Native soil amendments combined with commercial arbuscular mycorrhizal fungi increase biomass of Panicum amarum
1.Elmqvist, T. et al. Benefits of restoring ecosystem services in urban areas. Curr. Opin. Environ. Sustain. 14, 101–108 (2015).Article
Google Scholar
2.Jones, H. P. et al. Restoration and repair of Earth’s damaged ecosystems. Proc. R. Soc. B Biol. Sci. https://doi.org/10.1098/rspb.2017.2577 (2018).Article
Google Scholar
3.Rey Benayas, J. M., Newton, A. C., Diaz, A. & Bullock, J. M. Enhancement of biodiversity and ecosystem services by ecological restoration: A meta-analysis. Science 325, 1121–1124. https://doi.org/10.1126/science.1172460 (2009).ADS
CAS
Article
PubMed
Google Scholar
4.Brudvig, L. A. et al. Interpreting variation to advance predictive restoration science. J. Appl. Ecol. 54, 1018–1027. https://doi.org/10.1111/1365-2664.12938 (2017).Article
Google Scholar
5.Suding, K. N. Toward an era of restoration in ecology: Successes, failures, and opportunities ahead. Annu. Rev. Ecol. Evol. Syst. 42, 465–487. https://doi.org/10.1146/annurev-ecolsys-102710-145115 (2011).Article
Google Scholar
6.Reynolds, H. L., Packer, A., Bever, J. D. & Clay, K. Grassroots ecology: Plant-microbe-soil interactions as drivers of plant community structure and dynamics. Ecology 84, 2281–2291 (2003).Article
Google Scholar
7.Van Der Heijden, M. G. A., Bardgett, R. D. & Van Straalen, N. M. The unseen majority: Soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol. Lett. 11, 296–310 (2008).Article
Google Scholar
8.Hoeksema, J. D. et al. A meta-analysis of context-dependency in plant response to inoculation with mycorrhizal fungi. Ecol. Lett. 13, 394–407. https://doi.org/10.1111/j.1461-0248.2009.01430.x (2010).Article
PubMed
Google Scholar
9.Schultz, P. A. et al. Evidence of a mycorrhizal mechanism for the adaptation of Andropogon gerardii (Poaceae) to high- and low-nutrient prairies. Am. J. Bot. 88, 1650–1656. https://doi.org/10.2307/3558410 (2001).CAS
Article
PubMed
Google Scholar
10.Koske, R. E., & Gemma, J. N. Mycorrhizae and succession in plantings of beachgrass in sand dunes. Am. J. Bot. 84(1), 118–130 (1997).Article
Google Scholar
11.Smith, M. E., Facelli, J. M. & Cavagnaro, T. R. Interactions between soil properties, soil microbes and plants in remnant-grassland and old-field areas: a reciprocal transplant approach. Plant Soil 433, 127–145. https://doi.org/10.1007/s11104-018-3823-2 (2018).CAS
Article
Google Scholar
12.Tipton, A. G., Middleton, E. L., Spollen, W. G. & Galen, C. Anthropogenic and soil environmental drivers of arbuscular mycorrhizal community composition differ between grassland ecosystems. Botany 97, 85–99. https://doi.org/10.1139/cjb-2018-0072 (2019).Article
Google Scholar
13.Hamman, S. T. & Hawkes, C. V. Biogeochemical and microbial legacies of non-native grasses can affect restoration success. Restor. Ecol. 21, 58–66. https://doi.org/10.1111/j.1526-100X.2011.00856.x (2013).Article
Google Scholar
14.Emery, S. M. & Rudgers, J. A. Beach restoration efforts influenced by plant variety, soil inoculum, and site effects. J. Coast. Res. 27, 636. https://doi.org/10.2112/jcoastres-d-10-00120.1 (2010).Article
Google Scholar
15.Sylvia, D. M., Jarstfer, A. G. & Vosátka, M. Comparisons of vesicular-arbuscular mycorrhizal species and inocula formulations in a commercial nursery and on diverse Florida beaches. Biol. Fertil. Soils 16, 139–144. https://doi.org/10.1007/BF00369416 (1993).Article
Google Scholar
16.Sylvia, D. M. & Will, M. E. Establishment of vesicular-arbuscular mycorrhizal fungi and other microorganisms on a beach replenishment site in Florida. Appl. Environ. Microbiol. 54, 348–352 (1988).ADS
CAS
Article
Google Scholar
17.Wubs, E. R. J., van der Putten, W. H., Bosch, M. & Bezemer, T. M. Soil inoculation steers restoration of terrestrial ecosystems. Nat. Plants 2, 16107. https://doi.org/10.1038/nplants.2016.107 (2016).Article
PubMed
Google Scholar
18.Bothe, H., Turnau, K. & Regvar, M. The potential role of arbuscular mycorrhizal fungi in protecting endangered plants and habitats. Mycorrhiza 20, 445–457. https://doi.org/10.5586/asbp.2008.019 (2010).Article
PubMed
Google Scholar
