More stories

  • in

    The time course of molecular acclimation to seawater in a euryhaline fish

    1.Edwards, S. L. & Marshall, W. S. In Euryhaline Fishes. Fish Physiology Vol. 32 (eds Farrell Stephen, A. P. et al.) 1–44 (Academic Press, 2012).Chapter 

    Google Scholar 
    2.Evans, D. H., Piermarini, P. M. & Choe, K. P. The multifunctional fish gill: Dominant site of gas exchange, osmoregulation, acid-base regulation, and excretion of nitrogenous waste. Physiol. Rev. 85, 97–177. https://doi.org/10.1152/physrev.00050.2003 (2005).CAS 
    Article 
    PubMed 

    Google Scholar 
    3.Kultz, D. Physiological mechanisms used by fish to cope with salinity stress. J. Exp. Biol. 218, 1907–1914. https://doi.org/10.1242/jeb.118695 (2015).Article 
    PubMed 

    Google Scholar 
    4.Schultz, E. T. & McCormick, S. D. In Euryhaline Fishes. Fish Physiology Vol. 32 (eds Farrell, A. P. et al.) 477–533 (Academic Press, 2012).Chapter 

    Google Scholar 
    5.Scott, G. R., Richards, J. G., Forbush, B., Isenring, P. & Schulte, P. M. Changes in gene expression in gills of the euryhaline killifish Fundulus heteroclitus after abrupt salinity transfer. Am. J. Physiol. Cell Physiol. 287, C300–C309. https://doi.org/10.1152/ajpcell.00054.2004 (2004).CAS 
    Article 
    PubMed 

    Google Scholar 
    6.Deane, E. E. & Woo, N. Y. Differential gene expression associated with euryhalinity in sea bream (Sparus sarba). Am. J. Physiol. Regul. Integr. Comp. Physiol. 287, R1054–R1063. https://doi.org/10.1152/ajpregu.00347.2004 (2004).CAS 
    Article 
    PubMed 

    Google Scholar 
    7.Scott, G. R., Claiborne, J. B., Edwards, S. L., Schulte, P. M. & Wood, C. M. Gene expression after freshwater transfer in gills and opercular epithelia of killifish: Insight into divergent mechanisms of ion transport. J. Exp. Biol. 208, 2719–2729. https://doi.org/10.1242/jeb.01688 (2005).CAS 
    Article 
    PubMed 

    Google Scholar 
    8.Dymowska, A. K., Hwang, P. P. & Goss, G. G. Structure and function of ionocytes in the freshwater fish gill. Respir. Physiol. Neurobiol. 184, 282–292. https://doi.org/10.1016/j.resp.2012.08.025 (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    9.Hiroi, J. & McCormick, S. D. New insights into gill ionocyte and ion transporter function in euryhaline and diadromous fish. Respir. Physiol. Neurobiol. 184, 257–268. https://doi.org/10.1016/j.resp.2012.07.019 (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    10.Hsu, H. H., Lin, L. Y., Tseng, Y. C., Horng, J. L. & Hwang, P. P. A new model for fish ion regulation: Identification of ionocytes in freshwater- and seawater-acclimated medaka (Oryzias latipes). Cell Tissue Res. 357, 225–243. https://doi.org/10.1007/s00441-014-1883-z (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    11.Hwang, P. P. & Lin, L. Y. In The Physiology of Fishes Vol. 4 (eds Evans, D. H. et al.) 205–233 (CRC Press, 2013).
    Google Scholar 
    12.Evans, T. G. & Somero, G. N. A microarray-based transcriptomic time-course of hyper- and hypo-osmotic stress signaling events in the euryhaline fish Gillichthys mirabilis: Osmosensors to effectors. J. Exp. Biol. 211, 3636–3649. https://doi.org/10.1242/jeb.022160 (2008).CAS 
    Article 
    PubMed 

    Google Scholar 
    13.Fiol, D. F. & Kultz, D. Osmotic stress sensing and signaling in fishes. FEBS J. 274, 5790–5798. https://doi.org/10.1111/j.1742-4658.2007.06099.x (2007).CAS 
    Article 
    PubMed 

