), e0133868 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    38.Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting Linear Mixed-Effects Models Using lme4. J. Stat. Softw. 67(1), 1–48 (2015).
    Google Scholar 
    39.Gavilanez-Slone, J. & Porter, S. D. Colony growth of two species of Solenopsis fire ants (Hymenoptera: Formicidae) reared with crickets and beef liver. Florida Entomol. 96(4), 1482–1488 (2013).
    Google Scholar 
    40.Sorensen, A. A., Busch, T. M. & Vinson, S. B. Factors affecting brood cannibalism in laboratory colonies of the imported fire ant, Solenopsis invicta Buren (Hymenoptera: Formicidae). J. Kansas Entomol. Soc. 2, 140–150 (1983).
    Google Scholar 
    41.Williams, D. F., Vander Meer, R. K. & Lofgren, C. S. Diet-induced nonmelanized cuticle in workers of the imported fire ant Solenopsis invicta Buren. Arch. Insect Biochem. Physiol. 4(4), 251–259 (1987).CAS 

    Google Scholar 
    42.Porter, S. D. Effects of diet on the growth of laboratory fire ant colonies (Hymenoptera: Formicidae). J. Kansas Entomol. Soc. 2, 288–291 (1989).
    Google Scholar 
    43.Bhatkar, A. & Whitcomb, W. H. Artificial diet for rearing various species of ants. Florida Entomol. 2, 229–232 (1970).
    Google Scholar 
    44.Porter, S. D., Valles, S. M. & Gavilanez-Slone, J. M. Long-term efficacy of two cricket and two liver diets for rearing laboratory fire ant colonies (Hymenoptera: Formicidae: Solenopsis invicta). Florida Entomol. 98(3), 991–993 (2015).
    Google Scholar 
    45.Arganda, S. et al. Parsing the life-shortening effects of dietary protein: Effects of individual amino acids. Proc. R. Soc. B Biol. Sci. 284(1846), 20162052 (2017).
    Google Scholar 
    46.Tschinkel, W. R. Sociometry and sociogenesis of colonies of the fire ant Solenopsis Invicta during one annual cycle. Ecol. Monogr. 63(4), 425–457 (1993).
    Google Scholar 
    47.Deslippe, R. J. & Savolainen, R. Sex investment in a social insect: The proximate role of food. Ecology 76(2), 375–382 (1995).
    Google Scholar 
    48.Rosenfeld, C. S. & Roberts, R. M. Maternal diet and other factors affecting offspring sex ratio: A review. Biol. Reprod. 71(4), 1063–1070 (2004).CAS 
    PubMed 

    Google Scholar 
    49.Hasegawa, E. Sex allocation in the ant Camponotus (Colobopsis) nipponicus (Wheeler): II. The effect of resource availability on sex-ratio variability. Insectes Soc. 60(3), 329–335 (2013).
    Google Scholar 
    50.Knaden, M. & Graham, P. The sensory ecology of ant navigation: from natural environments to neural mechanisms. Annu. Rev. Entomol. 61, 63–76 (2016).CAS 
    PubMed 

    Google Scholar 
    51.Liu, W., Longnecker, M., Tarone, A. M. & Tomberlin, J. K. Responses of Lucilia sericata (Diptera: Calliphoridae) to compounds from microbial decomposition of larval resources. Anim. Behav. 115, 217–225 (2016).
    Google Scholar 
    52.Tomberlin, J. K. et al. Indole: An evolutionarily conserved influencer of behavior across kingdoms. BioEssays 39(2), 1600203 (2017).
    Google Scholar 
    53.Frederickx, C. et al. Volatile organic compounds released by blowfly larvae and pupae: New perspectives in forensic entomology. Forensic Sci. Int. 219(1–3), 215–220 (2012).CAS 
    PubMed 

    Google Scholar 
    54.Frederickx, C., Dekeirsschieter, J., Verheggen, F. J. & Haubruge, E. Host-habitat location by the parasitoid, Nasonia vitripennis Walker (Hymenoptera: Pteromalidae). J. Forensic Sci. 59(1), 242–249 (2014).CAS 
    PubMed 

    Google Scholar 
    55.Schettino, M. et al. Response of a predatory ant to volatiles emitted by aphid-and caterpillar-infested cucumber and potato plants. J. Chem. Ecol. 43(10), 1007–1022 (2017).CAS 
    PubMed 

    Google Scholar 
    56.Sawyer, S. J., Rusch, T. W., Tarone, A. M. & Tomberlin, J. K. Wing buzzing as a potential antipredator defense against an invasive predator. Food Webs 27, e00192 (2021).
    Google Scholar 
    57.Wells, J. D. & Greenberg, B. Effect of the red imported fire ant (Hymenoptera: Formicidae) and carcass type on the daily occurrence of postfeeding carrion-fly larvae (Diptera: Calliphoridae, Sarcophagidae). J. Med. Entomol. 31(1), 171–174 (1994).CAS 
    PubMed 

