More stories

  • in

    Water availability, bedrock, disturbance by herbivores, and climate determine plant diversity in South-African savanna

    1.Gaston, K. J., Jackson, S. F., CantĂș-Salazar, L. & Cruz-Piñón, G. The ecological performance of protected areas. Annu. Rev. Ecol. Evol. Syst. 39, 93–113 (2008).
    Google Scholar 
    2.Staver, A. C., Abraham, J. O., Hempson, G. P., Karp, A. T. & Faith, J. T. The past, present, and future of herbivore impacts on savanna vegetation. J. Ecol. 109, 2804–2822 (2021).
    Google Scholar 
    3.Bond, W. J. Keystone species. In Biodiversity and Ecosystem Function (eds Schulze, E. D. & Mooney, H. A.) 237–253 (Springer, 1994).
    Google Scholar 
    4.Cole, M. M. The influence of soils, geomorphology and geology on the distribution of plant communities in savanna ecosystems. In Ecology of Tropical Savannas (eds Huntley, B. J. & Walker, B. H.) 145–174 (Springer, 1982).
    Google Scholar 
    5.Huntley, B. J. & Walker, B. H. (eds) Ecology of Tropical Savannas Vol. 42 (Springer, 1982).
    Google Scholar 
    6.Frost, P. et al. Responses of Savannas to Stress and Disturbance: A Proposal for a Collaborative Programme of Research (Biology International 10, 1985).
    Google Scholar 
    7.Medina, E. & Silva, J. F. Savannas of northern South America: A steady state regulated by water–ire interactions on a background of low nutrient availability. J. Biogeogr. 17, 403–413 (1990).
    Google Scholar 
    8.Fensham, R. J., Fairfax, R. J. & Archer, S. R. Rainfall, land use and woody vegetation cover change in semi-arid Australian savanna. J. Ecol. 93, 596–606 (2005).
    Google Scholar 
    9.Mucina, L. & Rutherford, M. C. The Vegetation of South Africa, Lesotho and Swaziland (South African National Biodiversity Institute, 2006).
    Google Scholar 
    10.Staver, A. C., Botha, J. & Hedin, L. Soils and fire jointly determine vegetation structure in an African savanna. New Phytol. 216, 1151–1160 (2017).CAS 
    PubMed 

    Google Scholar 
    11.Jakubka, D. et al. Effects of climate, habitat and land use on the cover and diversity of the savanna herbaceous layer in Burkina-Faso, West Africa. Folia Geobot. 52, 129–142 (2017).
    Google Scholar 
    12.Bond, W. J. Open Ecosystems: Ecology and Evolution Beyond the Forest Edge (Oxford University Press, 2019).
    Google Scholar 
    13.O’Connor, T. G. Composition and population responses of an African savanna grassland to rainfall and grazing. J. Appl. Ecol. 31, 155–171 (1994).
    Google Scholar 
    14.Walker, B. & Langridge, J. Predicting savanna vegetation structure on the basis of plant available moisture (PAM) and plant available nutrients (PAN): A case study from Australia. J. Biogeogr. 24, 813–825 (1997).
    Google Scholar 
    15.Sankaran, M. et al. Determinants of woody cover in African savannas. Nature 438, 846–849 (2005).CAS 
    ADS 
    PubMed 

    Google Scholar 
    16.Bucini, G. & Hanan, N. P. A continental-scale analysis of tree cover in African savannas. Glob. Ecol. Biogeogr. 16, 593–605 (2007).
    Google Scholar 
    17.Venter, F. J., Scholes, R. J. & Eckhardt, H. C. The abiotic template and its associated vegetation pattern. In The Kruger Experience: Ecology and Management of Savanna Heterogeneity (eds du Toit, J. T. et al.) 83–129 (Island Press, Washington, D.C., 2003).18.Valeix, M. et al. Vegetation structure and ungulate abundance over a period of increasing elephant abundance in Hwange National Park, Zimbabwe. J. Trop. Ecol. 23, 87–93 (2007).
    Google Scholar 
    19.Asner, G. P. et al. Large-scale impacts of herbivores on the structural diversity of African savannas. Proc. Natl Acad. Sci. USA 106, 4947–4952 (2009).CAS 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    20.Archibald, S. & Hempson, G. P. Competing consumers: Contrasting the patterns and impacts of fire and mammalian herbivory in Africa. Philos. Trans. R. Soc. B 371, 20150309 (2016).
    Google Scholar 
    21.Archibald, S., Bond, W. J., Stock, W. D. & Fairbanks, D. H. K. Shaping the landscape: Fire–grazer interactions in an African savanna. Ecol. Appl. 15, 96–109 (2005).
    Google Scholar 
    22.Staver, A. C. & Bond, W. J. Is there a ‘browse trap’? Dynamics of herbivore impacts on trees and grasses in an African savanna. J. Ecol. 102, 595–602 (2014).
    Google Scholar 
    23.Jeltsch, F., Weber, G. E. & Grimm, V. Ecological buffering mechanisms in savannas: A unifying theory of long-term tree-grass coexistence. Plant Ecol. 105, 161–171 (2000).
    Google Scholar 
    24.February, E. C., Higgins, S. I., Bond, W. J. & Swemmer, L. Influence of competition and rainfall manipulation on the growth responses of savanna trees and grasses. Ecology 94, 1155–1164 (2013).PubMed 

    Google Scholar 
    25.Savadogo, P., Tiveau, D., Sawadogo, L. & Tigabu, M. Herbaceous species responses to long-term effects of prescribed fire, grazing and selective tree cutting in the savanna-woodlands of West Africa. Perspect. Plant Ecol. Evol. Syst. 10, 179–195 (2008).
    Google Scholar 
    26.Smith, M. D. et al. Long-term effects of fire frequency and season on herbaceous vegetation in savannas of the Kruger National Park, South Africa. J. Plant Ecol. 6, 71–83 (2013).
    Google Scholar 
    27.Thrash, I. Impact of water provision on herbaceous vegetation in Kruger National Park, South Africa. J. Arid Environ. 38, 437–450 (1998).ADS 

    Google Scholar 
    28.Staver, A. C., Bond, W. J., Stock, W. D., van Rensburg, S. J. & Waldram, M. S. Browsing and fire interact to suppress tree density in an African savanna. Ecol. Appl. 19, 1909–1919 (2009).PubMed 

    Google Scholar 
    29.Smit, I. P. J. & Ferreira, S. M. Management intervention affects river-bound spatial dynamics of elephants. Biol. Conserv. 143, 2172–2181 (2010).
    Google Scholar 
    30.Loarie, S. R., van Aarde, R. J. & Pimm, S. L. Elephant seasonal vegetation preferences across dry and wet savannas. Biol. Conserv. 142, 3099–3107 (2009).
    Google Scholar 
    31.Young, K. D., Ferreira, S. M. & Van Aarde, R. J. Elephant spatial use in wet and dry savannas of southern Africa. J. Zool. 278, 189–205 (2009).
    Google Scholar 
    32.Codron, J. et al. Elephant (Loxodonta africana) diets in Kruger National Park, South Africa: spatial and landscape differences. J. Mammal. 87, 27–34 (2006).
    Google Scholar 
    33.Timberlake, J. Colophospermum mopane: Annotated Bibliography and Review (Zimbabwe Bulletin of Forestry Research No. 11, 1995).
    Google Scholar 
    34.Pyơek, P. et al. Into the great wide open: Do alien plants spread from rivers to dry savanna in the Kruger National Park?. NeoBiota 60, 61–77 (2020).
    Google Scholar 
    35.Eckhardt, H. C., van Wilgen, B. W. & Biggs, H. C. Trends in woody vegetation cover in the Kruger National Park, South Africa, between 1940 and 1998. Afr. J. Ecol. 38, 108–115 (2000).
    Google Scholar 
    36.Groen, T. A. Spatial Matters: How Spatial Patterns and Processes Affect Savanna Dynamics. PhD Thesis, Wageningen University, The Netherlands (2007).37.MacFadyen, S., Hui, C., Verburg, P. H. & Van Teeffelen, A. J. A. Quantifying spatiotemporal drivers of environmental heterogeneity in Kruger National Park, South Africa. Landsc. Ecol. 31, 2013–2029 (2016).
    Google Scholar 
    38.Munyati, C. & Ratshibvumo, T. Differentiating geological fertility derived vegetation zones in Kruger National Park, SouthAfrica, using Landsat and MODIS imagery. J. Nat. Conserv. 18, 169–179 (2010).
    Google Scholar 
    39.Colgan, M. S., Asner, G. P., Levick, S. R., Martin, R. E. & Chadwick, O. A. Topo-edaphic controls over woody plant biomass in South African savannas. Biogeosciences 9, 1809–1821 (2012).ADS 

    Google Scholar 
    40.Walter, H. & Burnett, J. H. Ecology of Tropical and Subtropical Vegetation Vol. 539 (Oliver and Boyd, 1971).
    Google Scholar 
    41.Scholes, R. J., Bond, W. J. & Eckhardt, H. C. Vegetation dynamics in the Kruger ecosystem. In The Kruger Experience: Ecology and Management of Savanna Heterogeneity (eds du Toit, J. T. et al.) 243–262 (Island Press, 2003).
    Google Scholar 
    42.Knoop, W. T. & Walker, B. H. Interactions of woody and herbaceous vegetation in southern African savanna. J. Ecol. 73, 235–253 (1985).
    Google Scholar 
    43.Tilman, D. The resource-ratio hypothesis of plant succession. Am. Nat. 125, 827–852 (1985).
    Google Scholar 
    44.Scholes, R. J. & Archer, S. R. Tree–grass interactions in savannas. Annu. Rev. Ecol. Syst. 28, 517–544 (1997).
    Google Scholar 
    45.Muvengwi, J., Davies, A. B., Parrini, F. & Witkowski, E. T. F. Contrasting termite diversity and assemblages on granitic and basaltic African savanna landscapes. Insect. Soc. 65, 25–35 (2018).
    Google Scholar 
    46.Trollope, W. S. W., Potgieter, A. L. F. & Zambatis, N. Assessing veld condition in the Kruger National Park using key grass species. Koedoe 32, 67–93 (1989).
    Google Scholar 
    47.Ehleringer, J. R. & Monson, R. K. Evolutionary and ecological aspects of photosynthetic pathway variation. Annu. Rev. Ecol. Syst. 24, 411–439 (1993).
    Google Scholar 
    48.ChytrĂœ, M., TichĂœ, L. & Roleček, J. Local and regional patterns of species richness in Central European vegetation types along the pH/calcium gradient. Folia Geobot. 38, 429–442 (2003).
    Google Scholar 
    49.Owen-Smith, N., Page, B., Teren, G. & Druce, D. J. Megabrowser impacts on woody vegetation in savannas. In Savanna Woody Plants and Large Herbivores (eds Scogings, P. F. & Sankaran, M.) 585–611 (Wiley, 2019).
    Google Scholar 
    50.Nasseri, N. A., McBrayer, L. D. & Schulte, B. A. The impact of tree modification by African elephant (Loxodonta africana) on herpetofaunal species richness in northern Tanzania. Afr. J. Ecol. 49, 133–140 (2010).
    Google Scholar 
    51.Asner, G. P. & Levick, S. R. Landscape-scale effects of herbivores on treefall in African savannas. Ecol. Lett. 15, 1211–1217 (2012).PubMed 

    Google Scholar 
    52.Haynes, G. Elephants (and extinct relatives) as earth-movers and ecosystem engineers. Geomorphology 157, 99–107 (2012).ADS 

    Google Scholar 
    53.Kruger, L. M., Coetzee, J. A. & Vickers, K. The Impacts of Elephants on Woodlands and Associated Biodiversity (Summary report to South African National Parks, Organization for Tropical Studies, 2007).54.Guy, P. R. The influence of elephants and fire on a Brachystegia julbernardia woodland in Zimbabwe. J. Trop. Ecol. 5, 215–226 (1989).
    Google Scholar 
    55.Laws, R. M., Parker, I. S. C. & Johnstone, R. C. B. Elephants and Their Habitats: The Ecology of Elephants in North Bunyoro, Uganda (Clarendon Press, 1975).
    Google Scholar 
    56.Thompson, P. J. The role of elephants, fire and other agents in the decline of Brachystegia woodlands. J. S. Afr. Wildl. Manag. Assoc. 5, 11–18 (1975).
    Google Scholar 
    57.Barnes, M. E. Effects of large herbivores and fire on the regeneration of Acacia erioloba woodlands in Chobe National Park, Botswana. Afr. J. Ecol. 39, 340–350 (2001).
    Google Scholar 
    58.Scogings, P. F., Johansson, T., HjĂ€ltĂ©n, J. & Kruger, J. Responses of woody vegetation to exclusion of large herbivores in semi-arid savannas. Austral Ecol. 37, 56–66 (2012).
    Google Scholar 
    59.Verweij, R. J. T., Higgins, S. I., Bond, W. J. & February, E. C. Water sourcing by trees in a mesic savanna: Responses to severing deep and shallow roots. Environ. Exp. Bot. 74, 229–236 (2011).
    Google Scholar 
    60.Smit, I. et al. Effects of fire on woody vegetation structure in African savanna. Ecol. Appl. 20, 1865–1875 (2010).PubMed 

    Google Scholar 
    61.MacFadyen, S., Hui, C., Verburg, P. H. & Van Teeffelen, A. J. A. Spatiotemporal distribution dynamics of elephants in response to density, rainfall, rivers and fire in Kruger National Park, South Africa. Divers. Distrib. 25, 880–894 (2019).
    Google Scholar 
    62.O’Connor, T. G., Goodman, P. S. & Clegg, B. A functional hypothesis of the threat of local extirpation of woody plant species by elephant in Africa. Biol. Conserv. 136, 329–345 (2007).
    Google Scholar 
    63.Didan, K. MOD13Q1 MODIS/Terra Vegetation Indices 16-Day L3 Global 250m SIN Grid V006. NASA EOSDIS Land Processes DAAC. Accessed 2021-06-08 from https://doi.org/10.5067/MODIS/MOD13Q1.006 (2015).64.Kreft, H. & Jetz, W. Global patterns and determinants of vascular plant diversity. Proc. Natl Acad. Sci. 104, 5925–5930 (2007).CAS 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    65.Bohdalková, E., Toszogyova, A., Ơímová, I. & Storch, D. Universality in biodiversity patterns: variation in species-temperature and species-productivity relationships reveals a prominent role of productivity in diversity gradients. Ecography 44, 1366–1378 (2021).
    Google Scholar 
    66.Knight, R. S., Crowe, T. M. & Siegfried, W. R. Distribution and species richness of trees in southern Africa. J. S. Afr. Bot. 48, 455–480 (1982).
    Google Scholar 
    67.Gaylard, A., Owen-Smith, N. & Redfern, J. Surface water availability: implications for heterogeneity and eco-system processes. In The Kruger Experience: Ecology and Management of Savanna Heterogeneity (eds du Toit, J. T. et al.) 171–188 (Island Press, 2003).
    Google Scholar 
    68.Venter, F. J. A Classification of Land for Management Planning in the Kruger National Park. PhD Thesis, University of South Africa (1990).69.du Toit, J. T. et al. (eds) The Kruger Experience: Ecology and Management of Savanna Heterogeneity (Island Press, 2003).
    Google Scholar 
    70.Smit, I. P. J., Smit, C. F., Govender, N., van der Linde, M. & MacFadyen, S. Rainfall, geology and landscape position generate large-scale spatiotemporal fire pattern heterogeneity in an African savanna. Ecography 36, 447–459 (2013).
    Google Scholar 
    71.Obermeijer, A. A. A preliminary list of plants found in the Kruger National Park. Ann. Transvaal Mus. 17, 185–227 (1937).
    Google Scholar 
    72.van der Schijff, H. P. ‘n Ekologiese Studie van die Flora van die Nasionale Krugerwildtuin. D.Sc. Thesis, Potchefstroom University (1957).73.van der Schijff, H. P. The affinities of the flora of the Kruger National Park. Kirkia 7, 109–120 (1968).
    Google Scholar 
    74.Coetzee, B. J. Phytosociology, Vegetation Structure and Landscapes of the Central District. Kruger National Park, South Africa. Dissertationes Botanicae, J. Cramer, Vaduz (1983).75.Gertenbach, W. P. D. Landscapes of the Kruger National Park. Koedoe 26, 9–121 (1983).
    Google Scholar 
    76.Siebert, F. & Eckhardt, H. C. The vegetation and floristics of the Nkhuhlu exclosures, Kruger National Park. Koedoe 50, 126–144 (2008).
    Google Scholar 
    77.Siebert, F., Eckhardt, H. C. & Siebert, S. J. The vegetation and floristics of the Letaba exclosures, Kruger National Park, South Africa. Koedoe 52, 1–12 (2010).
    Google Scholar 
    78.Wigley, B. J., Fritz, H., Coetsee, C. & Bond, W. J. Herbivores shape woody plant communities in the Kruger National Park: Lessons from three long-term exclosures. Koedoe 56, 1–12 (2014).
    Google Scholar 
    79.Enslin, B. W., Potgieter, A. L. F., Biggs, H. C. & Biggs, R. Long term effects of fire frequency and season on the woody vegetation dynamics of the Sclerocarya birrea/Acacia nigrescens savanna of the Kruger National Park. Koedoe 43, 27–37 (2000).
    Google Scholar 
    80.Brits, J., Van Rooyen, M. W. & Van Rooyen, N. Ecological impact of large herbivores on the woody vegetation at selected watering points on the eastern basaltic soils in the Kruger National Park. Afr. J. Ecol. 40, 53–60 (2002).
    Google Scholar 
    81.Todd, S. W. Gradients in vegetation cover, structure and species richness of Nama-Karoo shrublands in relation to distance from livestock watering points. J. Appl. Ecol. 43, 293–304 (2006).
    Google Scholar 
    82.Foxcroft, L. C., Henderson, L., Nichols, G. R. & Martin, B. W. A revised list of alien plants for the Kruger National Park. Koedoe 46, 21–44 (2003).
    Google Scholar 
    83.Foxcroft, L. C., Richardson, D. M. & Wilson, J. R. Ornamental plants as invasive aliens: Problems and solutions in Kruger National Park, South Africa. Environ. Manag. 41, 32–51 (2008).ADS 