    Google Scholar 
    14.Kultz, D. The combinatorial nature of osmosensing in fishes. Physiology (Bethesda) 27, 259–275. https://doi.org/10.1152/physiol.00014.2012 (2012).CAS 
    Article 

    Google Scholar 
    15.Komoroske, L. M. et al. Sublethal salinity stress contributes to habitat limitation in an endangered estuarine fish. Evol. Appl. 9, 963–981. https://doi.org/10.1111/eva.12385 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    16.Foskett, J. K., Logsdon, C. D., Turner, T., Machen, T. E. & Bern, H. A. Differentiation of the chloride extrusion mechanism during seawater adaptation of a teleost fish, the cichlid Sarotherodon mossambicus. J. Exp. Biol. 93, 209–224 (1981).Article 

    Google Scholar 
    17.Katoh, F. & Kaneko, T. Short-term transformation and long-term replacement of branchial chloride cells in killifish transferred from seawater to freshwater, revealed by morphofunctional observations and a newly established “time-differential double fluorescent staining” technique. J. Exp. Biol. 206, 4113–4123. https://doi.org/10.1242/jeb.00659 (2003).Article 
    PubMed 

    Google Scholar 
    18.Uchida, K., Kaneko, T., Miyazaki, H., Hasegawa, S. & Hirano, T. Excellent salinity tolerance of mozambique tilapia (Oreochromis mossambicus): Elevated chloride cell activity in the branchial and opercular epithelia of the fish adapted to concentrated seawater. Zool. Sci. 17, 149–160. https://doi.org/10.2108/zsj.17.149 (2000).Article 

    Google Scholar 
    19.Whitehead, A., Roach, J. L., Zhang, S. & Galvez, F. Salinity- and population-dependent genome regulatory response during osmotic acclimation in the killifish (Fundulus heteroclitus) gill. J. Exp. Biol. 215, 1293–1305. https://doi.org/10.1242/jeb.062075 (2012).Article 
    PubMed 

    Google Scholar 
    20.Mundy, P. C., Jeffries, K. M., Fangue, N. A. & Connon, R. E. Differential regulation of select osmoregulatory genes and Na+/K+-ATPase paralogs may contribute to population differences in salinity tolerance in a semi-anadromous fish. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 240, 110584. https://doi.org/10.1016/j.cbpa.2019.110584 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    21.Jeffries, K. M. et al. Divergent transcriptomic signatures in response to salinity exposure in two populations of an estuarine fish. Evol. Appl. 12, 1212–1226. https://doi.org/10.1111/eva.12799 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    22.Lam, S. H. et al. Differential transcriptomic analyses revealed genes and signaling pathways involved in iono-osmoregulation and cellular remodeling in the gills of euryhaline Mozambique tilapia, Oreochromis mossambicus. BMC Genomics 15, 921. https://doi.org/10.1186/1471-2164-15-921 (2014).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    23.Evans, T. G. & Kultz, D. The cellular stress response in fish exposed to salinity fluctuations. J. Exp. Zool. A Ecol. Integr. Physiol. 333, 421–435. https://doi.org/10.1002/jez.2350 (2020).Article 
    PubMed 

    Google Scholar 
    24.Burg, M. B., Ferraris, J. D. & Dmitrieva, N. I. Cellular response to hyperosmotic stresses. Physiol. Rev. 87, 1441–1474. https://doi.org/10.1152/physrev.00056.2006 (2007).CAS 
    Article 
    PubMed 

    Google Scholar 
    25.Tine, M., Bonhomme, F., McKenzie, D. J. & Durand, J. D. Differential expression of the heat shock protein Hsp70 in natural populations of the tilapia, Sarotherodon melanotheron, acclimatised to a range of environmental salinities. BMC Ecol. 10, 11. https://doi.org/10.1186/1472-6785-10-11 (2010).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    26.Whitehead, A., Zhang, S., Roach, J. L. & Galvez, F. Common functional targets of adaptive micro- and macro-evolutionary divergence in killifish. Mol. Ecol. 22, 3780–3796. https://doi.org/10.1111/mec.12316 (2013).Article 
    PubMed 