    Google Scholar  More

  • in

    From under the ice

    Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
    the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
    Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
    and JavaScript. More

  • in

    Resilience of countries to COVID-19 correlated with trust

    Up to 1 December 2020, 156 countries had exhibited at least one peak and then decay of cases/capita (of which 36 had experienced a second peak and decay), 151 countries had exhibited at least one peak and then decay of deaths/capita (of which 32 had experienced a second peak and decay), and 93 countries had sufficient testing data to determine at least one peak and then decay of cases/tests (of which 23 had experienced a second peak and decay). Time-series for all countries and the three metrics are shown in Supplementary Fig. 1. For resilience, having filtered cases of reasonably exponential decay for further analysis (r2 ≥ 0.8) and included multiple instances of well-fitted recovery occurring in one country in the dataset, we obtain n = 177 decays for cases/capita, n = 159 for deaths/capita, n = 105 for cases/tests. In a few countries a minimum had not yet been reached by 1 December 2020, so the reduction dataset is smaller (cases/capita n = 165, deaths/capita n = 150, cases/tests n = 101).Comparable resilience and reduction of cases and deathsThe relative measures of resilience (rate of decay) and (proportional) reduction of cases should be more reliably estimated than absolute case numbers but could still be biased by variations in testing intensity across time and space. Encouragingly, we find across countries and waves, resilience of cases/capita and cases/tests are strongly positively rank correlated (n = 100, (rho) =0.86, p  More

  • in

    Network traits predict ecological strategies in fungi

    1.Fischer MS, Glass NL. Communicate and fuse: How filamentous fungi establish and maintain an interconnected mycelial network. Front Microbiol. 2019;10:619.2.Fricker MD, Heaton LLM, Jones NS, Boddy L. The mycelium as a network. Microbiol Spectr. 2017;5:335–67.3.Heaton LLM, Jones NS, Fricker MD. A mechanistic explanation of the transition to simple multicellularity in fungi. Nat Commun. 2020;11:2594.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    4.Kiss E, Hegedus B, Viragh M, Varga T, Merenyi Z, Koszo T, et al. Comparative genomics reveals the origin of fungal hyphae and multicellularity. Nat Commun. 2019;10:4080.PubMed 
    PubMed Central 

    Google Scholar 
    5.Nagy LG, Varga T, Csernetics Á, Virágh M. Fungi took a unique evolutionary route to multicellularity: Seven key challenges for fungal multicellular life. Fungal Biol Rev. 2020;34:151–69.
    Google Scholar 
    6.Naranjo-Ortiz MA, Gabaldon T. Fungal evolution: major ecological adaptations and evolutionary transitions. Biol Rev Camb Philos Soc. 2019;94:1443–76.PubMed 
    PubMed Central 

    Google Scholar 
    7.Stajich JE, Berbee ML, Blackwell M, Hibbett DS, James TY, Spatafora JW, et al. The fungi. Curr Biol. 2009;19:R840–845.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    8.Treseder KK, Lennon JT. Fungal traits that drive ecosystem dynamics on land. Microbiol Mol Biol Rev. 2015;79:243–62.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    9.Adler PB, Salguero-Gómez R, Compagnoni A, Hsu JS, Ray-Mukherjee J, Mbeau-Ache C, et al. Functional traits explain variation in plant life history strategies. Proc. Natl Acad Sci USA. 2014;111:740–5.CAS 
    PubMed 

    Google Scholar 
    10.Pérez-Harguindeguy N, Díaz S, Garnier E, Lavorel S, Poorter H, Jaureguiberry P, et al. New handbook for standardised measurement of plant functional traits worldwide. Aust J Bot. 2013;61:167.
    Google Scholar 
    11.Dawson SK, Boddy L, Halbwachs H, Bässler C, Andrew C, Crowther TW, et al. Handbook for the measurement of macrofungal functional traits: A start with basidiomycete wood fungi. Funct Ecol. 2018;33:372–87.
    Google Scholar 
    12.Aguilar-Trigueros CA, Hempel S, Powell JR, Anderson IC, Antonovics J, Bergmann J, et al. Branching out: Towards a trait-based understanding of fungal ecology. Fungal Biol Rev. 2015;29:34–41.
    Google Scholar 
    13.Pringle A, Taylor JW. The fitness of filamentous fungi. Trends Microbiol. 2002;10:474–81.CAS 
    PubMed 

    Google Scholar 
    14.Zanne AE, Abarenkov K, Afkhami ME, Aguilar-Trigueros CA, Bates S, Bhatnagar JM, et al. Fungal functional ecology: Bringing a trait-based approach to plant-associated fungi. Biol Rev. 2020;95:409–33.PubMed 