    Google Scholar 
    84.Mueller-Dombois, D. & Ellenberg, H. Aims and Methods of Vegetation Ecology (Wiley, 1974).
    Google Scholar 
    85.van der Maarel, E. Transformation of cover-abundance values in phytosociology and its effects on community similarity. Vegetatio 38, 97–114 (1979).
    Google Scholar 
    86.Magurran, A. E. Ecological Diversity and Its Measurement (Croom Helm, 1988).
    Google Scholar 
    87.Pooley, E. Wildflowers of Kwazulu-Natal and the Eastern Region (Natal Flora Publications Trust, 1998).
    Google Scholar 
    88.Schmidt, E., Lötter, M. & McCleland, W. Trees and Shrubs of Mpumalanga and Kruger National Park (Jacana Media, 2002).
    Google Scholar 
    89.van der Walt, R. Wild Flowers of the Limpopo Valley (Retha van der Walt, 2009).
    Google Scholar 
    90.Oudtshoorn, F. V. Guide to Grasses of Southern Africa 3rd edn. (Briza Publications, 2018).
    Google Scholar 
    91.R Development Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, 2013).
    Google Scholar 
    92.Lenth, R. Emmeans: Estimated Marginal Means, aka Least-Square Means. R package version 1.2.1. https://CRAN.R-project.org/package=emmeans (2018).93.Lepƥ, J. & Ơmilauer, P. Multivariate Analysis of Ecological Data Using CANOCO 5 (Cambridge University Press, 2014).MATH 

    Google Scholar 
    94.Dray, S., Legendre, P. & Peres-Neto, P. R. Spatial modelling: A comprehensive framework 562 for principal coordinate analysis of neighbour matrices (PCNM). Ecol. Modell. 196, 483–563 (2006).
    Google Scholar 
    95.Ơmilauer, P. & Lepƥ, J. Multivariate Analysis of Ecological Data Using Canoco 5 2nd edn. (Cambridge University Press, 2014).MATH 

    Google Scholar  More

  • in

    The role of methanotrophy in the microbial carbon metabolism of temperate lakes

    1.Bastviken, D. Methane. in Encyclopedia of Inland Waters (ed. Likens, G. E.) 783–805 (Elsevier, 2009). https://doi.org/10.1016/B978-012370626-3.00117-42.Hanson, R. S. & Hanson, T. E. Methanotrophic bacteria. Microbiol. Rev. 60, 439–471 (1996).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    3.Thottathil, S. D., Reis, P. C. J., del Giorgio, P. A. & Prairie, Y. T. The extent and regulation of summer methane oxidation in Northern Lakes. J. Geophys. Res. Biogeosciences 123, 3216–3230 (2018).CAS 
    ADS 

    Google Scholar 
    4.Kankaala, P., Taipale, S., NykĂ€nen, H. & Jones, R. I. Oxidation, efflux, and isotopic fractionation of methane during autumnal turnover in a polyhumic, boreal lake. J. Geophys. Res. Biogeosciences 112, 1–7 (2007).
    Google Scholar 
    5.Kankaala, P., Huotari, J., Peltomaa, E., Saloranta, T. & Ojala, A. Methanotrophic activity in relation to methane efflux and total heterotrophic bacterial production in a stratified, humic, boreal lake. Limnol. Oceanogr. 51, 1195–1204 (2006).CAS 
    ADS 

    Google Scholar 
    6.Bastviken, D., Ejlertsson, J., Sundh, I. & Tranvik, L. Methane as a source of carbon and energy for lake pelagic food webs. Ecology 84, 969–981 (2003).
    Google Scholar 
    7.Kankaala, P., Lopez Bellido, J., Ojala, A., Tulonen, T. & Jones, R. I. Variable production by different pelagic energy mobilizers in Boreal Lakes. Ecosystems 16, 1152–1164 (2013).CAS 

    Google Scholar 
    8.Morana, C. et al. Methanotrophy within the water column of a large meromictic tropical lake (Lake Kivu, East Africa). Biogeosciences 12, 2077–2088 (2015).ADS 

    Google Scholar 
    9.Grey, J. The incredible lightness of being methane-fuelled: stable isotopes reveal alternative energy pathways in aquatic ecosystems and beyond. Front. Ecol. Evol. 4, 1–14 (2016).
    Google Scholar 
    10.Jones, R. I. & Grey, J. Biogenic methane in freshwater food webs. Freshw. Biol. 56, 213–229 (2011).CAS 

    Google Scholar 
    11.Kankaala, P., Taipale, S. & Grey, J. Experimental d13C evidence for a contribution of methane to pelagic food webs in lakes. Limnol. Oceanogr. 51, 2821–2827 (2006).CAS 
    ADS 

    Google Scholar 
    12.GuĂ©rin, F. & Abril, G. Significance of pelagic aerobic methane oxidation in the methane and carbon budget of a tropical reservoir. J. Geophys. Res. 112, 1–14 (2007).
    Google Scholar 
    13.Rasilo, T., Hutchins, R. H. S., Ruiz-González, C. & del Giorgio, P. A. Transport and transformation of soil-derived CO2, CH4 and DOC sustain CO2 supersaturation in small boreal streams. Sci. Total Environ. 579, 902–912 (2017).CAS 
    PubMed 
    ADS 

    Google Scholar 
    14.Soued, C. & Prairie, Y. T. The carbon footprint of a Malaysian tropical reservoir: measured versus modeled estimates highlight the underestimated key role of downstream processes. Biogeosciences 17, 515–227 (2020).CAS 
    ADS 

    Google Scholar 
    15.Del Giorgio, P. A. & Gasol, J. M. Physiological structure and single-cell activity in marine bacterioplankton. in Microbial Ecology of the Oceans: Second Edition (ed. Kirchman, D. L.) 243–298 (John Wiley & Sons, Inc, 2008). https://doi.org/10.1002/9780470281840.ch816.Reis, P. C. J., Ruiz-González, C., Soued, C., Crevecoeur, S. & Prairie, Y. T. Rapid shifts in methanotrophic bacterial communities mitigate methane emissions from a tropical hydropower reservoir and its downstream river. Sci. Total Environ. 748, 141374 (2020).CAS 
    PubMed 
    ADS 

    Google Scholar 
    17.Thottathil, S. D., Reis, P. C. J. & Prairie, Y. T. Methane oxidation kinetics in northern freshwater lakes. Biogeochemistry 143, 105–116 (2019).CAS 

    Google Scholar 
    18.Milucka, J. et al. Methane oxidation coupled to oxygenic photosynthesis in anoxic waters. ISME J. 9, 1991–2002 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    19.Zigah, P. K. et al. Methane oxidation pathways and associated methanotrophic communities in the water column of a tropical lake. Limnol. Oceanogr. 60, 553–572 (2015).ADS 

    Google Scholar 
    20.Mayr, M. J. et al. Growth and rapid succession of methanotrophs effectively limit methane release during lake overturn. Commun. Biol. 3, 1–9 (2020).
    Google Scholar 
    21.Bussmann, I., Rahalkar, M. & Schink, B. Cultivation of methanotrophic bacteria in opposing gradients of methane and oxygen. FEMS Microbiol. Ecol. 56, 331–344 (2006).CAS 
    PubMed 

    Google Scholar 
    22.Kankaala, P., Eller, G. & Jones, R. I. Could bacterivorous zooplankton affect lake pelagic methanotrophic activity? Fundam. Appl. Limnol. / Arch. f.ĂŒr. Hydrobiol. 169, 203–209 (2007).
    Google Scholar 
    23.Khmelenina, V. N. et al. Structural and functional features of methanotrophs from hypersaline and alkaline lakes. Microbiology 79, 472–482 (2010).CAS 

    Google Scholar 
    24.Westfall, C. S. & Levin, P. A. Bacterial cell size: multifactorial and multifaceted. Annu. Rev. Microbiol. 71, 499–517 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    25.Chien, A. C., Hill, N. S. & Levin, P. A. Cell size control in bacteria. Curr. Biol. 22, R340–R349 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    26.Velimirov, B. Nanobacteria, ultramicrobacteria and starvation forms: a search for the smallest metabolizing bacterium. Microbes Environ. 16, 67–77 (2001).
    Google Scholar 
    27.Reis, P. C. J., Thottathil, S. D., Ruiz-González, C. & Prairie, Y. T. Niche separation within aerobic methanotrophic bacteria across lakes and its link to methane oxidation rates. Environ. Microbiol. 22, 738–751 (2020).CAS 
    PubMed 

    Google Scholar 
    28.Garcia-Chaves, M. C., Cottrell, M. T., Kirchman, D. L., Ruiz-González, C. & del Giorgio, P. A. Single-cell activity of freshwater aerobic anoxygenic phototrophic bacteria and their contribution to biomass production. Isme J. 10, 1579–1588 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    29.JĂŒrgens, K. & Matz, C. Predation as a shaping force for the phenotypic and genotypic composition of planktonic bacteria. Antonie van Leeuwenhoek. Int. J. Gen. Mol. Microbiol. 81, 413–434 (2002).
    Google Scholar 
    30.Rautio, M. & Vincent, W. F. Benthic and pelagic food resources for–zooplankton in shallow high-latitude lakes and ponds. Freshw. Biol. 51, 1038–1052 (2006).CAS 

    Google Scholar 
    31.Rissanen, A. J. et al. Gammaproteobacterial methanotrophs dominate methanotrophy in aerobic and anaerobic layers of boreal lake waters. Aquat. Microb. Ecol. 81, 257–276 (2018).
    Google Scholar 
    32.Zimmermann, M. et al. Microbial methane oxidation efficiency and robustness during lake overturn. Limnol. Oceanogr. Lett. 6, 320–328 (2021).CAS 

    Google Scholar 
    33.Puri, A. W. et al. Genetic tools for the industrially promising methanotroph Methylomicrobium buryatense. Appl. Environ. Microbiol. 81, 1775–1781 (2015).PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    34.Strong, P. J., Kalyuzhnaya, M., Silverman, J. & Clarke, W. P. A methanotroph-based biorefinery: potential scenarios for generating multiple products from a single fermentation. Bioresour. Technol. 215, 314–323 (2016).CAS 
    PubMed 

    Google Scholar 
    35.Oswald, K. et al. Aerobic gammaproteobacterial methanotrophs mitigate methane emissions from oxic and anoxic lake waters. Limnol. Oceanogr. 61, S101–S118 (2016).
    Google Scholar 
    36.Smith, E. M. & Prairie, Y. T. Bacterial metabolism and growth efficiency in lakes: the importance of phosphorus availability. Limnol. Oceanogr. 49, 137–147 (2004).CAS 
    ADS 

    Google Scholar 
    37.Del Giorgio, P. A., Cole, J. J., Caraco, N. F. & Peters, R. H. Linking planktonic biomass and metabolism to net gas fluxes in northern temperate lakes. Ecology 80, 1422–1431 (1999).
    Google Scholar 
    38.Kellerman, A. M., Dittmar, T., Kothawala, D. N. & Tranvik, L. J. Chemodiversity of dissolved organic matter in lakes driven by climate and hydrology. Nat. Commun. 5, 3804 (2014).CAS 
    PubMed 
    ADS 

    Google Scholar 
    39.Sun, L., Perdue, E. M., Meyer, J. L. & Weis, J. Use of elemental composition to predict bioavailability of dissolved organic matter in a Georgia river. Limnol. Oceanogr. 42, 714–721 (1997).CAS 
    ADS 

    Google Scholar 
    40.Kellerman, A. M., Kothawala, D. N., Dittmar, T. & Tranvik, L. J. Persistence of dissolved organic matter in lakes related to its molecular characteristics. Nat. Geosci. 8, 454–457 (2015).CAS 
    ADS 

    Google Scholar 
    41.Guillemette, F. & del Giorgio, P. A. Reconstructing the various facets of dissolved organic carbon bioavailability in freshwater ecosystems. Limnol. Oceanogr. 56, 734–748 (2011).CAS 
    ADS 

    Google Scholar 
    42.Logue, J. B. et al. Experimental insights into the importance of aquatic bacterial community composition to the degradation of dissolved organic matter. ISME J. 10, 533–545 (2016).CAS 
    PubMed 

    Google Scholar 
    43.Salcher, M. M., Posch, T. & Pernthaler, J. In situ substrate preferences of abundant bacterioplankton populations in a prealpine freshwater lake. ISME J. 7, 896–907 (2013).CAS 
    PubMed 

    Google Scholar 
    44.Sobek, S., Tranvik, L. J., Prairie, Y., Kortelainen, P. & Cole, J. J. Patterns and regulation of dissolved organic carbon: an analysis of 7,500 widely distributed lakes. Limnol. Oceanogr. 52, 1208–1219 (2007).CAS 
    ADS 

    Google Scholar 
    45.Kalyuzhnaya, M. G. et al. Highly efficient methane biocatalysis revealed in a methanotrophic bacterium. Nat. Commun. 4, 2785 (2013).CAS 
    PubMed 
    ADS 

    Google Scholar 
    46.Oshkin, I. Y. et al. Methane-fed microbial microcosms show differential community dynamics and pinpoint taxa involved in communal response. ISME J. 9, 1119–1129 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    47.Chistoserdova, L. & Kalyuzhnaya, M. G. Current trends in methylotrophy. Trends Microbiol 26, 703–714 (2018).CAS 
    PubMed 

    Google Scholar 
    48.Martinez-Cruz, K. et al. Anaerobic oxidation of methane by aerobic methanotrophs in sub-Arctic lake sediments. Sci. Total Environ. 607–608, 23–31 (2017).PubMed 
    ADS 

    Google Scholar 
    49.Samad, M. S. & Bertilsson, S. Seasonal variation in abundance and diversity of bacterial methanotrophs in five temperate lakes. Front. Microbiol. 8, 1–12 (2017).
    Google Scholar 
    50.Ricão Canelhas, M., Denfeld, B. A., Weyhenmeyer, G. A., Bastviken, D. & Bertilsson, S. Methane oxidation at the water-ice interface of an ice-covered lake. Limnol. Oceanogr. 61, S78–S90 (2016).ADS 

    Google Scholar 
    51.Houser, J. N. Water color affects the stratification, surface temperature, heat content, and mean epilimnetic irradiance of small lakes. Can. J. Fish. Aquat. Sci. 63, 2447–2455 (2006).
    Google Scholar 
    52.Caplanne, S. & Laurion, I. Effect of chromophoric dissolved organic matter on epilimnetic stratification in lakes. Aquat. Sci. 70, 123–133 (2008).CAS 