19.Middleton, E. L. & Bever, J. D. Inoculation with a native soil community advances succession in a grassland restoration. Restor. Ecol. 20, 218–226. https://doi.org/10.1111/j.1526-100X.2010.00752.x (2012).Article
Google Scholar
20.Crawford, K. M., Busch, M. H., Locke, H. & Luecke, N. C. Native soil microbial amendments generate trade-offs in plant productivity, diversity, and soil stability in coastal dune restorations. Restor. Ecol. https://doi.org/10.1111/rec.13073 (2019).Article
Google Scholar
21.Eom, A. H., Hartnett, D. C. & Wilson, G. W. T. Host plant species effects on arbuscular mycorrhizal fungal communities in tallgrass prairie. Oecologia 122, 435–444. https://doi.org/10.1007/s004420050050 (2000).ADS
Article
PubMed
Google Scholar
22.Brundrett, M. C. & Tedersoo, L. Evolutionary history of mycorrhizal symbioses and global host plant diversity. New Phytol. 220, 1108–1115 (2018).Article
Google Scholar
23.Bever, J. D., Mangan, S. A. & Alexander, H. M. Maintenance of plant species diversity by pathogens. Annu. Rev. Ecol. Evol. Syst. 46, 305–325. https://doi.org/10.1146/annurev-ecolsys-112414-054306 (2015).Article
Google Scholar
24.Crawford, K. M. et al. When and where plant-soil feedback may promote plant coexistence: a meta-analysis. Ecol. Lett. 22, 13278. https://doi.org/10.1111/ele.13278 (2019).Article
Google Scholar
25.Mills, K. E. & Bever, J. D. Maintenance of diversity within plant communities: Soil pathogens as agents of negative feedback. Ecology 79, 1595–1601. https://doi.org/10.1890/0012-9658(1998)079[1595:MODWPC]2.0.CO;2 (1998).Article
Google Scholar
26.Koziol, L. et al. The plant microbiome and native plant restoration: The example of native mycorrhizal fungi. Bioscience 68, 996–1006 (2018).Article
Google Scholar
27.Maltz, M. R. & Treseder, K. K. Sources of inocula influence mycorrhizal colonization of plants in restoration projects: A meta-analysis. Restor. Ecol. 23, 625–634. https://doi.org/10.1111/rec.12231 (2015).Article
Google Scholar
28.Koziol, L. & Bever, J. D. AMF, phylogeny, and succession: Specificity of response to mycorrhizal fungi increases for late-successional plants. Ecosphere https://doi.org/10.1002/ecs2.1555 (2016).Article
Google Scholar
29.Middleton, E. L. et al. Locally adapted arbuscular mycorrhizal fungi improve vigor and resistance to herbivory of native prairie plant species. Ecosphere 6, 276. https://doi.org/10.1890/ES15-00152.1 (2015).Article
Google Scholar
30.Solís-Domínguez, F. A., Valentín-Vargas, A., Chorover, J. & Maier, R. M. Effect of arbuscular mycorrhizal fungi on plant biomass and the rhizosphere microbial community structure of mesquite grown in acidic lead/zinc mine tailings. Sci. Total Environ. 409, 1009–1016. https://doi.org/10.1016/j.scitotenv.2010.11.020 (2011).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
31.Vogelsang, K. M., Reynolds, H. L. & Bever, J. D. Mycorrhizal fungal identity and richness determine the diversity and productivity of a tallgrass prairie system. New Phytol. 172, 554–562. https://doi.org/10.1111/j.1469-8137.2006.01854.x (2006).Article
PubMed
Google Scholar
32.Larimer, A. L., Bever, J. D. & Clay, K. Consequences of simultaneous interactions of fungal endophytes and arbuscular mycorrhizal fungi with a shared host grass. Oikos 121, 2090–2096. https://doi.org/10.1111/j.1600-0706.2012.20153.x (2012).Article
Google Scholar
33.Sikes, B. A., Cottenie, K. & Klironomos, J. N. Plant and fungal identity determines pathogen protection of plant roots by arbuscular mycorrhizas. J. Ecol. 97, 1274–1280. https://doi.org/10.1111/j.1365-2745.2009.01557.x (2009).Article
Google Scholar
34.Defeo, O. et al. Threats to sandy beach ecosystems: A review. Estuar. Coast. Shelf Sci. 81, 1–12 (2009).ADS
Article
Google Scholar
35.Feagin, R. A. et al. Going with the flow or against the grain? The promise of vegetation for protecting beaches, dunes, and barrier islands from erosion. Front. Ecol. Environ. 13, 203–210 (2015).Article
Google Scholar
36.Feagin, R. A. et al. The role of beach and sand dune vegetation in mediating wave run up erosion. Estuar Coast Shelf Sci. 219, 97–106. https://doi.org/10.1016/j.ecss.2019.01.018 (2019).ADS
Article
Google Scholar
37.Sigren, J. M., Figlus, J. & Armitage, A. R. Coastal sand dunes and dune vegetation: Restoration, erosion, and storm protection. Shore Beach 82, 5–12 (2014).