    Google Scholar 
    15.Boddy L. Saprotrophic cord-forming fungi: Meeting the challenge of heterogeneous environments. Mycologia. 1999;91:13–32.
    Google Scholar 
    16.Boddy L, Donnelly DP. Fractal geometry and microorganisms in the environment. Biophys Chem Fractal Struct Processes Environ Syst. 2008;11:239–72.17.Lehmann A, Zheng W, Soutschek K, Roy J, Yurkov AM, Rillig MC. Tradeoffs in hyphal traits determine mycelium architecture in saprobic fungi. Sci Rep. 2019;9:14152.PubMed 
    PubMed Central 

    Google Scholar 
    18.Serghi EU, Kokkoris V, Cornell C, Dettman J, Stefani F, Corradi N. Homo- and dikaryons of the arbuscular mycorrhizal fungus rhizophagus irregularis differ in life history strategy. Front Plant Sci. 2021;12:1544.
    Google Scholar 
    19.Held M, Edwards C, Nicolau DV. Probing the growth dynamics of Neurospora crassa with microfluidic structures. Fungal Biol. 2011;115:493–505.PubMed 

    Google Scholar 
    20.Aleklett K, Ohlsson P, Bengtsson M, Hammer EC. Fungal foraging behaviour and hyphal space exploration in micro-structured Soil Chips. ISME J. 2021;15:1782–1793.21.De Ligne L, Vidal-Diez de Ulzurrun G, Baetens JM, Van den Bulcke J, Van Acker J, De Baets B. Analysis of spatio-temporal fungal growth dynamics under different environmental conditions. IMA Fungus. 2019;10:7.PubMed 
    PubMed Central 

    Google Scholar 
    22.Dikec J, Olivier A, Bobee C, D’Angelo Y, Catellier R, David P, et al. Hyphal network whole field imaging allows for accurate estimation of anastomosis rates and branching dynamics of the filamentous fungus Podospora anserina. Sci Rep. 2020;10:3131.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    23.Du H, Lv P, Ayouz M, Besserer A, Perré P. Morphological characterization and quantification of the mycelial growth of the Brown-Rot fungus Postia placenta for modeling purposes. PLoS One. 2016;11:e0162469.PubMed 
    PubMed Central 

    Google Scholar 
    24.Vidal-Diez de Ulzurrun G, Baetens JM, Van den Bulcke J, Lopez-Molina C, De Windt I, De Baets B. Automated image-based analysis of spatio-temporal fungal dynamics. Fungal Genet Biol. 2015;84:12–25.CAS 
    PubMed 

    Google Scholar 
    25.Boddy L, Wood J, Redman E, Hynes J, Fricker MD. Fungal network responses to grazing. Fungal Genet Biol. 2010;47:522–30.PubMed 

    Google Scholar 
    26.Rotheray TD, Jones TH, Fricker MD, Boddy L. Grazing alters network architecture during interspecific mycelial interactions. Fungal Ecol. 2008;1:124–32.
    Google Scholar 
    27.Bebber DP, Hynes J, Darrah PR, Boddy L, Fricker MD. Biological solutions to transport network design. Proc Biol Sci/R Soc. 2007;274:2307–15.
    Google Scholar 
    28.Fricker MD, Akita D, Heaton LLM, Jones N, Obara B, Nakagaki T. Automated analysis of Physarumnetwork structure and dynamics. J Phys D: Appl Phys. 2017;50:254005.
    Google Scholar 
    29.Lee SH, Fricker MD, Porter MA. Mesoscale analyses of fungal networks as an approach for quantifying phenotypic traits. J Complex Netw. 2017;5:145–59.
    Google Scholar 
    30.Obara B, Grau V, Fricker MD. A bioimage informatics approach to automatically extract complex fungal networks. Bioinformatics. 2012;28:2374–81.CAS 
    PubMed 

    Google Scholar 
    31.Bebber DP, Tlalka M, Hynes J, Darrah PR, Ashford A, Watkinson SC et al. Fungi and the environment. Cambridge: Cambridge University Press; 2007. p. 1−21.32.Fricker MD, Lee JA, Bebber DP, Tlalka M, Hynes J, Darrah PR, et al. Imaging complex nutrient dynamics in mycelial networks. J. Microsc. 2008;231:317–31.CAS 
    PubMed 

    Google Scholar 
    33.Vidal-Diez de Ulzurrun G, Huang T-Y, Chang C-W, Lin H-C, Hsueh Y-P. Fungal feature tracker (FFT): A tool for quantitatively characterizing the morphology and growth of filamentous fungi. PLoS Comp Biol. 2019;15:e1007428.CAS 