    Google Scholar 
    53.Oswald, K. et al. Light-dependent aerobic methane oxidation reduces methane emissions from seasonally stratified lakes. PLoS ONE 10, e0132574 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    54.Savvichev, A. S. et al. Light-dependent methane oxidation is the major process of the methane cycle in the water column of the Bol’shie Khruslomeny Polar Lake. Microbiology 88, 370–374 (2019).CAS 

    Google Scholar 
    55.Baines, S. B. & Pace, M. L. The production of dissolved organic matter by phytoplankton and its importance to bacteria: patterns across marine and freshwater systems. Limnol. Oceanogr. 36, 1078–1090 (1991).ADS 

    Google Scholar 
    56.Cole, J. J., Likens, G. E. & Strayer, D. L. Photosynthetically produced dissolved organic carbon: an important carbon source for planktonic bacteria. Limnol. Oceanogr. 27, 1080–1090 (1982).CAS 
    ADS 

    Google Scholar 
    57.Dumestre, J. et al. Influence of light intensity on methanotrophic bacterial activity in Petit Saut reservoir, French Guiana. Appl. Environ. Microbiol. 65, 534–539 (1999).CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    58.Murase, J. & Sugimoto, A. Inhibitory effect of light on methane oxidation in the pelagic water column of a mesotrophic lake (Lake Biwa, Japan). Limnol. Oceanogr. 50, 1339–1343 (2005).CAS 
    ADS 

    Google Scholar 
    59.Moran, M. A. & Hodson, R. E. Bacterial production on humic and nonhumic components of dissolved organic carbon. Limnol. Oceanogr. 35, 1744–1756 (1990).CAS 
    ADS 

    Google Scholar 
    60.Azam, F. et al. The ecological role of water-column microbes in the sea. Mar. Ecol. Prog. Ser. 10, 257–263 (1983).ADS 

    Google Scholar 
    61.Roulet, N. & Moore, T. R. Browning the waters. Nature 444, 283–284 (2006).CAS 
    PubMed 
    ADS 

    Google Scholar 
    62.Weyhenmeyer, G. A., Prairie, Y. T. & Tranvik, L. J. Browning of boreal freshwaters coupled to carbon-iron interactions along the aquatic continuum. PLoS ONE 9, e88104 (2014).PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    63.O’Reilly, C. M. et al. Rapid and highly variable warming of lake surface waters around the globe. Geophys. Res. Lett. 42, 10773–10781 (2015).ADS 

    Google Scholar 
    64.Yamamoto, S., Alcauskas, J. B. & Crozier, T. E. Solubility of methane in distilled water and seawater. J. Chem. Eng. Data 21, 78–80 (1976).CAS 

    Google Scholar 
    65.Cantin, A., Beisner, B. E., Gunn, J. M., Prairie, Y. T. & Winter, J. G. Effects of thermocline deepening on lake plankton communities. Can. J. Fish. Aquat. Sci. 68, 260–276 (2011).
    Google Scholar 
    66.Smith, D. C. & Azam, F. A simple, economical method for measuring bacterial protein synthesis rates in seawater using 3H-leucine. Mar. Microb. Food Webs 6, 107–114 (1992).
    Google Scholar 
    67.Del Giorgio, P. A., Pace, M. L. & Fischer, D. Relationship of bacterial growth efficiency to spatial variation in bacterial activity in the Hudson River. Aquat. Microb. Ecol. 45, 55–67 (2006).
    Google Scholar 
    68.Eller, G., Stubner, S. & Frenzel, P. Group-specific 16S rRNA targeted probes for the detection of type I and type II methanotrophs by fluorescence in situ hybridisation. FEMS Microbiol. Lett. 198, 91–97 (2001).CAS 
    PubMed 

    Google Scholar 
    69.Zeder, M. ACME tool3. (2014).70.Callieri, C. et al. Bacteria, Archaea, and Crenarchaeota in the epilimnion and hypolimnion of a deep holo-oligomictic lake. Appl. Environ. Microbiol. 75, 7298–7300 (2009).CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    71.Lew, S. & GliƄska-Lewczuk, K. Environmental controls on the abundance of methanotrophs and methanogens in peat bog lakes. Sci. Total Environ. 645, 1201–1211 (2018).CAS 
    PubMed 
    ADS 

    Google Scholar 
    72.Fagerbakke, K. M., Heldal, M. & Norland, S. Content of carbon, nitrogen, oxygen, sulfur and phosphorus in native aquatic and cultured bacteria. Aquat. Microb. Ecol. 10, 15–27 (1996).
    Google Scholar 
    73.Read J. S. et al. Derivation of lake mixing and stratification indices from high-resolution lake buoy data. Environmental Modelling and Software. 26, 1325–1336 (2011).
    Google Scholar 
    74.R Core Team. R: a language and environment for statistical computing. (2019). https://www.R-project.org/.75.RStudio Team. RStudio: Integrated Development for R. RStudio, Inc., Boston, MAURL. (2018). http://www.rstudio.com/.76.Wickham, H., François, R., Henry, L. & MĂŒller, K. dplyr: A Grammar of Data Manipulation. R package version 0.8.3. (2019). https://cran.r-project.org/package=dplyr.77.Sievert, C. Interactive Web-Based Data Visualization with R, plotly, and shiny. Chapman and Hall/CRC Florida. (2020).78.Wickham, H. ggplot2: Elegant Graphics for Data Analysis. (Springer-Verlag, New York, 2016). https://ggplot2.tidyverse.org.79.Wilke, C.O. cowplot: Streamlined Plot Theme and Plot Annotations for ‘ggplot2’. R package version 1.0.0. (2019). https://CRAN.R-project.org/package=cowplot.80.Auguie, B. gridExtra: Miscellaneous Functions for ‘Grid’ Graphics. R package version 2.3. (2017). https://CRAN.R-project.org/package=gridExtra.81.Reis, P. C. J., Thottathil, S. D. & Prairie, Y. T. Dataset: the role of methanotrophy in the microbial carbon metabolism of temperate lakes. (1.0.0) [Data set]. Zenodo. (2021). https://doi.org/10.5281/zenodo.5737277. More

  • in

    Nutrient supply controls the linkage between species abundance and ecological interactions in marine bacterial communities

    1.Sogin, M. L. et al. Microbial diversity in the deep sea and the underexplored “rare biosphere”. P Natl Acad. Sci. USA 103, 12115–12120 (2006).CAS 
    ADS 

    Google Scholar 
    2.Pedros-Alio, C. The rare bacterial biosphere. Ann. Rev. Mar. Sci. 4, 449–466 (2012).PubMed 

    Google Scholar 
    3.Lynch, M. D. J. & Neufeld, J. D. Ecology and exploration of the rare biosphere. Nat. Rev. Microbiol. 13, 217–229 (2015).CAS 
    PubMed 

    Google Scholar 
    4.Campbell, B. J., Yu, L. Y., Heidelberg, J. F. & Kirchman, D. L. Activity of abundant and rare bacteria in a coastal ocean. P Natl Acad. Sci. USA 108, 12776–12781 (2011).CAS 
    ADS 

    Google Scholar 
    5.Gobet, A. et al. Diversity and dynamics of rare and of resident bacterial populations in coastal sands. Isme J. 6, 542–553 (2012).PubMed 

    Google Scholar 
    6.Wilhelm, L. et al. Rare but active taxa contribute to community dynamics of benthic biofilms in glacier-fed streams. Environ. Microbiol. 16, 2514–2524 (2014).CAS 
    PubMed 

    Google Scholar 
    7.Lawson, C. E. et al. Rare taxa have potential to make metabolic contributions in enhanced biological phosphorus removal ecosystems. Environ. Microbiol. 17, 4979–4993 (2015).CAS 
    PubMed 

    Google Scholar 
    8.Newton, R. J. & Shade, A. Lifestyles of rarity: understanding heterotrophic strategies to inform the ecology of the microbial rare biosphere. Aquat. Micro. Ecol. 78, 51–63 (2016).
    Google Scholar 
    9.Lauro, F. M. et al. The genomic basis of trophic strategy in marine bacteria. P Natl Acad. Sci. USA 106, 15527–15533 (2009).CAS 
    ADS 

    Google Scholar 
    10.Klappenbach, J. A., Dunbar, J. M. & Schmidt, T. M. RRNA operon copy number reflects ecological strategies of bacteria. Appl Environ. Micro. 66, 1328–1333 (2000).CAS 
    ADS 

    Google Scholar 
    11.Roller, B. R. K., Stoddard, S. F. & Schmidt, T. M. Exploiting rRNA operon copy number to investigate bacterial reproductive strategies. Nat. Microbiol. 1, 16160 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    12.Polz, M. F. & Cordero, O. X. Bacterial evolution: genomics of metabolic trade-offs. Nat. Microbiol. 1, 16181 (2016).CAS 
    PubMed 

    Google Scholar 
    13.Giovannoni, S. J. SAR11 bacteria: the most abundant plankton in the oceans. Ann. Rev. Mar. Sci. 9, 231–255 (2017).PubMed 

    Google Scholar 
    14.Elser, J. J. et al. Biological stoichiometry from genes to ecosystems. Ecol. Lett. 3, 540–550 (2000).
    Google Scholar 
    15.Hessen, D. O., Elser, J. J., Sterner, R. W. & Urabe, J. Ecological stoichiometry: an elementary approach using basic principles. Limnol. Oceanogr. 58, 2219–2236 (2013).CAS 
    ADS 

    Google Scholar 
    16.Acharya, K., Kyle, M. & Elser, J. J. Biological stoichiometry of Daphnia growth: an ecophysiological test of the growth rate hypothesis. Limnol. Oceanogr. 49, 656–665 (2004).CAS 
    ADS 

    Google Scholar 
    17.Hendrixson, H. A., Sterner, R. W. & Kay, A. D. Elemental stoichiometry of freshwater fishes in relation to phylogeny, allometry and ecology. J. Fish. Biol. 70, 121–140 (2007).
    Google Scholar 
    18.Matzek, V. & Vitousek, P. M. N: P stoichiometry and protein: RNA ratios in vascular plants: an evaluation of the growth-rate hypothesis. Ecol. Lett. 12, 765–771 (2009).PubMed 

    Google Scholar 
    19.Ghoul, M. & Mitri, S. The ecology and evolution of microbial competition. Trends Microbiol 24, 833–845 (2016).CAS 
    PubMed 

    Google Scholar 
    20.Laland, K., Matthews, B. & Feldman, M. W. An introduction to niche construction theory. Evol. Ecol. 30, 191–202 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    21.Ratzke, C., Barrere, J. & Gore, J. Strength of species interactions determines biodiversity and stability in microbial communities. Nat. Ecol. Evol. 4, 376–383 (2020).PubMed 

    Google Scholar 
    22.VětrovskĂœ, T. & Baldrian, P. The variability of the 16S rRNA gene in bacterial genomes and its consequences for bacterial community analyses. Plos ONE 8, e57923 (2013).PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    23.Molenaar, D., van Berlo, R., de Ridder, D. & Teusink, B. Shifts in growth strategies reflect tradeoffs in cellular economics. Mol. Syst. Biol. 5, 323–323 (2009).PubMed 
    PubMed Central 

    Google Scholar 
    24.Nemergut, D. R. et al. Decreases in average bacterial community rRNA operon copy number during succession. Isme J. 10, 1147–1156 (2016).CAS 
    PubMed 

    Google Scholar 
    25.Wu, L. W. et al. Microbial functional trait of rRNA operon copy numbers increases with organic levels in anaerobic digesters. Isme J. 11, 2874–2878 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    26.Wu, L. W. et al. Global diversity and biogeography of bacterial communities in wastewater treatment plants. Nat. Microbiol. 4, 2579–2579 (2019).PubMed 

    Google Scholar 
    27.Stoddard, S. F., Smith, B. J., Hein, R., Roller, B. R. K. & Schmidt, T. M. rrnDB: improved tools for interpreting rRNA gene abundance in bacteria and archaea and a new foundation for future development. Nucleic Acids Res. 43, D593–D598 (2015).CAS 
    PubMed 

    Google Scholar 
    28.Dai, T. et al. Dynamics of coastal bacterial community average ribosomal RNA operon copy number reflect its response and sensitivity to ammonium and phosphate. Environ. Pollut. 260, 113971 (2020).CAS 
    PubMed 

    Google Scholar 
    29.Zhou, J., Deng, Y., Luo, F., He, Z. & Yang, Y. Phylogenetic molecular ecological network of soil microbial communities in response to elevated CO2. Mbio 2, e00122–00111 (2011).PubMed 
    PubMed Central 

    Google Scholar 
    30.Vellend, M. Conceptual Synthesis in Community Ecology. Q Rev. Biol. 85, 183–206 (2010).PubMed 

    Google Scholar 
    31.Frey, E. Evolutionary game theory: Theoretical concepts and applications to microbial communities. Phys. A 389, 4265–4298 (2010).MathSciNet 
    CAS 
    MATH 

    Google Scholar 
    32.Boeuf, D. et al. Biological composition and microbial dynamics of sinking particulate organic matter at abyssal depths in the oligotrophic open ocean. P Natl Acad. Sci. USA 116, 11824 (2019).CAS 

    Google Scholar 
    33.Thompson, L. R. et al. A communal catalogue reveals Earth’s multiscale microbial diversity. Nature 551, 457–463 (2017).CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    34.Gralka, M., Szabo, R., Stocker, R. & Cordero, O. X. Trophic Interactions and the Drivers of Microbial Community Assembly. Curr. Biol. 30, R1176–R1188 (2020).CAS 
    PubMed 

    Google Scholar 
    35.Gorter, F. A., Manhart, M. & Ackermann, M. Understanding the evolution of interspecies interactions in microbial communities. Philos. Trans. R. Soc. Lond. B Biol. Sci. 375, 20190256 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    36.Gandhi, S. R., Korolev, K. S. & Gore, J. Cooperation mitigates diversity loss in a spatially expanding microbial population. P Natl Acad. Sci. USA 116, 23582–23587 (2019).CAS 

    Google Scholar 
    37.Calatayud, J. et al. Positive associations among rare species and their persistence in ecological assemblages. Nat. Ecol. Evol. 4, 40–45 (2020).PubMed 

    Google Scholar 
    38.Furman, O. et al. Stochasticity constrained by deterministic effects of diet and age drive rumen microbiome assembly dynamics. Nat. Commun. 11, 1904 (2020).CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    39.Tardy, V. et al. Stability of soil microbial structure and activity depends on microbial diversity. Env. Microbiol. Rep. 6, 173–183 (2014).CAS 

    Google Scholar 
    40.Coyte, K. Z., Schluter, J. & Foster, K. R. The ecology of the microbiome: networks, competition, and stability. Science 350, 663–666 (2015).CAS 
    PubMed 
    ADS 

    Google Scholar 
    41.Blanchet, F. G., Cazelles, K. & Gravel, D. Co-occurrence is not evidence of ecological interactions. Ecol. Lett. 23, 1050–1063 (2020).PubMed 

    Google Scholar 
    42.Blasche, S. et al. Metabolic cooperation and spatiotemporal niche partitioning in a kefir microbial community. Nat. Microbiol. 6, 196–208 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    43.Chatzinikolaou, E. et al. Spatio-temporal benthic biodiversity patterns and pollution pressure in three Mediterranean touristic ports. Sci. Total Environ. 624, 648–660 (2018).CAS 
    PubMed 
    ADS 

    Google Scholar 
    44.Filippini, G. et al. Sediment bacterial communities associated with environmental factors in Intermittently Closed and Open Lakes and Lagoons (ICOLLs). Sci. Total Environ. 693, 133462 (2019).CAS 
    PubMed 
    ADS 

    Google Scholar 
    45.Pesant, S. et al. Open science resources for the discovery and analysis of Tara Oceans data. Sci. Data 2, 150023 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    46.Huse, S. M. et al. Exploring microbial diversity and taxonomy using SSU rRNA hypervariable tag sequencing. Plos Genet. 4, e1000255 (2008).PubMed 
    PubMed Central 

    Google Scholar 
    47.Salas-Gonzålez, I. et al. Coordination between microbiota and root endodermis supports plant mineral nutrient homeostasis. Science 371, eabd0695 (2021).PubMed 