    Google Scholar 
    27.Brennan, R. S., Galvez, F. & Whitehead, A. Reciprocal osmotic challenges reveal mechanisms of divergence in phenotypic plasticity in the killifish Fundulus heteroclitus. J. Exp. Biol. 218, 1212–1222. https://doi.org/10.1242/jeb.110445 (2015).Article 
    PubMed 

    Google Scholar 
    28.Kultz, D. Molecular and evolutionary basis of the cellular stress response. Annu. Rev. Physiol. 67, 225–257. https://doi.org/10.1146/annurev.physiol.67.040403.103635 (2005).CAS 
    Article 
    PubMed 

    Google Scholar 
    29.Takei, Y. & Hwang, P.-P. In Biology of Stress in Fish—Fish Physiology Vol. 35 (eds Schreck, C. B. et al.) 207–249 (Academic Press, 2016).Chapter 

    Google Scholar 
    30.Tseng, Y. C. & Hwang, P. P. Some insights into energy metabolism for osmoregulation in fish. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 148, 419–429. https://doi.org/10.1016/j.cbpc.2008.04.009 (2008).CAS 
    Article 
    PubMed 

    Google Scholar 
    31.Chen, X. L., Lui, E. Y., Ip, Y. K. & Lam, S. H. RNA sequencing, de novo assembly and differential analysis of the gill transcriptome of freshwater climbing perch Anabas testudineus after 6 days of seawater exposure. J. Fish Biol. 93, 215–228. https://doi.org/10.1111/jfb.13653 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    32.Nguyen, T. V., Jung, H., Nguyen, T. M., Hurwood, D. & Mather, P. Evaluation of potential candidate genes involved in salinity tolerance in striped catfish (Pangasianodon hypophthalmus) using an RNA-Seq approach. Mar. Genomics 25, 75–88. https://doi.org/10.1016/j.margen.2015.11.010 (2016).Article 
    PubMed 

    Google Scholar 
    33.Bœuf, G. & Payan, P. How should salinity influence fish growth?. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 130, 411–423. https://doi.org/10.1016/s1532-0456(01)00268-x (2001).Article 
    PubMed 

    Google Scholar 
    34.Makrinos, D. L. & Bowden, T. J. Natural environmental impacts on teleost immune function. Fish Shellfish Immunol. 53, 50–57. https://doi.org/10.1016/j.fsi.2016.03.008 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    35.Morgan, J. D. & Iwama, G. K. Effects of salinity on growth, metabolism, and ion regulation in juvenile rainbow and steelhead trout (Oncorhynchus mykiss) and fall chinook salmon (Oncorhynchus tshawytscha). Can. J. Fish. Aquat. Sci. 48, 2083–2094. https://doi.org/10.1139/f91-247 (1991).Article 

    Google Scholar 
    36.Whitehead, A., Roach, J. L., Zhang, S. & Galvez, F. Genomic mechanisms of evolved physiological plasticity in killifish distributed along an environmental salinity gradient. Proc. Natl. Acad. Sci. U.S.A. 108, 6193–6198. https://doi.org/10.1073/pnas.1017542108 (2011).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    37.Kozak, G. M., Brennan, R. S., Berdan, E. L., Fuller, R. C. & Whitehead, A. Functional and population genomic divergence within and between two species of killifish adapted to different osmotic niches. Evolution 68, 63–80. https://doi.org/10.1111/evo.12265 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    38.Hrbek, T. & Meyer, A. Closing of the Tethys Sea and the phylogeny of Eurasian killifishes (Cyprinodontiformes: Cyprinodontidae). J. Evol. Biol. 16, 17–36. https://doi.org/10.1046/j.1420-9101.2003.00475.x (2003).CAS 
    Article 
    PubMed 

    Google Scholar 
    39.Schunter, C. et al. Desert fish populations tolerate extreme salinity change to overcome hydrological constraints. bioRxiv. https://doi.org/10.1101/2021.05.14.444120 (2021).Article 

    Google Scholar 
    40.Marshall, J. C. et al. Go with the flow: The movement behaviour of fish from isolated waterhole refugia during connecting flow events in an intermittent dryland river. Freshw. Biol. 61, 1242–1258. https://doi.org/10.1111/fwb.12707 (2016).Article 