    Google Scholar 
    34.Heaton LLM, López E, Maini PK, Fricker MD, Jones NS. Growth-induced mass flows in fungal networks. Proc R Soc B: Biol Sci. 2010;277:3265–74.
    Google Scholar 
    35.Heaton LLM, López E, Maini PK, Fricker MD, Jones NS. Advection, diffusion, and delivery over a network. Phys Rev E. 2012;86:021905.
    Google Scholar 
    36.Fricker MD, Boddy L, Nakagaki T, Bebber DP (2009). Adaptive biological networks. In: Gross T, Sayama H, editors. Adaptive networks: theory, models, and applications. Berlin: Springer; 2009. p. 51−70.37.Boddy L, Jones TH. Mycelial responses in heterogeneous environments: parallels with macroorganisms. Fungi Environ. 2007;25:112–58.
    Google Scholar 
    38.Crowther TW, Boddy L, Hefin Jones T. Functional and ecological consequences of saprotrophic fungus–grazer interactions. ISME J. 2012;6:1992–2001.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    39.Crowther TW, Jones TH, Boddy L. Interactions between saprotrophic basidiomycete mycelia and mycophagous soil fauna. Mycology. 2012;3:77–86.
    Google Scholar 
    40.Tordoff GM, Boddy L, Jones TH. Grazing by Folsomia candida (Collembola) differentially affects mycelial morphology of the cord-forming basidiomycetes Hypholoma fasciculare, Phanerochaete uelutina, and Resinicium bicolor. Mycol Res. 2006;110:335–45.PubMed 

    Google Scholar 
    41.Heaton L, Obara B, Grau V, Jones N, Nakagaki T, Boddy L, et al. Analysis of fungal networks. Fungal Biol Rev. 2012;26:12–29.
    Google Scholar 
    42.Barthelemy M. Morphogenesis of spatial networks. Cham, Switzerland: Springer International Publishing; 2018.43.Fricker MD, Bebber D, Boddy L. Chapter 1 Mycelial networks: structure and dynamics. In: Boddy L, Frankland JC, van West P, editors. British mycological society symposia series. London, UK, Academic Press; 2008. p. 3−18.44.Fricker M, Boddy L, Bebber D. Biology of the fungal cell. Berlin Heidelberg: Springer Verlag; 2007. p. 309−30.45.Fricker MD, Lee JA, Boddy L, Bebber DP. The Interplay between structure and function in fungal networks. Topologica 2008;1:004.46.Moore D, Robson GD, Trinci AP. 21st century guidebook to fungi. Cambridge, UK: Cambridge University Press; 2011.47.Bielčik M, Aguilar-Trigueros CA, Lakovic M, Jeltsch F, Rillig MC. The role of active movement in fungal ecology and community assembly. Movement Ecol. 2019;7:36.
    Google Scholar 
    48.Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, et al. The worldwide leaf economics spectrum. Nature. 2004;428:821–7.CAS 

    Google Scholar 
    49.Hart Y, Sheftel H, Hausser J, Szekely P, Ben-Moshe NB, Korem Y, et al. Inferring biological tasks using Pareto analysis of high-dimensional data. Nat Methods. 2015;12:233–5.CAS 
    PubMed 

    Google Scholar 
    50.Shoval O, Sheftel H, Shinar G, Hart Y, Ramote O, Mayo A, et al. Evolutionary trade-offs, Pareto optimality, and the geometry of phenotype space. Science. 2012;336:1157–60.CAS 
    PubMed 

    Google Scholar 
    51.Andrade-Linares DR, Veresoglou SD, Rillig MC. Temperature priming and memory in soil filamentous fungi. Fungal Ecol. 2016;21:10–15.
    Google Scholar 
    52.A’Bear AD, Boddy L, Hefin Jones T. Impacts of elevated temperature on the growth and functioning of decomposer fungi are influenced by grazing collembola. Global Change Biol. 2012;18:1823–32.
    Google Scholar 
    53.Boddy L, Wells JM, Culshaw C, Donnelly DP. Fractal analysis in studies of mycelium in soil. Geoderma. 1999;88:301–28.
    Google Scholar 
    54.Pain C, Kriechbaumer V, Kittelmann M, Hawes C, Fricker M. Quantitative analysis of plant ER architecture and dynamics. Nat Commun. 2019;10:984.PubMed 
    PubMed Central 

    Google Scholar 
    55.Xu H, Blonder B, Jodra M, Malhi Y, Fricker M. Automated and accurate segmentation of leaf venation networks via deep learning. New Phytol. 2021;229:631–48.PubMed 

    Google Scholar 
    56.Wickham H, Bryan J. Read Excel Files. R package version 1.3.1. 2019. https://CRAN.R-project.org/package=readxl.57.Csardi G, Nepusz T. The igraph software package for complex network research. InterJ, Complex Syst. 2006;1695:1–9.
    Google Scholar 
    58.R Development Core Team. A language and environment for statistical computing. Vienna, Austria: R Foundation for statistical computing; 2017.59.Oksanen J, Guillaume Blanchet F, Kindt R, Legendre P, Minchin PR, O’Hara RB et al. vegan: Community ecology package. 2012. https://CRAN.R-project.org/package=vegan.60.A’Bear AD, Jones TH, Boddy L. Size matters: What have we learnt from microcosm studies of decomposer fungus–invertebrate interactions? Soil Biol Biochem. 2014;78:274–83.
    Google Scholar 
    61.Trinci APJ. A kinetic study of the growth of Aspergillus nidulans and other fungi. Microbiology. 1969;57:11–24.CAS 