    Google Scholar 
    48.Caporaso, J. G. et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. P Natl Acad. Sci. USA 108, 4516 (2011).CAS 
    ADS 

    Google Scholar 
    49.Wear, E. K., Wilbanks, E. G., Nelson, C. E. & Carlson, C. A. Primer selection impacts specific population abundances but not community dynamics in a monthly time-series 16S rRNA gene amplicon analysis of coastal marine bacterioplankton. Environ. Microbiol. 20, 2709–2726 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    50.Edgar, R. C. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10, 996–998 (2013).CAS 
    PubMed 

    Google Scholar 
    51.Webb, C. O., Ackerly, D. D., McPeek, M. A. & Donoghue, M. J. Phylogenies and community ecology. Annu Rev. Ecol. Syst. 33, 475–505 (2002).
    Google Scholar 
    52.Wu, L. W. et al. Long-term successional dynamics of microbial association networks in anaerobic digestion processes. Water Res. 104, 1–10 (2016).PubMed 

    Google Scholar 
    53.Galand, P. E., Casamayor, E. O., Kirchman, D. L. & Lovejoy, C. Ecology of the rare microbial biosphere of the Arctic Ocean. P Natl Acad. Sci. USA 106, 22427–22432 (2009).CAS 
    ADS 

    Google Scholar 
    54.Ju, F. & Zhang, T. Bacterial assembly and temporal dynamics in activated sludge of a full-scale municipal wastewater treatment plant. Isme J. 9, 683–695 (2015).CAS 
    PubMed 
    ADS 

    Google Scholar  More

  • in

    The metabolic cost of turning right side up in the Mediterranean spur-thighed tortoise (Testudo graeca)

    1.Lyson, T. R. et al. Origin of the unique ventilatory apparatus of turtles. Nat. Commun. 5(5211), 1–11. https://doi.org/10.1038/ncomms6211 (2014).CAS 
    Article 

    Google Scholar 
    2.Gans, C. & Hughes, G. The mechanism of lung ventilation in the tortoise Testudo graeca LinnĂ©. J. Exp. Biol. 47(1), 1–20 (1967).CAS 
    Article 
    PubMed 

    Google Scholar 
    3.Jackson, D. C., Singer, J. H. & Downey, P. T. Oxidative cost of breathing in the turtle Chrysemys picta bellii. Am. J. Physiol. 261, R1325–R1328 (1991).CAS 
    PubMed 

    Google Scholar 
    4.Landberg, T., Mailhot, J. D. & Brainerd, E. L. Lung ventilation during treadmill locomotion in a semi-aquatic turtle, Trachemys scripta. J. Exp. Zool. 311A, 551–562. https://doi.org/10.1002/jez.478 (2009).Article 

    Google Scholar 
    5.Ruhr, I., Rose, K., Sellers, W., Crossley, D. II. & Codd, J. Turning turtle: Scaling relationships and self-righting ability in Chelydra serpentina. Proc. R. Soc. B. 288, 20210213. https://doi.org/10.1098/rspb.2021.0213 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    6.Pritchard, P. C. H. Encyclopaedia of Turtles (TFH, 1979).
    Google Scholar 
    7.Carr, A. Handbook of Turtles: The Turtles of the United States, Canada, and Baja California (Cornell University Press, 1952).
    Google Scholar 
    8.Rivera, G. Ecomorphological variation in shell shape of the freshwater turtle Pseudemys concinna inhabiting different aquatic flow regimes. Int. Comp. Biol. 48(6), 769–787. https://doi.org/10.1093/icb/icn088 (2008).Article 

    Google Scholar 
    9.McNeill Alexander, R. Gaits of mammals and turtles. J. R. Soc. Jpn. 11(3), 314–319 (1993).Article 

    Google Scholar 
    10.Zani, P. A. & Kram, R. Low metabolic cost of locomotion in ornate box turtles, Terrapene ornate. J. Exp. Biol. 211, 3671–3676. https://doi.org/10.1242/jeb.019869 (2008).Article 
    PubMed 

    Google Scholar 
    11.Sellers, W. I., Rose, K. A. R., Crossley, D. A. II. & Codd, J. R. Inferring cost of transport from whole-body kinematics in three sympatric turtle species with different locomotor habits. Comp. Biochem. Physiol. A. 247, 110739. https://doi.org/10.1016/j.cbpa.2020.110739 (2020).CAS 
    Article 

    Google Scholar 
    12.Chiari, Y., van der Meijden, A., Caccone, A., Claude, J. & Gilles, B. Self-righting potential and the evolution of shell shape in Galápagos tortoises. Sci. Rep. 7(1), 1–8. https://doi.org/10.1038/s41598-017-15787-7 (2017).CAS 
    Article 

    Google Scholar 
    13.Woledge, R. C. The energetics of tortoise muscle. J. Physiol. 197(3), 685–707 (1968).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    14.Steyermark, A. C. & Spotila, J. R. Body temperature and maternal identity affect snapping turtle (Chelydra serpentina) righting response. Copeia 4, 1050–1057. https://doi.org/10.1643/0045-8511(2001)001[1050:BTAMIA]2.0.CO;2 (2001).Article 

    Google Scholar 
    15.Rubin, A. M., Blob, R. W. & Mayerl, C. J. Biomechanical factors influencing successful self-righting in the Pleurodire turtle, Emydura subglobosa. J. Exp. Biol. 221, jeb182642. https://doi.org/10.1242/jeb.182642 (2018).Article 
    PubMed 

    Google Scholar 
    16.Penn, D. & Brockmann, H. J. Age-biased stranding and righting in male horseshoe crabs, Limulus polyphemus. Anim. Behav. 49, 1531–1539. https://doi.org/10.1016/003-3472(95)90074-8 (1995).Article 

    Google Scholar 
    17.Bonnet, X. et al. Sexual dimorphism in steppe tortoises (Testudo horsfieldii): Influence of the environment and sexual selection on body shape and mobility. Biol. J. Linn. Soc. 72, 357–372. https://doi.org/10.1006/bjls.2000.0504 (2001).Article 

    Google Scholar 
    18.Zuffi, M. A. L. & Corti, C. Aspects of population ecology of Testudo hermanni hermanni from Asinara Island, NW Sardinia (Italy, Western Mediterranean Sea): Preliminary data. Amphib-Reptil. 24, 441–447 (2003).Article 

    Google Scholar 
    19.Domokos, G. & Várkonyi, P. L. Geometry and self-righting of turtles. Proc. R. Soc. B. 275(1630), 11–17. https://doi.org/10.1098/rspb.2007.1188 (2008).Article 
    PubMed 

    Google Scholar 
    20.Mann, G. K. H., O’Riain, M. J. & Hofmeyr, M. D. Shaping up to fight: Sexual selection influences body shape and size in the fighting tortoise (Chersina angulata). J. Zool. 269, 373–379. https://doi.org/10.1111/j.1469-7998.2006.00079x (2006).Article 

    Google Scholar 
    21.Golubović, A., Bonnet, X., Djordjević, S., Djurakic, M. & Tomović, L. Variations in righting behavior across Hermann’s tortoise populations. J. Zool. 291, 69–75. https://doi.org/10.1111/jzo.12047 (2013).Article 

    Google Scholar 
    22.Golubović, A., Andelkovic, M., Arsovski, D., Bonnet, X. & Tomović, L. Locomotor performances reflect habitat constraints in an armoured species. Behav. Ecol. Sociobiol. 71, 93. https://doi.org/10.1007/s00265-017-2318-0 (2017).Article 

    Google Scholar 
    23.Ashe, V. M. The righting reflex in turtles: A description and comparison. Psychol. Sci. 20, 150–152. https://doi.org/10.3758/BF03335647 (1970).Article 

    Google Scholar 
    24.Golubović, A., Tomović, L. & Ivanović, A. Geometry of self-righting: The case of Hermann’s tortoises. Zool. Anz. 254, 99–105. https://doi.org/10.1016/j.jcz.2014.12.003 (2015).Article 

    Google Scholar 
    25.Finkler, M. S. Influence of water availability during hatching on hatchling size, body composition, desiccation tolerance, and terrestrial locomotor performance in the snapping turtle, Chelydra serpentina. Physiol. Biochem. Zool. 72, 714–722. https://doi.org/10.1086/316711 (1999).CAS 
    Article 
    PubMed 

    Google Scholar 
    26.Stojadinović, D., Miloơević, D. & Crnobrnja-Isailović, J. Righting time versus shell size and shape dimorphism in adult Hermann’s tortoises: Field observations meet theoretical predictions. Anim. Biol. 63(4), 381–396. https://doi.org/10.1163/15707563-00002420 (2013).Article 

    Google Scholar 
    27.Delmas, V., Baudry, E., Girondot, M. & Prevot-Julliard, A.-C. The righting reflex as a fitness indicator in freshwater turtles. Biol. J. Linn. Soc. 91, 99–109. https://doi.org/10.1111/j.1095-8312/2007.00780.x (2007).Article 

    Google Scholar 
    28.Burger, J. Behavior of hatchling diamondback terrapins (Malaclemys terrapin) in the field. Copeia 1976, 742. https://doi.org/10.2307/1443457 (1976).Article 

    Google Scholar 
    29.Landberg, T., Mailhot, J. D. & Brainerd, E. L. Lung ventilation during treadmill locomotion in a terrestrial turtle, Terrapene carolina. J. Exp. Biol. 206, 3391–3404. https://doi.org/10.1242/jeb.00553 (2003).Article 
    PubMed 

    Google Scholar 
    30.Gaunt, A. S. & Gans, C. Mechanics of respiration in the snapping turtle, Chelydra serpentina (LinnĂ©). J. Morph. 128, 195–227. https://doi.org/10.1002/jmor.1051280205 (1969).Article 

    Google Scholar 
    31.Lambertz, M., Böhme, W. & Perry, S. F. The anatomy of the respiratory system in Platysternon megacephalum Gray, 1831 (Testudines: Crytodira) and related species, and its phylogenetic implications. Comp. Biochem. Physiol. 156, 330–336. https://doi.org/10.1016/j.cbpa.2009.12.016 (2010).CAS 
    Article 

    Google Scholar 
    32.de Souza, R. B. B. & Klein, W. The influence of the post-pulmonary septum and submersion on the pulmonary mechanics of Trachemys scripta (Cryptodira: Emydidae). J. Exp. Biol. 224(12), 242386. https://doi.org/10.1242/jeb.242386 (2021).Article 

    Google Scholar 
    33.Jodice, P. G. R., Epperson, D. M. & Visser, G. H. Daily energy expenditure in free-ranging gopher tortoises (Gopherus polyphemus). Copeia 2006(1), 129–136. https://doi.org/10.1643/0045-8511(2006)006[0129:DEEIFG]2.0.CO;2 (2006).Article 

    Google Scholar 
    34.Zera, A. J. & Harshman, L. G. The physiology of life history trade-offs in animals. Ann. Rev. Ecol. Syst. 32, 95–126. https://doi.org/10.1146/annurev.ecolsys.32.081501.114006 (2001).Article 

    Google Scholar 
    35.Shadmehr, R., Huang, H. J. & Ahmed, A. A. A representation of effort in decision-making and motor control. Curr. Biol. 26, 1929–1934. https://doi.org/10.1016/j.cub.2016.05.065 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    36.Shepard, E. L. C. et al. Energy landscapes shapes animal movement ecology. Am. Nat. 182(3), 298–312. https://doi.org/10.1086/671257 (2013).Article 
    PubMed 

    Google Scholar 
    37.Baudinette, R. V., Miller, A. M. & Sarre, M. P. Aquatic and terrestrial locomotory energetics in a toad and a turtle: A search for generalisations among ectotherms. Physiol. Biochem. Zool. 73(6), 672–682. https://doi.org/10.1086/318101 (2000).CAS 
    Article 
    PubMed 

    Google Scholar 
    38.Hailey, A. & Coulson, I. M. Measurement of time budgets from continuous observation of thread-trailed tortoises (Kinixys spekii). Herp. J. 9, 15–20 (1999).
    Google Scholar 
    39.Kram, R. & Taylor, C. R. Energetics of running: A new perspective. Nature 346, 265–267. https://doi.org/10.1038/346265a0 (1990).CAS 
    Article 
    ADS 
    PubMed 

    Google Scholar 
    40.Taylor, C. R. Relating mechanics and energetics during exercise. Adv. Vet. Sci. Comp. Med. 38A, 181–215 (1994).CAS 
    PubMed 

    Google Scholar 
    41.Cavagna, G. A. & Kaneko, M. Mechanical work and efficiency in level walking and running. J. Physiol. 268(2), 467–481. https://doi.org/10.1113/jphysiol.1977.sp011866 (1977).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    42.Carrier, D. R., Deban, S. M. & Fischbein, T. Locomotor function of the pectoral girdle “muscular sling” in trotting dogs. J. Exp. Biol. 209, 2224–2237. https://doi.org/10.1242/jeb.02236 (2006).Article 
    PubMed 

    Google Scholar 
    43.Heglund, N. C. & Cavagna, G. A. Efficiency of vertebrate locomotory muscles. J. Exp. Biol. 115, 283–292. https://doi.org/10.1242/jeb.115.1.283 (1985).CAS 
    Article 
    PubMed 

    Google Scholar 
    44.Barclay, C. J. The basis of difference in thermodynamic efficiency among skeletal muscles. Clin. Exp. Pharm. Physiol. 44(12), 1279–1286. https://doi.org/10.1111/1440-1681.12850 (2017).MathSciNet 
    CAS 
    Article 

    Google Scholar 
    45.Nwoye, L. O. & Goldspink, G. Biochemical efficiency and intrinsic shortening speed in selected fast and slow muscles. Experientia 37, 856–857. https://doi.org/10.1007/BF1985678 (1981).CAS 
    Article 
    PubMed 

    Google Scholar 
    46.Lambert, M. Temperature, activity and field sighting in the Mediterranean spur-thighed or common garden tortoise Testudo graeca. Biol. Conserv. 21, 39–54. https://doi.org/10.1016/0006-3207(81)90067-7 (1981).Article 

    Google Scholar 
    47.Tracy, R., Zimmerman, L., Tracy, C., Bradley, K. & Castle, K. Rates of food passage in the digestive tract of young desert tortoises: Effects of body size and diet quality. Chelonian Conserv. Biol. 5(2), 269–273. https://doi.org/10.2744/1071-8443(2006)5[269:ROFPIT]2.0.co;2 (2006).Article 

    Google Scholar 
    48.Huey, R. & Kingsolver, J. Evolution of thermal sensitivity of ectotherm performance. Trends Ecol. Evol. 4(5), 131–135. https://doi.org/10.1016/0169-5347(89)90211-5 (1989).CAS 
    Article 
    PubMed 

    Google Scholar 
    49.Lailvaux, S. & Irschick, D. Effects of temperature and sex on jump performance and biomechanics in the lizard Anolis carolinensis. Funct. Ecol. 21(3), 534–543. https://doi.org/10.1111/j.1365-2435.2007.01263.x (2007).Article 

    Google Scholar 
    50.Lighton, J. Measuring Metabolic Rates: A Manual for Scientists (Oxford University Press, 2008).Book 

    Google Scholar 
    51.Brody, S. Bioenergetics and Growth (Reinhold, 1945).
    Google Scholar  More

  • in

    The 2018 European heatwave led to stem dehydration but not to consistent growth reductions in forests

    1.Rahmstorf, S. & Coumou, D. Increase of extreme events in a warming world. Proc. Natl Acad. Sci. 108, 17905–17909 (2011).CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    2.Barriopedro, D., Fischer, E. M., Luterbacher, J., Trigo, R. M. & Garcia-Herrera, R. The Hot Summer of 2010: Redrawing the temperature record map of Europe. Science 332, 220–224 (2011).CAS 
    PubMed 
    ADS 

    Google Scholar 
    3.Fischer, E. M. & Knutti, R. Detection of spatially aggregated changes in temperature and precipitation extremes. Geophys. Res. Lett. 41, 547–554 (2014).ADS 

    Google Scholar 
    4.Della-Marta, P. M., Haylock, M. R., Luterbacher, J. & Wanner, H. Doubled length of western European summer heat waves since 1880. J. Geophys. Res. 112, D15103 (2007).ADS 

    Google Scholar 
    5.Zscheischler, J. et al. Future climate risk from compound events. Nat. Clim. Chang. 8, 469–477 (2018).ADS 