    Google Scholar 
    41.Kerezsy, A., Balcombe, S. R., Tischler, M. & Arthington, A. H. Fish movement strategies in an ephemeral river in the Simpson Desert, Australia. Austral Ecol. 38, 798–808. https://doi.org/10.1111/aec.12075 (2013).Article 

    Google Scholar 
    42.Martin, C. H., Crawford, J. E., Turner, B. J. & Simons, L. H. Diabolical survival in Death Valley: Recent pupfish colonization, gene flow and genetic assimilation in the smallest species range on earth. Proc. Biol. Sci. 283, 20152334. https://doi.org/10.1098/rspb.2015.2334 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    43.Mossop, K. D. et al. Dispersal in the desert: Ephemeral water drives connectivity and phylogeography of an arid-adapted fish. J. Biogeogr. 42, 2374–2388. https://doi.org/10.1111/jbi.12596 (2015).Article 

    Google Scholar 
    44.Collins, J. P., Young, C., Howell, J. & Minckley, W. L. Impact of flooding in a Sonoran desert stream, including elimination of an endangered fish population (Poeciliopsis O. occidentalis, Poeciliidae). Southwest. Nat. 26, 415–423. https://doi.org/10.2307/3671085 (1981).Article 

    Google Scholar 
    45.Meffe, G. K. Effects of abiotic disturbance on coexistence of predator–prey fish species. Ecology 65, 1525–1534. https://doi.org/10.2307/1939132 (1984).Article 

    Google Scholar 
    46.Lotan, R. Sodium, chloride and water balance in the euryhaline teleost Aphanius dispar (Rüppell) (Cyprinodontidae). Z. Vgl. Physiol. 65, 455–462. https://doi.org/10.1007/bf00299054 (1969).Article 

    Google Scholar 
    47.Lotan, R. Osmotic adjustment in the euryhaline teleost Aphanius dispar (Cyprinodontidae). Z. Vgl. Physiol. 75, 383–387. https://doi.org/10.1007/bf00630558 (1971).CAS 
    Article 

    Google Scholar 
    48.Plaut, I. Resting metabolic rate, critical swimming speed, and routine activity of the euryhaline cyprinodontid, Aphanius dispar, acclimated to a wide range of salinities. Physiol. Biochem. Zool. 73, 590–596. https://doi.org/10.1086/317746 (2000).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    49.Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120. https://doi.org/10.1093/bioinformatics/btu170 (2014).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    50.Andrews, S. FastQC: a quality control tool for high throughput sequence data. https://www.bioinformatics.babraham.ac.uk/projects/fastqc (2010).51.Song, L. & Florea, L. Rcorrector: Efficient and accurate error correction for Illumina RNA-seq reads. Gigascience 4, 48. https://doi.org/10.1186/s13742-015-0089-y (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    52.Grabherr, M. G. et al. Trinity: Reconstructing a full-length transcriptome without a genome from RNA-Seq data. Nat. Biotechnol. 29, 644 (2011).CAS 
    Article 

    Google Scholar 
    53.Lafond-Lapalme, J., Duceppe, M. O., Wang, S., Moffett, P. & Mimee, B. A new method for decontamination of de novo transcriptomes using a hierarchical clustering algorithm. Bioinformatics 33, 1293–1300. https://doi.org/10.1093/bioinformatics/btw793 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    54.Haas, B. J. et al. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat. Protoc. 8, 1494–1512. https://doi.org/10.1038/nprot.2013.084 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    55.Finn, R. D., Clements, J. & Eddy, S. R. HMMER web server: Interactive sequence similarity searching. Nucleic Acids Res. 39, W29–W37. https://doi.org/10.1093/nar/gkr367 (2011).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    56.Camacho, C. et al. BLAST+: Architecture and applications. BMC Bioinform. 10, 421. https://doi.org/10.1186/1471-2105-10-421 (2009).CAS 
    Article 