    Google Scholar 
    62.Morin-Sardin S, Nodet P, Coton E, Jany J-L. Mucor: A Janus-faced fungal genus with human health impact and industrial applications. Fungal Biol Rev. 2017;31:12–32.
    Google Scholar 
    63.Grigoriev IV, Nikitin R, Haridas S, Kuo A, Ohm R, Otillar R, et al. MycoCosm portal: gearing up for 1000 fungal genomes. Nucleic Acids Res. 2014;42:D699–704.CAS 
    PubMed 

    Google Scholar 
    64.Naranjo-Ortiz MA, Gabaldon T. Fungal evolution: diversity, taxonomy, and phylogeny of the Fungi. Biol Rev Camb Philos Soc. 2019;94:2101–37.PubMed 
    PubMed Central 

    Google Scholar 
    65.Domsch K, Gams W, Anderson T-H. Compendium of soil fungi. 2nd ed. Eching: IHW-Verlag; 2007.66.Thomma BP. Alternaria spp.: from general saprophyte to specific parasite. Mol Plant Pathol. 2003;4:225–36.CAS 
    PubMed 

    Google Scholar 
    67.Bacon C, Yates I. Endophytic root colonization by fusarium species: histology, plant interactions, and toxicity. In: Schulz BE, Boyle CC, Sieber T, editors. Microbial root endophytes. Berlin: Springer; 2006. p. 133−52.68.Nguyen TA, Le S, Lee M, Fan J-S, Yang D, Yan J, et al. Fungal wound healing through instantaneous protoplasmic gelation. Curr Biol. 2021;31:271–82. e275CAS 
    PubMed 

    Google Scholar 
    69.Scheu S, Simmerling F. Growth and reproduction of fungal feeding Collembola as affected by fungal species, melanin, and mixed diets. Oecologia. 2004;139:347–53.PubMed 

    Google Scholar 
    70.Rayner ADM, Boddy L. Fungal decomposition of wood. Its biology and ecology. Chichester, Sussex: John Wiley & Sons Ltd.; 1988.71.Connolly JH, Shortle WC, Jellison J. Translocation and incorporation of strontium carbonate derived strontium into calcium oxalate crystals by the wood decay fungus Resinicium bicolor. Can J Botany. 1999;77:179–87.CAS 

    Google Scholar 
    72.A’Bear AD, Jones TH, Boddy L. Potential impacts of climate change on interactions among saprotrophic cord-forming fungal mycelia and grazing soil invertebrates. Fungal Ecol. 2014;10:34–43.
    Google Scholar 
    73.Fukasawa Y, Savoury M, Boddy L. Ecological memory and relocation decisions in fungal mycelial networks: responses to quantity and location of new resources. ISME J. 2020;14:380–8.PubMed 

    Google Scholar 
    74.Crowther TW, Maynard DS, Crowther TR, Peccia J, Smith JR, Bradford MA. Untangling the fungal niche: the trait-based approach. Front Microbiol. 2014;5:579. More

  • in

    Soils and sediments host Thermoplasmata archaea encoding novel copper membrane monooxygenases (CuMMOs)

    Divergent CuMMOs identified in MAGs recovered from soil and sediment ecosystemsIn previous work we identified putative divergent amoA/pmoA homologues in 7 Thermoplasmatota genomes recovered from Mediterranean grassland soil [25]. This was intriguing, given that amo/pmo homologues had not been previously observed in archaea outside of the Nitrososphaerales. Here we searched for additional genomes encoding related (divergent) amo/pmo’s using a series of readily available, and custom built, hidden markov models (HMMs) across all archaeal genomes in the Genome Taxonomy Database (GTDB), and in all archaeal MAGs in our unpublished datasets from ongoing studies (Supplementary Fig. 1 and Supplementary Data 1). We found additional amoA/pmoA genes in genomes recovered from soils at the South Meadow and Rivendell sites of the Angelo Coast Range Reserve (CA) [25, 26], the nearby Sagehorn site [26], a hillslope of the East River watershed (CO) [27], and in sediments from the Rifle aquifer (CO) [28] and the deep ocean [29]. In total we identified 201 archaeal MAGs taxonomically placed using phylogenetically informative single copy marker genes outside of Nitrososphaerales containing divergent amo/pmo proteins (Supplementary Table 1 and Supplementary Data 1). Genome de-replication resulted in 34 species-level genome clusters, 20 of which encoded an amo/pmo homologue (Supplementary Table 2). Of these genomes, 11 are species not previously available in public databases. In all cases where assembled sequences were of sufficient length, the amoA/pmoA, B, and C protein coding genes were found co-located with each other and with a hypothetical protein here called amoX/pmoX in the order C-A-X-B (Fig. 1A, Supplementary Table 2, and Supplementary Fig. 2). The mean sequence identity of the novel amoA/pmoA, B, and C proteins to known bacterial sequences were 16.7, 8.0, and 14.2% and 13.8, 9.5, and 20.8% to known archaeal sequences. This level of divergent amino acid identity is typical for CuMMOs, as known bacterial and known archaeal amoA/pmoA, B, and C proteins share mean identities of 16.1, 9.7, and 16.5% respectively. As might be expected considering the large sequence divergence between the recovered sequences and known amo/pmo proteins, we found that no pair of typical primers used for bacterial and archaeal amoA/pmoA environmental surveys [30] matched any novel amoA/pmoA gene with More