    Google Scholar 
    6.Teskey, R. et al. Responses of tree species to heat waves and extreme heat events. Plant, Cell Environ. 38, 1699–1712 (2015).
    Google Scholar 
    7.Ciais, P. et al. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437, 529–533 (2005).CAS 
    PubMed 
    ADS 

    Google Scholar 
    8.Steppe, K., Sterck, F. & Deslauriers, A. Diel growth dynamics in tree stems: linking anatomy and ecophysiology. Trends Plant Sci. 20, 335–343 (2015).CAS 
    PubMed 

    Google Scholar 
    9.Peters, R. L. et al. Turgor—a limiting factor for radial growth in mature conifers along an elevational gradient. N. Phytol. 229, 213–229 (2021).CAS 

    Google Scholar 
    10.Meinzer, F. C., Johnson, D. M., Lachenbruch, B., McCulloh, K. A. & Woodruff, D. R. Xylem hydraulic safety margins in woody plants: Coordination of stomatal control of xylem tension with hydraulic capacitance. Funct. Ecol. 23, 922–930 (2009).
    Google Scholar 
    11.Anderegg, W. R. L., Berry, J. A. & Field, C. B. Linking definitions, mechanisms, and modeling of drought-induced tree death. Trends Plant Sci. 17, 693–700 (2012).CAS 
    PubMed 

    Google Scholar 
    12.Martínez‐Vilalta, J., Anderegg, W. R. L., Sapes, G. & Sala, A. Greater focus on water pools may improve our ability to understand and anticipate drought‐induced mortality in plants. N. Phytol. 223, 22–32 (2019).
    Google Scholar 
    13.Zweifel, R., Haeni, M., Buchmann, N. & Eugster, W. Are trees able to grow in periods of stem shrinkage? N. Phytol. 211, 839–849 (2016).
    Google Scholar 
    14.Dietrich, L., Zweifel, R. & Kahmen, A. Daily stem diameter variations can predict the canopy water status of mature temperate trees. Tree Physiol. 38, 941–952 (2018).PubMed 

    Google Scholar 
    15.Zweifel, R. et al. Why trees grow at night. N. Phytol. 231, 2174–2185 (2021).
    Google Scholar 
    16.Buras, A., Rammig, A. & Zang, C. S. Quantifying impacts of the 2018 drought on European ecosystems in comparison to 2003. Biogeosciences 17, 1655–1672 (2020).ADS 

    Google Scholar 
    17.Bastos, A. et al. Direct and seasonal legacy effects of the 2018 heat wave and drought on European ecosystem productivity. Sci. Adv. 6, eaba2724 (2020).CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    18.Peters, W., Bastos, A., Ciais, P. & Vermeulen, A. A historical, geographical, and ecological perspective on the 2018 European summer drought. Philos. Trans. R. Soc. B Biol. Sci. 375, 20190505 (2020).
    Google Scholar 
    19.Albergel, C. et al. Monitoring and Forecasting the Impact of the 2018 Summer Heatwave on Vegetation. Remote Sens. 11, 520 (2019).ADS 

    Google Scholar 
    20.Smith, N. E. et al. Spring enhancement and summer reduction in carbon uptake during the 2018 drought in northwestern. Eur. Philos. Trans. R. Soc. B Biol. Sci. 375, 20190509 (2020).CAS 

    Google Scholar 
    21.Brun, P. et al. Large‐scale early‐wilting response of Central European forests to the 2018 extreme drought. Glob. Chang. Biol. 26, 7021–7035 (2020).PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    22.Ramonet, M. et al. The fingerprint of the summer 2018 drought in Europe on ground-based atmospheric CO2 measurements. Philos. Trans. R. Soc. B Biol. Sci. 375, 20190513 (2020).CAS 

    Google Scholar 
    23.Bastos, A. et al. Impacts of extreme summers on European ecosystems: A comparative analysis of 2003, 2010 and 2018. Philos. Trans. R. Soc. B Biol. Sci. 375, 20190507 (2020).CAS 

    Google Scholar 
    24.Lin, Y.-S. et al. Optimal stomatal behaviour around the world. Nat. Clim. Chang. 5, 459–464 (2015).CAS 
    ADS 

    Google Scholar 
    25.Schuldt, B. et al. A first assessment of the impact of the extreme 2018 summer drought on Central European forests. Basic Appl. Ecol. 45, 86–103 (2020).
    Google Scholar 
    26.Rita, A. et al. The impact of drought spells on forests depends on site conditions: The case of 2017 summer heat wave in southern Europe. Glob. Chang. Biol. 26, 851–863 (2020).PubMed 
    ADS 

    Google Scholar 
    27.Hanewinkel, M., Cullmann, D. A., Schelhaas, M.-J., Nabuurs, G.-J. & Zimmermann, N. E. Climate change may cause severe loss in the economic value of European forest land. Nat. Clim. Chang. 3, 203–207 (2013).ADS 

    Google Scholar 
    28.Larysch, E., Stangler, D. F., Nazari, M., Seifert, T. & Kahle, H.-P. Xylem phenology and growth response of European beech, silver fir and scots pine along an elevational gradient during the extreme drought year 2018. Forests 12, 75 (2021).
    Google Scholar 
    29.Rohner, B., Kumar, S., Liechti, K., Gessler, A. & Ferretti, M. Tree vitality indicators revealed a rapid response of beech forests to the 2018 drought. Ecol. Indic. 120, 106903 (2021).
    Google Scholar 
    30.Scharnweber, T., Smiljanic, M., Cruz-GarcĂ­a, R., Manthey, M. & Wilmking, M. Tree growth at the end of the 21st century – the extreme years 2018/19 as template for future growth conditions. Environ. Res. Lett. 15, 074022 (2020).ADS 

    Google Scholar 
    31.Kowalska, N. et al. Analysis of floodplain forest sensitivity to drought. Philos. Trans. R. Soc. B Biol. Sci. 375, 20190518 (2020).CAS 

    Google Scholar 
    32.Zweifel, R. et al. Baumwasserdefizite erreichten im Sommer 2018 Höchstwerte–war das aus dem All erkennbar. Schweiz Z. Forstwes. 171, 302–305 (2020).
    Google Scholar 
    33.Cuny, H. E. et al. Woody biomass production lags stem-girth increase by over one month in coniferous forests. Nat. Plants 1, 15160 (2015).CAS 
    PubMed 

    Google Scholar 
    34.D’Orangeville, L. et al. Drought timing and local climate determine the sensitivity of eastern temperate forests to drought. Glob. Chang. Biol. 24, 2339–2351 (2018).PubMed 
    ADS 

    Google Scholar 
    35.Delpierre, N., Berveiller, D., Granda, E. & DufrĂȘne, E. Wood phenology, not carbon input, controls the interannual variability of wood growth in a temperate oak forest. N. Phytol. 210, 459–470 (2016).CAS 

    Google Scholar 
    36.Babst, F. et al. Above-ground woody carbon sequestration measured from tree rings is coherent with net ecosystem productivity at five eddy-covariance sites. N. Phytol. 201, 1289–1303 (2014).CAS 

    Google Scholar 
    37.Zweifel, R. et al. Determinants of legacy effects in pine trees – implications from an irrigation‐stop experiment. N. Phytol. 227, 1081–1096 (2020).CAS 

    Google Scholar 
    38.Anderegg, W. R. L. et al. Pervasive drought legacies in forest ecosystems and their implications for carbon cycle models. Science 349, 528–532 (2015).CAS 
    PubMed 
    ADS 

    Google Scholar 
    39.Zweifel, R., Zimmermann, L. & Newbery, D. M. Modeling tree water deficit from microclimate: An approach to quantifying drought stress. Tree Physiol. 25, 147–156 (2005).CAS 
    PubMed 

    Google Scholar 
    40.Gleason, S. M. et al. Weak tradeoff between xylem safety and xylem-specific hydraulic efficiency across the world’s woody plant species. N. Phytol. 209, 123–136 (2016).CAS 

    Google Scholar 
    41.Duursma, R. A. et al. On the minimum leaf conductance: its role in models of plant water use, and ecological and environmental controls. N. Phytol. 221, 693–705 (2019).
    Google Scholar 
    42.Poyatos, R., Aguadé, D. & Martínez-Vilalta, J. Below-ground hydraulic constraints during drought-induced decline in Scots pine. Ann. Sci. 75, 100 (2018).
    Google Scholar 
    43.Johnson, D. M., McCulloh, K. A., Woodruff, D. R. & Meinzer, F. C. Hydraulic safety margins and embolism reversal in stems and leaves: Why are conifers and angiosperms so different? Plant Sci. 195, 48–53 (2012).CAS 
    PubMed 

    Google Scholar 
    44.Brodribb, T. J., McAdam, S. A. M., Jordan, G. J. & Martins, S. C. V. Conifer species adapt to low-rainfall climates by following one of two divergent pathways. Proc. Natl Acad. Sci. U.S.A 111, 14489–14493 (2014).CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    45.Choat, B. et al. Global convergence in the vulnerability of forests to drought. Nature 491, 752–755 (2012).CAS 
    PubMed 
    ADS 

    Google Scholar 
    46.Drake, J. E. et al. Trees tolerate an extreme heatwave via sustained transpirational cooling and increased leaf thermal tolerance. Glob. Chang. Biol. 24, 2390–2402 (2018).PubMed 
    ADS 

    Google Scholar 
    47.Anderegg, W. R. L., Trugman, A. T., Badgley, G., Konings, A. G. & Shaw, J. Divergent forest sensitivity to repeated extreme droughts. Nat. Clim. Chang. 10, 1091–1095 (2020).ADS 

    Google Scholar 
    48.Leuzinger, S., Zotz, G., Asshoff, R. & Korner, C. Responses of deciduous forest trees to severe drought in Central Europe. Tree Physiol. 25, 641–650 (2005).PubMed 

    Google Scholar 
    49.Brinkmann, N., Eugster, W., Zweifel, R., Buchmann, N. & Kahmen, A. Temperate tree species show identical response in tree water deficit but different sensitivities in sap flow to summer soil drying. Tree Physiol. 36, 1508–1519 (2016).PubMed 

    Google Scholar 
    50.Rosengren, U. et al. Functional biodiversity aspects on the nutrient sustainability in forests-Importance of root distribution. J. Sustain. 21, 77–100 (2006).
    Google Scholar 
    51.Salomón, R. L., Limousin, J.-M., Ourcival, J.-M., Rodríguez-Calcerrada, J. & Steppe, K. Stem hydraulic capacitance decreases with drought stress: implications for modelling tree hydraulics in the Mediterranean oak Quercus ilex. Plant. Cell Environ. 40, 1379–1391 (2017).PubMed 

    Google Scholar 
    52.Mencuccini, M. et al. Leaf economics and plant hydraulics drive leaf: wood area ratios. N. Phytol. 224, 1544–1556 (2019).
    Google Scholar 
    53.Guerrero-Ramírez, N. R. et al. Global root traits (GRooT). Database Glob. Ecol. Biogeogr. 30, 25–37 (2021).
    Google Scholar 
    54.Kattge, J. et al. TRY plant trait database—enhanced coverage and open access. Glob. Chang. Biol. 26, 119–188 (2020).PubMed 
    ADS 

    Google Scholar 
    55.van der Maaten, E. et al. Species distribution models predict temporal but not spatial variation in forest growth. Ecol. Evol. 7, 2585–2594 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    56.Körner, C. No need for pipes when the well is dry—a comment on hydraulic failure in trees. Tree Physiol. 39, 695–700 (2019).PubMed 

    Google Scholar 
    57.Walthert, L. et al. From the comfort zone to crown dieback: Sequence of physiological stress thresholds in mature European beech trees across progressive drought. Sci. Total Environ. 753, 141792 (2021).CAS 
    PubMed 
    ADS 

    Google Scholar 
    58.Preisler, Y., Tatarinov, F., GrĂŒnzweig, J. M. & Yakir, D. Seeking the “point of no return” in the sequence of events leading to mortality of mature trees. Plant. Cell Environ. 44, 1315–1328 (2021).CAS 
    PubMed 

    Google Scholar 
    59.Poyatos, R. et al. Global transpiration data from sap flow measurements: The SAPFLUXNET database. Earth Syst. Sci. Data 13, 2607–2649 (2021).ADS 

    Google Scholar 
    60.Steppe, K., von der Crone, J. S. & De Pauw, D. J. W. TreeWatch.net: A water and carbon monitoring and modeling network to assess instant tree hydraulics and carbon status. Front. Plant Sci. 7, 993 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    61.Sass-Klaassen, U. et al. A tree-centered approach to assess impacts of extreme climatic events on forests. Front. Plant Sci. 7, 1–6 (2016).
    Google Scholar 
    62.Cailleret, M. et al. A synthesis of radial growth patterns preceding tree mortality. Glob. Chang. Biol. 23, 1675–1690 (2017).PubMed 
    ADS 

    Google Scholar 
    63.Sparks, A. H., Hengl, T. & Nelson, A. GSODR: Global summary daily weather data in R. J. Open Source Softw. 2, 177 (2017).ADS 

    Google Scholar 
    64.Muñoz-Sabater, J. et al. ERA5-Land: An improved version of the ERA5 reanalysis land component. in Joint ISWG and LSA-SAF Workshop IPMA. 26–28 (2018).65.Granier, A. et al. Evidence for soil water control on carbon and water dynamics in European forests during the extremely dry year: 2003. Agric. Meteorol. 143, 123–145 (2007).
    Google Scholar 
    66.Karger, D. N. et al. Climatologies at high resolution for the earth’s land surface areas. Sci. Data 4, 170122 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    67.Cornes, R. C., van der Schrier, G., van den Besselaar, E. J. M. & Jones, P. D. An ensemble version of the E-OBS temperature and precipitation data sets. J. Geophys. Res. Atmos. 123, 9391–9409 (2018).
    Google Scholar 
    68.Frich, P. et al. Observed coherent changes in climatic extremes during the second half of the twentieth century. Clim. Res. 19, 193–212 (2002).ADS 

    Google Scholar 
    69.Alexander, L. V. et al. Global observed changes in daily climate extremes of temperature and precipitation. J. Geophys. Res. Atmos. 111, 1–22 (2006).
    Google Scholar 
    70.KnĂŒsel, S., Peters, R. L., Haeni, M., Wilhelm, M. & Zweifel, R. Processing and extraction of seasonal tree physiological parameters from stem radius time series. Forests 12, 765 (2021).
    Google Scholar 
    71.Hedges, L. V., Gurevitch, J. & Curtis, P. S. The meta-analysis of response ratios in experimental ecology. Ecology 80, 1150–1156 (1999).
    Google Scholar 
    72.Bates, D., MĂ€chler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).
    Google Scholar 
    73.R. Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing. (2019). More

  • in

    A taxonomic, genetic and ecological data resource for the vascular plants of Britain and Ireland