Google Scholar
38.Sigren, J. M. et al. The effects of coastal dune volume and vegetation on storm-induced property damage: Analysis from Hurricane Ike. J. Coast Res. 341, 164–173. https://doi.org/10.2112/jcoastres-d-16-00169.1 (2018).Article
Google Scholar
39.Silva, R. et al. Response of vegetated dune-beach systems to storm conditions. Coast. Eng. 109, 53–62. https://doi.org/10.1016/j.coastaleng.2015.12.007 (2016).Article
Google Scholar
40.Lane, C., Wright, S. J., Roncal, J. & Maschinski, J. Characterizing environmental gradients and their influence on vegetation zonation in a subtropical coastal sand dune system. J. Coast. Res. 4, 213–224. https://doi.org/10.2112/07-0853.1 (2008).CAS
Article
Google Scholar
41.Miller, T. E., Gornish, E. S. & Buckley, H. L. Climate and coastal dune vegetation: Disturbance, recovery, and succession. Plant Ecol. 206, 97–104. https://doi.org/10.1007/s11258-009-9626-z (2010).Article
Google Scholar
42.Hewitt, E. J. & Eden, A. Sand and water culture methods used in the study of plant nutrition. Analyst 78, 329–330 (1953).
Google Scholar
43.R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, Austria). https://www.R-project.org/ (2020).
Google Scholar
44.Farrer, E. C. & Goldberg, D. E. Litter drives ecosystem and plant community changes in cattail invasion. Ecol. Appl. 19, 398–412. https://doi.org/10.1890/08-0485.1 (2009).Article
PubMed
Google Scholar
45.Bauer, J. T., Koziol, L. & Bever, J. D. Local adaptation of mycorrhizae communities changes plant community composition and increases aboveground productivity. Oecologia https://doi.org/10.1007/s00442-020-04598-9 (2020).Article
PubMed
Google Scholar
46.Ohsowski, B. M., Klironomos, J. N., Dunfield, K. E. & Hart, M. M. The potential of soil amendments for restoring severely disturbed grasslands. Appl. Soil. Ecol. 60, 77–83. https://doi.org/10.1016/j.apsoil.2012.02.006 (2012).Article
Google Scholar
47.Koziol, L. & Bever, J. D. The missing link in grassland restoration: arbuscular mycorrhizal fungi inoculation increases plant diversity and accelerates succession. J. Appl. Ecol. 54, 1301–1309. https://doi.org/10.1111/1365-2664.12843 (2017).Article
Google Scholar
48.Bertness, M. D. & Callaway, R. Positive interactions in communities. Trends Ecol. Evol. 9, 191–193. https://doi.org/10.1016/0169-5347(94)90088-4 (1994).CAS
Article
PubMed
Google Scholar
49.Heneghan, L. et al. Integrating soil ecological knowledge into restoration management. Restor. Ecol. 16, 608–617. https://doi.org/10.1111/j.1526-100X.2008.00477.x (2008).Article
Google Scholar
50.Wubs, E. R. J. et al. Single introductions of soil biota and plants generate long-term legacies in soil and plant community assembly. Ecol. Lett. 22, 1145–1151 (2019).Article
Google Scholar
51.Hestrin, R., Hammer, E. C., Mueller, C. W. & Lehmann, J. Synergies between mycorrhizal fungi and soil microbial communities increase plant nitrogen acquisition. Commun. Biol. 2, 233–242. https://doi.org/10.1038/s42003-019-0481-8 (2019).CAS
Article
PubMed
PubMed Central
Google Scholar More