  • in

    Emergence of methicillin resistance predates the clinical use of antibiotics

    1.Davies, J. & Davies, D. Origins and evolution of antibiotic resistance. Microbiol. Mol. Biol. Rev. 74, 417–433 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    2.European Centre for Disease Prevention and Control, European Medicines Agencies. The Bacterial Challenge: Time to React. A Call to Narrow the Gap Between Multidrug-Resistant Bacteria in the EU and the Development of New Antibacterial Agents https://ecdc.europa.eu/sites/portal/files/media/en/publications/Publications/0909_TER_The_Bacterial_Challenge_Time_to_React.pdf (2009).3.Jevons, M. P. “Celbenin”—resistant Staphylococci. Br. Med. J. 1, 124–125 (1961).PubMed Central 

    Google Scholar 
    4.Harkins, C. P. et al. Methicillin-resistant Staphylococcus aureus emerged long before the introduction of methicillin into clinical practice. Genome Biol. 18, 130 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    5.Chambers, H. F. & DeLeo, F. R. Waves of resistance: Staphylococcus aureus in the antibiotic era. Nat. Rev. Microbiol. 7, 629–641 (2009).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    6.Price, L. B. et al. Staphylococcus aureus CC398: host adaptation and emergence of methicillin resistance in livestock. mBio 3, e00305-11 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    7.Global Priority List of Antibiotic-Resistant Bacteria to Guide Research, Discovery, and Development of New Antibiotics http://www.who.int/medicines/publications/WHO-PPL-Short_Summary_25Feb-ET_NM_WHO.pdf?ua=1 (WHO, 2017).8.Rasmussen, S. L. et al. European hedgehogs (Erinaceus europaeus) as a natural reservoir of methicillin-resistant Staphylococcus aureus carrying mecC in Denmark. PLoS ONE 14, e0222031 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    9.Bengtsson, B. et al. High occurrence of mecC-MRSA in wild hedgehogs (Erinaceus europaeus) in Sweden. Vet. Microbiol. 207, 103–107 (2017).PubMed 

    Google Scholar 
    10.García-Álvarez, L. et al. Methicillin-resistant Staphylococcus aureus with a novel mecA homologue in human and bovine populations in the UK and Denmark: a descriptive study. Lancet Infect. Dis. 11, 595–603 (2011).PubMed 
    PubMed Central 

    Google Scholar 
    11.Paterson, G. K., Harrison, E. M. & Holmes, M. A. The emergence of mecC methicillin-resistant Staphylococcus aureus. Trends Microbiol. 22, 42–47 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    12.Marples, M. J. & Smith, J. M. B. The hedgehog as a source of human ringworm. Nature 188, 867–868 (1960).ADS 
    CAS 
    PubMed 

    Google Scholar 
    13.English, M. P., Evans, C. D., Hewitt, M. & Warin, R. P. “Hedgehog ringworm”. Br. Med. J. 1, 149–151 (1962).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    14.Smith, J. M. B. & Marples, M. J. A natural reservoir of penicillin-resistant strains of Staphylococcus aureus. Nature 201, 844 (1964).ADS 
    CAS 
    PubMed 

    Google Scholar 
    15.Smith, J. M. B. & Marples, M. J. Dermatophyte lesions in the hedgehog as a reservoir of penicillin-resistant staphylococci. J. Hyg. 63, 293–303 (1965).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    16.Smith, J. M. B. Staphylococcus aureus strains associated with the hedgehog Erinaceus europaeus. J. Hyg. Camb. 63, 293–303 (1965).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    17.Morris, P. & English, M. P. Trichophyton mentagrophytes var. erinacei in British hedgehogs. Sabouraudia 7, 122–128 (1969).CAS 
    PubMed 

    Google Scholar 
    18.Le Barzic, C. et al. Detection and control of dermatophytosis in wild European hedgehogs (Erinaceus europaeus) admitted to a French wildlife rehabilitation centre. J. Fungi 7, 74 (2021).
    Google Scholar 
    19.Dube, F., Söderlund, R., Salomonsson, M. L., Troell, K. & Börjesson, S. Benzylpenicillin-producing Trichophyton erinacei and methicillin resistant Staphylococcus aureus carrying the mecC gene on European hedgehogs: a pilot-study. BMC Microbiol. 21, 212 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    20.Hewitt, G. The genetic legacy of the Quaternary ice ages. Nature 405, 907–913 (2000).ADS 
    CAS 
    PubMed 