    The broad categories of data included in the repository are summarized in Online-only Table 2 and visualized in Fig. 2. Each category is explained in greater detail below, while full details together with accompanying notes are given in the repository (Database_structure.csv) and in Supplementary File 1. Online-only Table 2 gives an overview of data coverage per category, both across all species and for native species separately. A complete list of data sources is available in Supplementary File 2.Fig. 2Visualization of the attributes presented in the database.Full size imageGeneration of the species listTaxon names listed in the most recent and widely accepted New Flora of the British Isles’ index12 were digitized via the Optical Character Recognition Software ReadirisTM 17 (IRIS). Results from the digitization were transferred into a spreadsheet and obvious recognition errors were fixed. The resulting table contained 5,687 taxa and associated taxonomic authorities. A total of 360 unnamed hybrids were excluded, as well as species noted to have only questionable or unconfirmed records, leaving 5,038 species. Forty-one intergeneric hybrid species, 827 entries relating to (notho)subspecies, (notho)varieties, cultivars and forma were also removed along with 720 named hybrids. Species that were included by Stace12 but which he considered not to be part of the flora (i.e. listed as ‘other species’ and ‘other genera’, e.g. genus Tragus or Coreopsis verticillata) were also excluded. Seven species that were labelled ‘extinct’ in the flora were included as there were indications that the species might be in the process of reintroduction (e.g. Bromus interruptus, Bupleurum falcatum and Schoenoplectus pungens). Extinct native and archaeophyte species without any signs of reintroduction (e.g. Dryopteris remota) are also listed but no additional data are provided and they are not included in calculations of completeness of data (Online-only Table 2). The final number of extant species listed here is therefore 3,209 (comprising 1,468 natives, 1,690 aliens and 51 species with unknown status), plus 18 formally extinct species (natives and archaeophytes not seen in the study region since 1999). Species names and taxonomic authorities were revised according to the 2021 reprint of the New Flora of the British Isles, communicated to us by C.A.S. ahead of publication. Genera with less well-defined species – for example due to apomixis – contain additional information on subgenera, sections, and aggregates, as per Stace12. Since misidentifications are common in these groups, we include a column termed ‘unclear_species_marker’ that allows for these species to be quickly identified and excluded from analyses if appropriate. Such genera are often incompletely listed in our database since most microspecies are not sufficiently well defined.TaxonomyNomenclature of the list was checked by Global Names Resolver in the R package ‘taxize’20,21, using the International Plant Names Index (IPNI)22 as the data source, to remove any digitisation errors. Resolved names were used to determine accepted higher taxonomic hierarchy (family, order) again using taxize, with the National Center for Biotechnology Information (NCBI) database. Species that could not be resolved by the Global Names Resolver or did not yield matches in the NCBI database for their higher taxonomic ranks were manually checked for name matches in the World Checklist of Vascular Plants (WCVP)17. Species within the original species list that were found to be identical to a different spelling in WCVP were retained in the database. In such instances, and when slight spelling differences occurred, the columns ‘taxon_name‘ and ‘taxon_name_WCVP‘ differ. To improve clarity, each species is presented here with its unique identification number according to the WCVP (listed as ‘kew_id’) together with three additional columns (i.e. WCVP.URL, POWO.URL and IPNI.URL) which contain hyperlinks to the freely accessible taxon description websites of the (WCVP)17, Plants of the World Online (POWO)23 and (IPNI)22, respectively. Thus, while the taxon names used in the database correspond to those used by Stace12, changes in the accepted species name since publication can be traced in columns ‘taxonomic_status’ and ‘accepted_kew_id’. The family classification of WCVP follows APG IV24 for angiosperms, Christenhusz et al. (2011)25 for gymnosperms and Christenhusz & Chase (2014)26 for ferns and lycopods.Native statusWe offer three different datasets which describe the status of a species as native or non-native, and its level of establishment in BI. The first is extracted from Stace (2019)12, the second contains the status codes used in PLANTATT10 and the unpublished ALIENATT (pers. comm. author K.J.W.) dataset, and the third is extracted from Alien Plants13. The status from Stace12 and Stace & Crawley13 assigns a species to either native or alien status, with aliens subdivided into archaeophytes and neophytes at different levels of establishment (e.g. denizen, colonist etc., see Online-only Table 1). Status codes from the BSBI can be either AC (alien casual), AN (neophyte), AR (archaeophyte), N (native), NE (native endemic) or NA (native status doubtful).Functional traitsData for five ecologically relevant functional traits (i.e. seed mass, specific leaf area [SLA], leaf area, leaf dry matter content [LDMC] and vegetative height) were downloaded from public data available in the TRY database27 (for specific authors see Supplementary File 1 and Supplementary File 2). Averages were calculated using the available measurements downloaded for each species, excluding rows where the measurement was 0. In addition, the maximum vegetative height for each species is given, where available.Realized niche descriptionRealized niche descriptions based on assessments made on plants living in BI are given in the form of Ellenberg indicator values18, as published in PLANTATT10. Ellenberg indicator values place each species along an environmental gradient (e.g. light or salinity) by assigning a number on an ordinal scale, depending on the species preference for the specific gradient (Online-only Table 2). This information is often used to gain insights into environmental changes based on species occurrences28. For species listed under a previously accepted name in PLANTATT, the information was associated with the accepted synonym in Stace (2019)12. Due to the low coverage of PLANTATT for non-native species included in our list, we additionally include Ellenberg indicator values based on Central European assessments, as made available by Döring29. Each Ellenberg category is listed in a separate column, keeping the information from both data sources separate to avoid confounding of assessments based on two different regions (i.e. Britain and Ireland versus Central Europe).Life strategyTo characterize the life strategy of a species, we used the CSR scheme developed by Grime19, which classifies each species as either a competitor (C), stress tolerator (S), ruderal (R) or a combination of these (e.g. CS, SR). CSR classifications were obtained from the Electronic Comparative Plant Ecology database30. Due to the low coverage of available CSR assessments for species in our database (i.e. data available for just 460 out of 3,209 species) we imputed CSR strategies for a further 981 species using available functional trait data, following the method proposed by Pierce et al.31. The functional leaf traits required for this method – i.e. specific leaf area, leaf area, leaf dry matter content – were obtained from the TRY database27. Pre-existing30 and newly imputed CSR strategies are listed in separate columns.Growth form, succulence and life-formPlant growth form descriptions were obtained from the TRY database27 and filtered for those entries given by specific contributors (Online-only Table 2) to maintain consistent use of growth form categories. Information on whether a species was considered to be a succulent was obtained by screening the entire growth form information obtained from the TRY database for the phrase ‘succulence’ or ‘succulent’.Species life-form categories according to Raunkiaer32 were determined for each species in our dataset with regard to the typical life-form of the species as it grows in BI (pers. comm. M.J.M.C.).Associated biome and originInformation given in the Ecoflora database3 for the biome that each species is associated with was matched to the species names according to Stace12. The recognized biome categories follow Preston & Hill33 and are ‘Arctic montane’, ‘Boreal Montane’, ‘Boreo-Arctic Montane’, ‘Boreo-Temperate’, ‘Mediterranean’, ‘Mediterranean-Atlantic’, ‘Southern Temperate’, ‘Temperate’, ‘Wide Boreal’ and ‘Wide Temperate’.For non-native species, the assumed origin (i.e. the region that plants were most likely to have been introduced to BI from, rather than the full non-BI distribution of a species) was adapted from Stace12 into a brief description of their country or region of origin. In addition, these descriptions were manually allocated to the TDWG level 1 regions listed in the World Geographical Scheme for Recording Plant Distributions (WGSRPD, TDWG)34.Species distributionsDistribution metrics for each species are given as the number of 10-km square hectads in BI with records for the species in question within a specified time window. The data were derived from the BSBI Distribution Database35 and were extracted for each species, dividing the study region into Great Britain (incl. Isle of Man), Ireland and the Channel Islands, as previously partitioned for data available in PLANTATT10. The database was queried using species and hectads for grouping, showing only records ‘matching or within 2 km of county boundary’ and excluding ‘do-not-map-flagged occurrences’. The data were not corrected for sampling bias and should therefore only be used as an indication of trends.Hybrid propensityData on hybridization is provided for 641 species, obtained from the Hybrid flora of the British Isles36 which enumerates every hybrid reported in BI up until 2015 (pers. comm. M.R.B.). Each entry was transcribed manually, and then filtered to exclude (a) hybrids that have been recorded, but not formed in the British Isles, (b) triple hybrids (mainly reported for the genus Salix), (c) doubtful records, (d) hybrids between subspecific ranks, and (e) hybrids where at least one parent is not native (only archaeophytes included). This left 821 hybrid combinations for data aggregation. The metric chosen here is hybrid propensity, which is a per-species metric of how many other species a focal species hybridizes with (sensu Whitney et al., 201037). A scaled hybrid propensity metric is also given which was calculated by weighting the hybrid propensity score by the number of intrageneric combinations for a given genus, to account for the greater opportunities of hybridization in larger genera.DNA barcodesDNA barcode sequences for plant species present in BI are currently available for 1,413 species in our database. The information was derived from a dataset of rbcL, matK and ITS2 sequences compiled for the UK flora generated by the National Botanic Garden of Wales and the Royal Botanic Garden Edinburgh38,39 (pers. comm. L.J. and N.D.V.). The data are given as a hyperlink to the record’s page on the Barcode of Life Data Systems (BOLD40) which includes the DNA barcode sequences as well as scans of the herbarium specimen and information on the sample’s collection. Most species have multiple record pages associated with them, due to the sampling of more than one individual. We include a maximum of three BOLD accessions per species; the full range of individuals sampled can be accessed via the original publications38,39. DNA barcodes are almost exclusively available for native species. Future releases of our database will increase the coverage of the non-native flora significantly. Where species in the BOLD database are attributed to a species name that is considered synonymous with another name in our list, the hyperlink is matched to the latest nomenclature12. 1,421 species have at least one sequence associated with them and 935 species have sequence data for all three sequences (rbcL, matK and ITS2).Genome size and chromosome numbersGenome size data for 2,117 specimens (at least one measurement per species) were obtained from various sources. Measurements for a total of 467 species were newly estimated using plant material of known BI origin, often sourced  from the Millennium Seedbank of the Royal Botanic Gardens, Kew (RBG Kew)41. The measurements were made by flow cytometry using seeds or seedlings and following an established protocol42. Information on the extraction buffers and calibration standard species used are available in the file GS_Kew_BI.csv, along with peak CV values of the measurements as a quality control. Where more than one measurement is reported per species, the measurements were made on plant material from different populations or using different buffers. Previously published data for additional species were obtained from reports on the Czech flora43, the Dutch flora44, and prime values listed in the Plant DNA C-values database45,46. Since significant intraspecific differences in genome size between plant material from different geographical origins have previously been described, predominantly due to cytotype diversity in ploidy level47, genome size measurements from previously published sources were assessed with regard to the origin of the material. The column ‘from_BI_material’ (GS_BI.csv, BI_main.csv) allows users to filter for measurements made on material from BI to exclude a potential bias. The information was obtained from the original publication source of each measurement.Chromosome numbers for 1,410 species (at least one chromosome number per species) determined exclusively from material collected in BI were obtained from an extensive dataset compiled by R.J.G. from various published studies, unpublished theses and personal communications from trusted sources. The counts were made between 1898 and 2017, with a large proportion stemming from efforts to achieve greater coverage of the flora by a team of cytologists based at the University of Leicester and headed by R.J.G. Part of the dataset was previously incorporated into the BSBI’s data catalogue5 but has since undergone revisions to incorporate new information and changes in taxonomy. The dataset contained many measurements at subspecies level which were allocated to the species level taxon in our list. This served to include as much of the often considerable infraspecific variation as possible. Since some species for which chromosome counts have been reported elsewhere are lacking chromosome counts from British or Irish material, they are absent from this dataset. To fill such gaps, we also present chromosome numbers from reports on the Czech flora43, the Dutch flora44, and the Plant DNA C-values database45,46. More

  • in

    Seasonal pattern of food habits of large herbivores in riverine alluvial grasslands of Brahmaputra floodplains, Assam

    1.Krebs, C. J. Ecological Methodology 2nd edn. (Addison Welsey Educational Publishers Inc, 1999).
    Google Scholar 
    2.Tewari, R. & Rawat, G. S. Studies on the food and feeding habits of Swamp Deer (Rucervus duvaucelii duvaucelii) in Jhilmil Jheel conservation reserve, Haridwar, Uttarakhand, India. ISRN Zool. 2013, 1–6. https://doi.org/10.1155/2013/278213 (2013).Article 

    Google Scholar 
    3.Brodeur, R. D., Smith, B. E., McBride, R. S., Heintz, R. & Farley, E. New perspectives on the feeding ecology and trophic dynamics of fishes. Environ. Biol. Fishes. 100, 293–297. https://doi.org/10.1007/s10641-017-0594-1 (2017).Article 

    Google Scholar 
    4.Vesey-FitzGerald, D. F. Grazing succession among East African game animals. J. Mammal. 41, 161–172. https://doi.org/10.2307/1376351 (1960).Article 

    Google Scholar 
    5.Lamprey, H. F. Ecological separation of the large mammal species in the Tarangire game reserve, Tanganyika. Afr. J. Ecol. 1, 63–92. https://doi.org/10.1111/j.1365-2028.1963.tb00179.x (1963).Article 

    Google Scholar 
    6.Ahrestani, F. S. Asian Eden Large Herbivore Ecology in India (Wageningen University, 2009).
    Google Scholar 
    7.Bell, R. H. V. The use of herb layer by grazing ungulates in the Serengeti. In Animal Populations in Relation to their Food Resources (eds. Watson, A.) 111–124 (Blackwell Science, 1970).8.Jarman, P. The social organisation of antelopes in relation to their ecology. Behaviour 48, 215–267. https://doi.org/10.1163/156853974X00345 (1974).Article 

    Google Scholar 
    9.Hofmann, R. R. & Stewart, D. R. M. Grazer of browser: A classification based on the stomach structure and feeding habits of East African ruminants. Mammalia 36, 226–240 (1972).Article 

    Google Scholar 
    10.Bell, R. H. V. A grazing ecosystem in the Serengeti. Sci. Am. 225, 86–93 (1971).ADS 
    Article 

    Google Scholar 
    11.Kleiber, M. The Fire of Life. An Introduction to Animal Energetics (Krieger, 1932).
    Google Scholar 
    12.Demment, M. W. & Van Soest, P. J. A nutritional explanation for body-size patterns of ruminant and nonruminant herbivores. Am. Nat. 125, 641–672. https://doi.org/10.1086/284369 (1985).Article 

    Google Scholar 
    13.Hofmann, R. R. The Ruminant Stomach: Stomach Structure and Feeding Habits of East African Game Ruminants. East African Monograph in Biology, vol. 2, 1–364 (E.A. Lit. Bureau, 1973).14.Ahrestani, F. S., Heitkönig, I. M., Matsubayashi, H. & Prins, H. H. Grazing and browsing by large herbivores in South and Southeast Asia. In The Ecology of Large Herbivores in South and Southeast Asia, (eds. Ahrestani, F. S. & Sankaran, M.) 99–120. (Springer, 2016).15.Geist, V. On the relationship of social evolution and ecology in Ungulates. Am. Zool. 14, 205–220. https://doi.org/10.1093/icb/14.1.205 (1974).Article 

    Google Scholar 
    16.Clauss, M., Steuer, P., MĂŒller, D. W. H., Codron, D. & Hummel, J. Herbivory and body size: Allometries of diet quality and gastrointestinal physiology, and implications for herbivore ecology and dinosaur gigantism. PLoS One 8, e68714. https://doi.org/10.1371/journal.pone.0068714 (2013).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    17.Ahrestani, F. S., Heitkönig, I. M. & Prins, H. H. Diet and habitat-niche relationships within an assemblage of large herbivores in a seasonal tropical forest. J. Trop. Ecol. 28, 385–394. https://doi.org/10.1017/S0266467412000302 (2012).Article 

    Google Scholar 
    18.Pradhan, N. M., Wegge, P., Moe, S. R. & Shrestha, A. K. Feeding ecology of two endangered sympatric mega-herbivores: Asian elephant Elephas maximus and greater one-horned rhinoceros Rhinoceros unicornis in lowland Nepal. Wildl. Biol. 14, 147–154. https://doi.org/10.2981/0909-6396(2008)14[147:feotes]2.0.co;2 (2008).Article 

    Google Scholar 
    19.McNaughton, S. J. & Georgiadis, N. J. Ecology of African grazing and browsing mammals. Annu. Rev. Ecol. Syst. 17, 39–66. https://doi.org/10.1146/annurev.es.17.110186.000351 (1986).Article 

    Google Scholar 
    20.Owen-Smith, R. N. Adaptive Herbivore Ecology: From Resources to Populations in Variable Environments. Adaptive Herbivore Ecology (Cambridge University Press, 2002). https://doi.org/10.1017/CBO9780511525605.21.Olff, H., Ritchie, M. E. & Prins, H. H. T. Global environmental controls of diversity in large herbivores. Nature 415, 901–904. https://doi.org/10.1038/415901a (2002).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    22.Bailey, D. W. & Provenza, F. D. Mechanisms determining large-herbivore distribution. In Resource Ecology, vol. 23 (eds. Prins, H. H. T. & Van Langevelde, F.) 7–28 (Springer, 2008). https://doi.org/10.1007/978-1-4020-6850-8_2.23.Prins, H. H. T. & Van Langevelde, F. Assembling a diet from different places. In Resource Ecology, vol. 23 (eds. Prins, H. H. T. & Van Langevelde, F.) 129–155 (Springer, 2008). https://doi.org/10.1007/978-1-4020-6850-8_12.24.Fryxell, J. M. et al. Landscape scale, heterogeneity, and the viability of Serengeti grazers. Ecol. Lett. 8, 328–335. https://doi.org/10.1111/j.1461-0248.2005.00727.x (2005).Article 

    Google Scholar 
    25.Du Toit, J., Rogers, K. & Biggs, H. The Kruger Experience: Ecology and Management of Savanna Heterogeneity, vol. 29 (Island Press, 2003).26.Ripple, W. J. et al. Collapse of the world’s largest herbivores. Sci. Adv. 1, e1400103. https://doi.org/10.1126/sciadv.1400103 (2015).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    27.Menon, V. Indian Mammals: A Field Guide. (Hachette India, 2014).28.Reddy, C. S., Jha, C. S., Diwakar, P. G. & Dadhwal, V. K. Nationwide classification of forest types of India using remote sensing and GIS. Environ. Monit. Assess. 187, 777. https://doi.org/10.1007/s10661-015-4990-8 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    29.Wegge, P., Shrestha, A. K. & Moe, S. R. Dry season diets of sympatric ungulates in lowland Nepal: Competition and facilitation in alluvial tall grasslands. Ecol. Res. 21, 698–706. https://doi.org/10.1007/s11284-006-0177-7 (2006).Article 

    Google Scholar 
    30.WWF. Living Planet: Report 2016. Risk and Resilience in a New Era. (World Wide Fund for Nature International, 2016).31.Gebremedhin, B. et al. DNA metabarcoding reveals diet overlap between the endangered walia ibex and domestic goats: Implications for conservation. PLoS One 11, e0159133. https://doi.org/10.1371/journal.pone.0159133 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    32.Spooner, F. E., Pearson, R. G. & Freeman, R. Rapid warming is associated with population decline among terrestrial birds and mammals globally. Glob. Change Biol. 24, 4521–4531. https://doi.org/10.1111/gcb.14361 (2018).ADS 
    Article 

    Google Scholar 
    33.Texeira, M., Baldi, G. & Paruelo, J. An exploration of direct and indirect drivers of herbivore reproductive performance in arid and semi-arid rangelands by means of structural equation models. J. Arid Environ. 81, 26–34. https://doi.org/10.1016/j.jaridenv.2012.01.017 (2012).ADS 
    Article 

    Google Scholar 
    34.Kupika, O. L., Gandiwa, E., Kativu, S. & Nhamo, G. Impacts of climate change and climate variability on wildlife resources in southern Africa: Experience from selected protected areas in Zimbabwe. In Selected Studies in Biodiversity, (eds. ƞen, B. & Grillo, O.) 1–23 (IntechOpen, 2018). https://doi.org/10.5772/intechopen.70470.35.Joyce, C. B., Simpson, M. & Casanova, M. Future wet grasslands: Ecological implications of climate change. Ecosyst. Health Sustain. 2, e01240. https://doi.org/10.1002/ehs2.1240 (2016).Article 

    Google Scholar 
    36.Vasu, N. K., & Singh, G. Grasslands of Kaziranga National Park: Problems and approaches for management. In Ecology and Management of Grassland Habitats in India, vol. 17 (eds. Rawat, G. S., Adhikari, B. S.) 104–113 (Wildlife Institute of India, 2015).37.Dublin, H. T. Vegetation dynamics in the Serengeti-Mara ecosystem: The role of elephants, fire, and other factors. In Serengeti II: Dynamics, Management, and Conservation of an Ecosystem, (eds. Sinclair, A. R. E. & Arcese, P.) 71–90 (University of Chicago Press, 1995).38.Sinclair, A. R. E. Equilibria in plant–herbivore interactions. In Serengeti II: Dynamics, Management, and Conservation of an Ecosystem, (eds. Sinclair, A. R. E. & Arcese, P.) 91–113 (University of Chicago Press, 1995).39.Augustine, D. J. & McNaughton, S. J. Ungulate effects on the functional species composition of plant communities: Herbivore selectivity and plant tolerance. J. Wildl. Manag. 62, 1165. https://doi.org/10.2307/3801981 (1998).Article 

    Google Scholar 
    40.Schmitt, M. H. & Shrader, A. M. Browser population-woody vegetation relationships in Savannas. In Savanna Woody Plants and Large Herbivores (eds. Scogings, F. P. & Sankaran, M.) 245–278 (Wiley, 2020). https://doi.org/10.1002/9781119081111.ch9.41.Konwar, P., Saikia, M. K. & Saikia, P. K. Abundance of food plant species and food habits of Rhinoceros unicornis Linn. in Pobitora Wildlife Sanctuary, Assam, India. J. Threat. Taxa. 1, 457–460. https://doi.org/10.11609/jott.o1640.457-60 (2009).Article 

    Google Scholar 
    42.Bhatta, R. Ecology and Conservation of Great Indian One-horned Rhino (Rhinoceros unicornis) in Pobitora Wildlife Sanctuary, Assam, India (Gauhati University, 2011).
    Google Scholar 
    43.Hazarika, B. C. & Saikia, P. K. Food habit and feeding patterns of great indian one-horned rhinoceros (Rhinoceros unicornis) in Rajiv Gandhi Orang National Park, Assam, India. ISRN Zool. 2012, 1–11. https://doi.org/10.5402/2012/259695 (2012).Article 

    Google Scholar 
    44.Dutta, D. K., Bora, P. J., Mahanta, R., Sharma, A. & Swargowari, A. Seasonal variations in food plant preferences of reintroduced Rhinos Rhinoceros unicornis (Mammalia: Perrissodactyla: Rhinocerotidae) in Manas National Park, Assam, India. J. Threat. Taxa. 8, 9525–9536. https://doi.org/10.11609/jott.2486.8.13.9525-9536 (2016).Article 

    Google Scholar 
    45.Brahmachary, R. L., Rakshit, B. & Mallik, B. Further attempts to determine the food habits of the Indian Rhinoceros at Kaziranga. J. Bombay Nat. Hist. Soc. 71, 295–299 (1974).
    Google Scholar 
    46.Banerjee, G. Habitat Use by the Great Indian Rhinoceros (Rhinoceros Unicornis) and Other Sympatric Large Herbivores in Kaziranga National Park, Assam, India (Wildlife Institute of India, 2001).
    Google Scholar 
    47.Patar, K. C. Behavioural Patterns of the One Horned Indian Rhinoceros (Spectrum Publication Guwahati, 2005).
    Google Scholar 
    48.Bawri, M. & Saikia, P. K. Preliminary study on the food plant species of Endangered Asiatic wild water buffalo Bubalus arnee Kerr in Kaziranga National Park, Assam India. NeBIO. 5, 49–55 (2014).
    Google Scholar 
    49.Sukumar, R. Ecology of the Asian elephant in southern India. I. Movement and habitat utilization patterns. J. Trop. Ecol. 5, 1–18. https://doi.org/10.1017/S0266467400003175 (1989).Article 

    Google Scholar 
    50.Schaller, G. B. The Deer and the Tiger. A Study of Wildlife in India, (University of Chicago Press, 1967). https://doi.org/10.7208/chicago/9780226736570.001.0001.51.Dhungel, S. K. & O’Gara, B. W. Ecology of the Hog Deer in Royal Chitwan National Park, Nepal. Wildl. Monogr. 119, 3–40. https://doi.org/10.2307/3830632 (1991).Article 

    Google Scholar 
    52.Johnsingh, A. J. T. & Manjrekar, N. Mammals of South Asia, 2 (Universities Press, 2016).
    Google Scholar 
    53.Sukumar, R. Ecology of the Asian elephant in southern India. II. Feeding habits and crop raiding patterns. J. Trop. Ecol. 6, 33–53. https://doi.org/10.1017/S0266467400004004 (1990).Article 

    Google Scholar 
    54.Baskaran, N., Balasubramanian, M., Swaminathan, S. & Desai, A. A. Feeding ecology of the Asian elephant Elephas maximus Linnaeus in the Nilgiri Biosphere Reserve, southern India. J. Bombay Nat. Hist. Soc. 107, 3–13 (2010).
    Google Scholar 
    55.Tuboi, C. & Hussain, S. A. Factors affecting forage selection by the endangered Eld’s deer and hog deer in the floating meadows of Barak-Chindwin Basin of North-east India. Mamm. Biol. 81, 53–60. https://doi.org/10.1016/j.mambio.2014.10.006 (2016).Article 

    Google Scholar 
    56.Kelton, S. D. & Skipworth, J. P. Food of sambar deer (Cervus unicolor) in a Manawatu (New Zealand) flax swamp. N. Z. J. Ecol. 10, 149–152 (1987).
    Google Scholar 
    57.Semiadi, G., Barry, T. N., Muir, P. D. & Hodgson, J. Dietary preferences of sambar (Cervus unicolor) and red deer (Cervus elaphus) offered browse, forage legume and grass species. J. Agric. Sci. 125, 99–107. https://doi.org/10.1017/S0021859600074554 (1995).Article 

    Google Scholar 
    58.Johnsingh, A. J. T. & Sankar, K. Food plants of chital, sambar and cattle on Mundanthurai Plateau, Tamil Nadu, south India. Mammalia 55, 57–66. https://doi.org/10.1515/mamm.1991.55.1.57 (1991).Article 

    Google Scholar 
    59.Steinheim, G., Wegge, P., Fjellstad, J. I., Jnawali, S. R. & Weladji, R. B. Dry season diets and habitat use of sympatric Asian elephants (Elephas maximus) and greater one-horned rhinoceros (Rhinocerus unicornis) in Nepal. J. Zool. 265, 377–385. https://doi.org/10.1017/S0952836905006448 (2005).Article 

    Google Scholar 
    60.Bakker, E. S., Ritchie, M. E., Olff, H., Milchunas, D. G. & Knops, J. M. H. Herbivore impact on grassland plant diversity depends on habitat productivity and herbivore size. Ecol. Lett. 9, 780–788. https://doi.org/10.1111/j.1461-0248.2006.00925.x (2006).Article 
    PubMed 

    Google Scholar 
    61.Edwards, G. R. & Crawley, M. J. Herbivores, seed banks and seedling recruitment in mesic grassland. J. Ecol. 87, 423–435. https://doi.org/10.1046/j.1365-2745.1999.00363.x (1999).Article 

    Google Scholar 
    62.Marquis, R. J. The role of herbivores in terrestrial trophic cascades. In: Trophic Cascades: Predators, Prey and the Changing Dynamics of Nature, (eds. Terborgh, J. & Estes, J. A.) 109–123, (Island Press, 2010).63.Parikh, G. L. et al. The influence of plant defensive chemicals, diet composition, and winter severity on the nutritional condition of a free-ranging, generalist herbivore. Oikos 126, 1–8. https://doi.org/10.1111/oik.03359 (2017).Article 

    Google Scholar 
    64.Yadava, M. K. Kaziranga National Park: Detailed Report on Issues and Possible Solutions of Long-Term Protection of the Greater One-horned Rhinoceros in Kaziranga National Park Pursuant to the Order of the Hon’ble Guwahati High Court. 1–402 (Government of Assam, India, 2014).65.Champion, H. G. & Seth, S. K. A Revised Survey of the Forest Types of India (Govt. of India Press, 1968).
    Google Scholar 
    66.Sharma, G. Studies on the mammalian diversity of Kaziranga National Park, Assam, India with their conservation status. J. New Biol. Rep. 7, 15–19 (2018).CAS 

    Google Scholar 
    67.Shrestha, R., Wegge, P. & Koirala, R. A. Summer diets of wild and domestic ungulates in Nepal Himalaya. J. Zool. 266, 111–119. https://doi.org/10.1017/S0952836905006527 (2005).Article 

    Google Scholar 
    68.Sparks, D. R. & Malechek, J. C. Estimating percentage dry weight in diets using a microscopic technique. J. Range Manag. 21, 264–265. https://doi.org/10.2307/3895829 (1968).Article 

    Google Scholar 
    69.Satkopan, S. Key to identification of plant remains in animal dropping. J. Bombay Nat. Hist. Soc. 69, 139–150 (1972).
    Google Scholar 
    70.Johnson, M. K., Wofford, H. H. & Pearson, H. A. Microhistological Techniques for Food Habits Analyses (U.S. Department of Agriculture, 1983).Book 

    Google Scholar 
    71.Jain, S. K. & Hajra, P. K. On the botany of Manas Wild Life Sanctuary in Assam. Bull. Bot. Surv. Ind. 17, 75–86 (1975).
    Google Scholar 
    72.Hajra, P. K. & Jain, S. K. Botany of Kaziranga and Manas (Surya International Publications, 1994).
    Google Scholar 
    73.Rahmani, A. R., Kasambe, R., Prabhu, S., Khot, R. & Bajaru, S. Biodiversity Studies at Kaziranga National Park. (2016).74.Vila, A. R., Galende, G. I. & Pastore, H. Feeding ecology of the endangered huemul (Hippocamelus bisulcus) in Los Alerces National Park, Argentina. Mastozool. Neotrop. 16, 423–431 (2009).
    Google Scholar 
    75.Borah, S. B., Sivasankar, T., Ramya, M. N. S. & Raju, P. L. N. Flood inundation mapping and monitoring in Kaziranga National Park, Assam using Sentinel-1 SAR data. Environ. Monit. Assess. https://doi.org/10.1007/s10661-018-6893-y (2018).Article 
    PubMed 

    Google Scholar 
    76.De Barba, M. et al. Comparing opportunistic and systematic sampling methods for non-invasive genetic monitoring of a small translocated brown bear population. J. Appl. Ecol. 47, 172–181. https://doi.org/10.1111/j.1365-2664.2009.01752 (2010).Article 

    Google Scholar 
    77.Jachmann, H. & Bell, R. H. V. The use of elephant droppings in assessing numbers, occupance and age structure: A refinement of the method. Afr. J. Ecol. 22, 127–141. https://doi.org/10.1111/j.1365-2028.1984.tb00686.x (1984).Article 

    Google Scholar 
    78.Chaturvedi, R. K. & Sankar, K. Laboratory Manual for the Physico-Chemical Analysis of Soil, Water and Plant (Wildlife Institute of India, 2006).
    Google Scholar 
    79.Colwell, R. K. & Elsensohn, J. E. EstimateS turns 20: Statistical estimation of species richness and shared species from samples, with non-parametric extrapolation. Ecography 37, 609–613. https://doi.org/10.1111/ecog.00814 (2014).Article 

    Google Scholar 
    80.Colwell, R. K. et al. Models and estimators linking individual-based and sample-based rarefaction, extrapolation and comparison of assemblages. J. Plant Ecol. 5, 3–21. https://doi.org/10.1093/jpe/rtr044 (2012).Article 

    Google Scholar 
    81.Dormann, C. F., Gruber, B. & FrĂŒnd, J. Introducing the bipartite package: Analysing ecological networks. R News 8, 8–11 (2008).
    Google Scholar 
    82.Barton, K. & Barton, M. K. Package ‘MuMIn’. R package version, 1 (2019).83.Harrell Jr, F. E. & Harrell Jr, M. F. E. Package ‘Hmisc’. CRAN2018, 2019, 235–236 (2019).84.Wei, T. et al. Package ‘corrplot’: Visualization of a correlation matrix. Statistician 56, 316–324 (2017).
    Google Scholar  More

  • in

    Growth at the limits: comparing trace metal limitation of a freshwater cyanobacterium (Dolichospermum lemmermannii) and a freshwater diatom (Fragilaria crotonensis)

    1.Galloway, J. N. et al. Trace metals in atmospheric deposition: A review and assessment. Atmos. Environ. 16, 1677–1700 (1982).CAS 
    ADS 

    Google Scholar 
    2.Dodds, W. K., Perkin, J. S. & Gerken, J. E. Human impact on freshwater ecosystem services: A global perspective. Environ. Sci. Technol. 47, 9061–9068 (2013).CAS 
    PubMed 
    ADS 

    Google Scholar 
    3.Rigosi, A., Carey, C. C., Ibelings, B. W. & Brookes, J. D. The interaction between climate warming and eutrophication to promote cyanobacteria is dependent on trophic state and varies among taxa. Limnol. Oceanogr. 59, 99–114 (2014).ADS 