    Google Scholar 
    21.Brockie, R. E. Distribution and abundance of the hedgehog (Erinaceus europaeus) L. in New Zealand, 1869–1973. N. Z. J. Zool. 2, 445–462 (1975).
    Google Scholar 
    22.van den Berg, M. A. et al. Genome sequencing and analysis of the filamentous fungus Penicillium chrysogenum. Nat. Biotechnol. 26, 1161–1168 (2008).CAS 
    PubMed 

    Google Scholar 
    23.Ullán, R. V., Campoy, S., Casqueiro, J., Fernández, F. J. & Martín, J. F. Deacetylcephalosporin C production in Penicillium chrysogenum by expression of the isopenicillin N epimerization, ring expansion, and acetylation genes. Chem. Biol. 14, 329–339 (2007).PubMed 

    Google Scholar 
    24.Kitano, K. et al. A novel penicillin produced by strains of the genus Paecilomyces. J. Ferment. Technol. 54, 705–711 (1976).CAS 

    Google Scholar 
    25.Petersen, A. et al. Epidemiology of methicillin-resistant Staphylococcus aureus carrying the novel mecC gene in Denmark corroborates a zoonotic reservoir with transmission to humans. Clin. Microbiol. Infect. 19, E16–E22 (2013).CAS 
    PubMed 

    Google Scholar 
    26.Richardson, E. J. et al. Gene exchange drives the ecological success of a multi-host bacterial pathogen. Nat. Ecol. Evol. 2, 1468–1478 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    27.Holden, M. T. G. et al. A genomic portrait of the emergence, evolution, and global spread of a methicillin-resistant Staphylococcus aureus pandemic. Genome Res. 23, 653–664 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    28.Strauß, L. et al. Origin, evolution, and global transmission of community-acquired Staphylococcus aureus ST8. Proc. Natl Acad. Sci. USA 114, E10596–E10604 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    29.Nübel, U. et al. Frequent emergence and limited geographic dispersal of methicillin-resistant Staphylococcus aureus. Proc. Natl Acad. Sci. USA 105, 14130–14135 (2008).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    30.Rasmussen, S. L., Nielsen, J. L., Jones, O. R., Berg, T. B. & Pertoldi, C. Genetic structure of the European hedgehog (Erinaceus europaeus) in Denmark. PLoS ONE 15, e0227205 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    31.Hansen, J. E. et al. LA-MRSA CC398 in dairy cattle and veal calf farms indicates spillover from pig production. Front. Microbiol. 10, 2733 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    32.Eriksson, J. Espinosa-Gongora, C., Stamphøj, I., Larsen, A. R. & Guardabassi, L. Carriage frequency, diversity and methicillin resistance of in Danish small ruminants. Vet. Microbiol. 163, 110–115 (2013).CAS 
    PubMed 

    Google Scholar 
    33.Danish Integrated Antimicrobial Resistance Monitoring and Research Programme. DANMAP 2019: Use of Antimicrobial Agents and Occurrence of Antimicrobial Resistance in Bacteria From Food Animals, Food, and Humans in DENMARK https://www.danmap.org/-/media/Sites/danmap/Downloads/Reports/2019/DANMAP_2019.ashx?la=da&hash=AA1939EB449203EF0684440AC1477FFCE2156BA5 (2020).34.Veterinary Medicines Directorate. UK Veterinary Antibiotic Resistance and Sales Surveillance Reporthttps://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/950126/UK-VARSS_2019_Report__2020-TPaccessible.pdf (2020).35.Harrison, E. M. et al. Whole genome sequencing identifies zoonotic transmission of MRSA isolates with the novel mecA homologue mecC. EMBO Mol. Med. 5, 509–515 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    36.Loncaric, I. et al. Characterization of mecC gene-carrying coagulase-negative Staphylococcus spp. isolated from various animals. Vet. Microbiol. 230, 138–144 (2019).CAS 
    PubMed 

    Google Scholar 
    37.Gómez, P. et al. Detection of MRSA ST3061-t843-mecC and ST398-t011-mecA in white stork nestlings exposed to human residues. J. Antimicrob. Chemother. 71, 53–57 (2016).PubMed 

    Google Scholar 
    38.Kim, C. et al. Properties of a novel PBP2A protein homolog from Staphylococcus aureus strain LGA251 and its contribution to the β-lactam-resistant phenotype. J. Biol. Chem. 287, 36854–36863 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    39.Tahlan, K. & Jensen, S. E. Origins of the β-lactam rings in natural products. J. Antibiot. 66, 401–419 (2013).CAS 

    Google Scholar 
    40.Pantůček, R. et al. Staphylococcus edaphicus sp. nov. isolated in Antarctica harbors the mecC gene and genomic islands with a suspected role in adaptation to extreme environment. Appl. Environ. Microbiol. 84, e01746-17 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    41.D’Costa, V. M., et al. Antibiotic resistance is ancient. Nature 477, 457–461 (2011).ADS 
    PubMed 