    Google Scholar 
    4.Dokulil, M. T. & Teubner, K. Eutrophication and climate change: Present situation and future scenarios. In Eutrophication: Causes, Consequences and Control (eds Ansari, A. A. et al.) 1–16 (Springer, 2011).
    Google Scholar 
    5.Codd, G. A., Lindsay, J., Young, F. M., Morrison, L. F. & Metcalf, J. S. Harmful Cyanobacteria (Springer, 2005).
    Google Scholar 
    6.Harland, F. M. J., Wood, S. A., Moltchanova, E., Williamson, W. M. & Gaw, S. Phormidium autumnale growth and anatoxin-a production under iron and copper stress. Toxins (Basel). 5, 2504–2521 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    7.Zurawell, R. W., Chen, H., Burke, J. M. & Prepas, E. E. Hepatotoxic cyanobacteria: A review of the biological importance of microcystins in freshwater environments. J. Toxicol. Environ. Health B 8, 1–37 (2005).CAS 

    Google Scholar 
    8.Funari, E. & Testai, E. Human health risk assessment related to cyanotoxins exposure. Crit. Rev. Toxicol. 38, 97–125 (2008).CAS 
    PubMed 

    Google Scholar 
    9.Brooks, B. W. et al. Are harmful algal blooms becoming the greatest inland water quality threat to public health and aquatic ecosystems?. Environ. Toxicol. Chem. 35, 6–13 (2016).CAS 
    PubMed 

    Google Scholar 
    10.Pick, F. R. & Lean, D. R. S. The role of macronutrients (C, N, P) in controlling cyanobacterial dominance in temperate lakes. N. Z. J. Mar. Freshw. Res. 21, 425–434 (1987).CAS 

    Google Scholar 
    11.Schindler, A. D. W. Evolution of phosphorus limitation in lakes. Science 195, 260–262 (1977).CAS 
    PubMed 
    ADS 

    Google Scholar 
    12.Kumar, K., Mella-Herrera, R. A. & Golden, J. W. Cyanobacterial heterocysts. Cold Spring Harb. Perspect. Biol. 2, 1–20 (2010).
    Google Scholar 
    13.Paerl, H. W., Fulton, R. S., Moisander, P. H. & Dyble, J. Harmful freshwater algal blooms, with an emphasis on cyanobacteria. Sci. World J. 1, 76–113 (2001).CAS 

    Google Scholar 
    14.Paerl, H. W., Hall, N. S. & Calandrino, E. S. Controlling harmful cyanobacterial blooms in a world experiencing anthropogenic and climatic-induced change. Sci. Total Environ. 409, 1739–1745 (2011).CAS 
    PubMed 
    ADS 

    Google Scholar 
    15.Higgins, S. N. et al. Biological nitrogen fixation prevents the response of a eutrophic lake to reduced loading of nitrogen: Evidence from a 46-year whole-lake experiment. Ecosystems 21, 1088–1100 (2018).CAS 

    Google Scholar 
    16.Dolman, A. M. et al. Cyanobacteria and cyanotoxins: The influence of nitrogen versus phosphorus. PLoS ONE 7, e38757 (2012).CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    17.Schoffman, H., Lis, H., Shaked, Y. & Keren, N. Iron-nutrient interactions within phytoplankton. Front. Plant Sci. 7, 1223 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    18.Needoba, J. A., Foster, R. A., Sakamoto, C., Zehr, J. P. & Johnson, K. S. Nitrogen fixation by unicellular diazotrophic cyanobacteria in the temperate oligotrophic North Pacific Ocean. Limnol. Oceanogr. 52, 1317–1327 (2007).CAS 
    ADS 

    Google Scholar 
    19.Romero, I. C., Klein, N. J., Sañudo-Wilhelmy, S. A. & Capone, D. G. Potential trace metal co-limitation controls on N2 fixation and NO3- uptake in lakes with varying trophic status. Front. Microbiol. 4, 1–12 (2013).CAS 

    Google Scholar 
    20.Newton, W. E. Physiology, biochemistry, and molecular biology of nitrogen fixation. In Biology of the Nitrogen Cycle 109–129 (Elsevier B. V, 2007).
    Google Scholar 
    21.Salama, Z. A., El-Fouly, M. M., Lazova, G. & Popova, L. P. Carboxylating enzymes and carbonic anhydrase functions were suppressed by zinc deficiency in maize and chickpea plants. Acta Physiol. Plant. 28, 445–451 (2006).CAS 

    Google Scholar 
    22.SĂŒltemeyer, D. Carbonic anhydrase in eukaryotic algae: Characterization, regulation, and possible function during photosynthesis. Can. J. Bot. 76, 962–972 (1998).
    Google Scholar 
    23.Vallee, B. L. & Auld, D. S. Zinc coordination, function, and structure of zinc enzymes and other proteins. Biochemistry 29, 5647–5659 (1990).CAS 
    PubMed 

    Google Scholar 
    24.Wu, F. Y. & Wu, C. W. Zinc in DNA replication and transcription. Annu. Rev. Nutr. 7, 251–272 (1987).CAS 
    PubMed 

    Google Scholar 
    25.Beyer, W., Imlay, J. & Fridovich, I. Superoxide dismutases. Prog. Nucleic Acid Res. Mol. Biol. 40, 221–253 (1991).CAS 
    PubMed 

    Google Scholar 
    26.Holm-Hansen, O., Gerloff, G. H. & Skogg, F. Cobalt as an essential element for blue-green algae. Physiol. Plant. 7, 665–675 (1954).CAS 

    Google Scholar 
    27.Sunda, W. G. & Huntsman, S. A. Cobalt and zinc interreplacement in marine phytoplankton: Biological and geochemical implications. Limnol. Oceanogr. 40, 1404–1417 (1995).CAS 
    ADS 

    Google Scholar 
    28.Steffens, G. C. M., Biewald, R. & Buse, G. Cytochrome c oxidase is three-copper, two-heme-A protein. Eur. J. Biochem. 164, 295–300 (1987).CAS 
    PubMed 

    Google Scholar 
    29.Price, R. C., Mortimer, N., Smith, I. E. M. & Maas, R. Whole-rock geochemical reference data for Torlesse and Waipapa terranes, North Island, New Zealand. N. Z. J. Geol. Geophys. 58, 213–228 (2015).CAS 

    Google Scholar 
    30.Downs, T. M., Schallenberg, M. & Burns, C. W. Responses of lake phytoplankton to micronutrient enrichment: A study in two New Zealand lakes and an analysis of published data. Aquat. Sci. 70, 347–360 (2008).CAS 

    Google Scholar 
    31.Bayer, T. K., Schallenberg, M. & Martin, C. E. Investigation of nutrient limitation status and nutrient pathways in Lake Hayes, Otago, New Zealand: A case study for integrated lake assessment. N. Z. J. Mar. Freshw. Res. 42, 285–295 (2008).CAS 

    Google Scholar 
    32.Glass, J. B., Axler, R. P., Chandra, S. & Goldman, C. R. Molybdenum limitation of microbial nitrogen assimilation in aquatic ecosystems and pure cultures. Front. Microbiol. 3, 1–11 (2012).
    Google Scholar 
    33.Sterner, R. W. et al. Phosphorus and trace metal limitation of algae and bacteria in Lake Superior. Limnol. Oceanogr. 49, 495–507 (2004).CAS 
    ADS 

    Google Scholar 
    34.Vrede, T. & Tranvik, L. J. Iron constraints on planktonic primary production in oligotrophic lakes. Ecosystems 9, 1094–1105 (2006).CAS 

    Google Scholar 
    35.North, R. L., Guildford, S. J., Smith, R. E. H., Havens, S. M. & Twiss, M. R. Evidence for phosphorus, nitrogen, and iron colimitation of phytoplankton communities in Lake Erie. Limnol. Oceanogr. 52, 315–328 (2007).CAS 
    ADS 

    Google Scholar 
    36.Kelly, L. T. et al. Trace metal and nitrogen concentrations differentially affect bloom forming cyanobacteria of the genus Dolichospermum. Aquat. Sci. 83, 1–11 (2021).
    Google Scholar 
    37.Sorichetti, R. J., Creed, I. F. & Trick, C. G. Iron and iron-binding ligands as cofactors that limit cyanobacterial biomass across a lake trophic gradient. Freshw. Biol. 61, 146–157 (2016).CAS 

    Google Scholar 
    38.Wood, S. A. et al. Contrasting cyanobacterial communities and microcystin concentrations in summers with extreme weather events: Insights into potential effects of climate change. Hydrobiologia 785, 71–89 (2017).CAS 

    Google Scholar 
    39.Li, X., Dreher, T. W. & Li, R. An overview of diversity, occurrence, genetics and toxin production of bloom-forming Dolichospermum (Anabaena) species. Harmful Algae 54, 54–68 (2016).CAS 
    PubMed 

    Google Scholar 
    40.Hawes, I. & Smith, R. Seasonal dynamics of epilithic periphyton in oligotrophic lake Taupo, New Zealand. N. Z. J. Mar. Freshw. Res. 28, 1–12 (1994).
    Google Scholar 
    41.Verburg, P. & Albert, A. Taupo Long Term Monitoring (Springer, 2018).
    Google Scholar 
    42.Marañón, E. Cell Size as a key determinant of phytoplankton metabolism and community structure. Ann. Rev. Mar. Sci. 7, 241–264 (2015).PubMed 

    Google Scholar 
    43.Kagami, M. & Urabe, J. Phytoplankton growth rate as a function of cell size: An experimental test in Lake Biwa. Limnology 2, 111–117 (2001).
    Google Scholar 
    44.Kraemer, S. M., Duckworth, O. W., Harrington, J. M. & Schenkeveld, W. D. C. Metallophores and trace metal biogeochemistry. Aquat. Geochem. 21, 159–195 (2015).CAS 

    Google Scholar 
    45.Twiss, M. R., Auclair, J.-C. & Charlton, M. N. An investigation into iron-stimulated phytoplankton productivity in epipelagic Lake Erie during thermal stratification using trace metal clean techniques. Can. J. Fish. Aquat. Sci. 57, 86–95 (2000).CAS 

    Google Scholar 
    46.Feng, Y., Fu, F. & Hutchins, D. A. Trace metal clean culture techniques. Res. Methods Environ. Physiol. Aquat. Sci. https://doi.org/10.1007/978-981-15-5354-7_36 (2021).Article 

    Google Scholar 
    47.Rhodes, L. et al. The Cawthron institute culture collection of micro-algae: A significant national collection. N. Z. J. Mar. Freshw. Res. 50, 291–316 (2016).
    Google Scholar 
    48.Bolch, C. J. S. & Blackburn, S. I. Isolation and purification of Australian isolates of the toxic cyanobacterium Microcystis aeruginosa KĂŒtz. J. Appl. Phycol. 8, 5–13 (1996).
    Google Scholar 
    49.Worms, I., Simon, D. F., Hassler, C. S. & Wilkinson, K. J. Bioavailability of trace metals to aquatic microorganisms: Importance of chemical, biological and physical processes on biouptake. Biochimie 88, 1721–1731 (2006).CAS 
    PubMed 

    Google Scholar 
    50.Gobler, C. J., Hutchins, D. A., Fisher, N. S., Cosper, E. M. & Sañudo-Wilhelmy, S. A. Release and bioavailability of C, N, P, Se, and Fe following viral lysis of a marine chrysophyte. Limnol. Oceanogr. 42, 1492–1504 (1997).CAS 
    ADS 

    Google Scholar 
    51.Bell, W. & Mitchell, R. Chemotactic and growth responses of marine bacteria to algal extracellular products. Biol. Bull. 143, 265–277 (1972).
    Google Scholar 
    52.Seymour, J. R., Amin, S. A., Raina, J. B. & Stocker, R. Zooming in on the phycosphere: The ecological interface for phytoplankton-bacteria relationships. Nat. Microbiol. 2, 65 (2017).
    Google Scholar 
    53.Helliwell, K. E. et al. Cyanobacteria and eukaryotic algae use different chemical variants of Vitamin B12. Curr. Biol. 26, 999–1008 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    54.Anderson, M. A. & Morel, F. M. M. The influence of aqueous iron chemistry on the uptake of iron by the coastal diatom Thallasiosira weissflogii. Limnol. Oceanogr. 27, 789–813 (1982).CAS 
    ADS 

    Google Scholar 
    55.Lis, H., Kranzler, C., Keren, N. & Shaked, Y. A comparative study of Iron uptake rates and mechanisms amongst marine and fresh water Cyanobacteria: Prevalence of reductive Iron uptake. Life 5, 841–860 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    56.Bruland, K. W., Knauer, G. A. & Martin, J. H. Zinc in north-east Pacific water. Nature 271, 741–743 (1978).CAS 
    ADS 

    Google Scholar 
    57.Saeed, H. et al. Regulation of phosphorus bioavailability by iron nanoparticles in a monomictic lake. Sci. Rep. 8, 1–14 (2018).
    Google Scholar 
    58.Baken, S., Degryse, F., Verheyen, L., Merckx, R. & Smolders, E. Metal complexation properties of freshwater dissolved organic matter are explained by its aromaticity and by anthropogenic ligands. Environ. Sci. Technol. 45, 2584–2590 (2011).CAS 
    PubMed 
    ADS 

    Google Scholar 
    59.Campbell, P. G. C. Interactions between trace metals and aquatic organisms: A critique of the free-ion activity model. In Metal Speciation and Bioavailability in Aquatic Systems (eds Tessier, A. & Turner, D. R.) 45–102 (Wiley, 1995).
    Google Scholar 
    60.Scharek, R., Van Leeuwe, M. A. & De Baar, H. J. W. Responses of Southern Ocean phytoplankton to the addition of trace metals. Deep. Res. Part II 44, 209–227 (1997).CAS 

    Google Scholar 
    61.Facey, J. A., Apte, S. C. & Mitrovic, S. M. A review of the effect of trace metals on freshwater cyanobacterial growth and toxin production. Toxins (Basel). 11, 1–18 (2019).
    Google Scholar 
    62.Zhang, X. et al. Effect of micronutrients on algae in different regions of Taihu, a large, spatially diverse, hypereutrophic lake. Water Res. 151, 500–514 (2019).CAS 
    PubMed 

    Google Scholar 
    63.Wever, A. D. et al. Differential response of phytoplankton to additions of nitrogen, phosphorus and iron in Lake Tanganyika. Freshw. Biol. 53, 264–277 (2008).
    Google Scholar 
    64.Nalewajko, C. & Murphy, T. P. Effects of temperature, and availability of nitrogen and phosphorus on the abundance of Anabaena and Microcystis in Lake Biwa, Japan: An experimental approach. Limnology 2, 45–48 (2001).
    Google Scholar 
    65.Kagami, M., Gurung, T. B., Yoshida, T. & Urabe, J. To sink or to be lysed? Contrasting fate of two large phytoplankton species in Lake Biwa. Limnol. Oceanogr. 51, 2775–2786 (2006).ADS 

    Google Scholar 
    66.Hartig, J. H. & Wallen, D. G. The influence of light and temperature on growth and photosynthesis of fragilaria crotonensis kitton. J. Freshw. Ecol. 3, 371–382 (1986).
    Google Scholar 
    67.Tilman, D. Tests of resource competition theory using four species of Lake Michigan algae. Ecology 62, 802–815 (1981).
    Google Scholar 
    68.Tompkins, T. & Blinn, D. W. The effect of mercury on the growth rate of Fragilaria crotonensis kitton and Asterionella formosa Hass. Hydrobiologia 49, 111–116 (1976).CAS 

    Google Scholar 
    69.Kazamia, E. et al. Endocytosis-mediated siderophore uptake as a strategy for Fe acquisition in diatoms. Sci. Adv. 4, aar4536 (2018).ADS 

    Google Scholar 
    70.Strzepek, R. F. & Harrison, P. J. Photosynthetic architecture differs in coastal and oceanic diatoms. Nature 431, 689–692 (2004).CAS 
    PubMed 
    ADS 

    Google Scholar 
    71.Strzepek, R. F., Boyd, P. W. & Sunda, W. G. Photosynthetic adaptation to low iron, light, and temperature in Southern Ocean phytoplankton. Proc. Natl. Acad. Sci. U. S. A. 116, 4388–4393 (2019).CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    72.Raven, J. A. The iron and molybdenum use efficiencies of plant growth with different energy, carbon and nitrogen sources. New Phytol. 109, 279–287 (1988).CAS 

    Google Scholar 
    73.Kranzler, C., Rudolf, M., Keren, N. & Schleiff, E. Iron in cyanobacteria. Adv. Bot. Res. 65, 57–105 (2013).CAS 

    Google Scholar  More