    Google Scholar 
    42.Allen, H. K., Moe, L. A., Rodbumrer, J., Gaarder, A. & Handelsman, J. Functional metagenomics reveals diverse beta-lactamases in a remote Alaskan soil. ISME J. 3, 243–251 (2009).CAS 

    Google Scholar 
    43.Forsberg, K. J. et al. The shared antibiotic resistome of soil bacteria and human pathogens. Science 337, 1107–1111 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    44.Forsberg, K. J. et al. Bacterial phylogeny structures soil resistomes across habitats. Nature 509, 612–616 (2014).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    45.Coll, F. et al. Definition of a genetic relatedness cutoff to exclude recent transmission of meticillin-resistant Staphylococcus aureus: a genomic epidemiology analysis. Lancet Microbe 1, e328–e335 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    46.Bankevich, A. et al. SPAdes: a new genome assembly algorithm and its application to single-cell sequencing. J. Comput. Biol. 19, 455–477 (2012).MathSciNet 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    47.Enright, M. C., Day, N. P., Davies, C. E., Peacock, S. J., Spratt, B. G. Multilocus sequence typing for characterization of methicillin-resistant and methicillin-susceptible clones of Staphylococcus aureus. J. Clin. Microbiol. 38, 1008–1015 (2000).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    48.Van Wamel, W. J., Rooijakkers, S. H., Ruyken, M. van Kessel, K. P. & Strijp, J. A. The innate immune modulators staphylococcal complement inhibitor and chemotaxis inhibitory protein of Staphylococcus aureus are located on beta-hemolysin-converting bacteriophages. J. Bacteriol. 188, 1310–1315 (2006).PubMed 
    PubMed Central 

    Google Scholar 
    49.Viana, D. et al. Adaptation of Staphylococcus aureus to ruminant and equine hosts involved SaPI-carried variants of von Willebrand factor-binding protein. Mol. Microbiol. 77, 1583–1594 (2010).50.Rooijakkers, S. H. M. et al. Staphylococcal complement inhibitor: structure and active sites. J. Immunol. 179, 2989–2998 (2007).CAS 
    PubMed 

    Google Scholar 
    51.Arndt, D. et al. PHASTER: a better, faster version of the PHAST phage search tool. Nucleic Acids Res. 44, W16–W21 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    52.Bortolaia, V. et al. ResFinder 4.0 for predictions of phenotypes from genotypes. J. Antimicrob. Chemother. 75, 3491–3500 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    53.Clausen, P. T. L. C., Aarestrup, F. M. & Lund, O. Rapid and precise alignment of raw reads against redundant database with KMA. BMC Bioinform. 19, 397 (2018).
    Google Scholar 
    54.Sahl, J. W. et al. NASP: an accurate, rapid method for the identification of SNPs in WGS datasets that supports flexible input and output formats. Microb. Genom. 2, e000074 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    55.Li, H. & Durbin, R. Fast and accurate short read alignment with Burrow-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    56.McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    57.DePristo, M. A. et al. A framework for variation discovery and genotyping using next-generation sequencing data. Nat. Genet. 43, 491–498 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    58.Delcher, A. L., Phillippy, A., Carlton, J. & Salzberg, S. L. Fast algorithms for large-scale genome alignment and comparison. Nucleic Acids Res. 30, 2478–2483 (2002).PubMed 
    PubMed Central 

    Google Scholar 
    59.Kurz, S. et al. Versatile and open software for comparing large genomes. Genome Biol. 5, R12 (2004).
    Google Scholar 
    60.Guindon, S. & Gasquel, O. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst. Biol. 52, 696–704 (2003).PubMed 

    Google Scholar 
    61.Guindon, S. et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst. Biol. 59, 307–321 (2010).CAS 

    Google Scholar 
    62.Didelot, X. & Wilson, D. J. ClonalFrameML: efficient inference of recombination in whole bacterial genome. PLoS Comput. Biol. 11, e1004041 (2015).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    63.Didelot, X. et al. Bayesian inference of ancestral dates on bacterial phylogenetic trees. Nucleic Acids Res. 46, e134 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    64.Didelot, X., Siveroni, I. & Volz, E. M. Additive uncorrelated relaxed clock models for the dating of genomic epidemiology phylogenies. Mol. Biol. Evol. 38, 307–317 (2021).CAS 
    PubMed 

    Google Scholar 
    65.Plummer, M., Best, N., Cowles, K. & Vines, K. CODA: convergence diagnosis and output analysis for MCMC. R News 6, 7–11 (2006).
    Google Scholar 
    66.Volz, E. M. & Frost, S. D. Scalable relaxed clock phylogenetic dating. Virus Evol. 3, vex025 (2017).
    Google Scholar 
    67.Wang, M. et al. Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking. Nat. Biotechnol. 34, 828–837 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    68.Adusumilli, R. & Mallick, P. Data conversion with ProteoWizard msConvert. Methods Mol. Biol. 1550, 339–368 (2017).CAS 
    PubMed 

    Google Scholar  More