    Google Scholar 
    57.Fu, L., Niu, B., Zhu, Z., Wu, S. & Li, W. CD-HIT: Accelerated for clustering the next-generation sequencing data. Bioinformatics 28, 3150–3152. https://doi.org/10.1093/bioinformatics/bts565 (2012).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    58.Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359. https://doi.org/10.1038/nmeth.1923 (2012).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    59.Simao, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M. BUSCO: Assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31, 3210–3212. https://doi.org/10.1093/bioinformatics/btv351 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    60.BioBam Bioinformatics. OmicsBox – Bioinformatics Made Easy. https://www.biobam.com/omicsbox (2019).61.Huerta-Cepas, J. et al. eggNOG 5.0: A hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res. 47, D309–D314. https://doi.org/10.1093/nar/gky1085 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    62.Gotz, S. et al. High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Res. 36, 3420–3435. https://doi.org/10.1093/nar/gkn176 (2008).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    63.Patro, R., Duggal, G., Love, M. I., Irizarry, R. A. & Kingsford, C. Salmon provides fast and bias-aware quantification of transcript expression. Nat. Methods 14, 417–419. https://doi.org/10.1038/nmeth.4197 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    64.Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550. https://doi.org/10.1186/s13059-014-0550-8 (2014).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    65.Soneson, C., Love, M. I. & Robinson, M. D. Differential analyses for RNA-seq: Transcript-level estimates improve gene-level inferences. F1000Research https://doi.org/10.12688/f1000research.7563.1 (2015).Article 
    PubMed 

    Google Scholar 
    66.Zhu, A., Ibrahim, J. G. & Love, M. I. Heavy-tailed prior distributions for sequence count data: Removing the noise and preserving large differences. Bioinformatics 35, 2084–2092. https://doi.org/10.1093/bioinformatics/bty895 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    67.Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate—A practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B Stat. Methodol. 57, 289–300. https://doi.org/10.1111/j.2517-6161.1995.tb02031.x (1995).MathSciNet 
    Article 
    MATH 

    Google Scholar 
    68.Cui, W. et al. Comparative transcriptomic analysis reveals mechanisms of divergence in osmotic regulation of the turbot Scophthalmus maximus. Fish Physiol. Biochem. 46, 1519–1536. https://doi.org/10.1007/s10695-020-00808-6 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    69.Lee, S. Y., Lee, H. J. & Kim, Y. K. Comparative transcriptome profiling of selected osmotic regulatory proteins in the gill during seawater acclimation of chum salmon (Oncorhynchus keta) fry. Sci. Rep. 10, 1987. https://doi.org/10.1038/s41598-020-58915-6 (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    70.Su, H., Ma, D., Zhu, H., Liu, Z. & Gao, F. Transcriptomic response to three osmotic stresses in gills of hybrid tilapia (Oreochromis mossambicus female × O. urolepis hornorum male). BMC Genomics 21, 110. https://doi.org/10.1186/s12864-020-6512-5 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    71.Fischer, D. S., Theis, F. J. & Yosef, N. Impulse model-based differential expression analysis of time course sequencing data. Nucleic Acids Res. 46, e119. https://doi.org/10.1093/nar/gky675 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    72.Hwang, P. P., Lee, T. H. & Lin, L. Y. Ion regulation in fish gills: Recent progress in the cellular and molecular mechanisms. Am. J. Physiol. Regul. Integr. Comp. Physiol. 301, R28–R47. https://doi.org/10.1152/ajpregu.00047.2011 (2011).CAS 
    Article 
    PubMed 

    Google Scholar 
    73.Marshall, W. S. Mechanosensitive signalling in fish gill and other ion transporting epithelia. Acta Physiol. (Oxf.) 202, 487–499. https://doi.org/10.1111/j.1748-1716.2010.02189.x (2011).CAS 
    Article 

    Google Scholar 
    74.Lema, S. C., Carvalho, P. G., Egelston, J. N., Kelly, J. T. & McCormick, S. D. Dynamics of gene expression responses for ion transport proteins and aquaporins in the gill of a euryhaline pupfish during freshwater and high-salinity acclimation. Physiol. Biochem. Zool. 91, 1148–1171. https://doi.org/10.1086/700432 (2018).Article 
    PubMed 

    Google Scholar 
    75.Flemmer, A. W. et al. Phosphorylation state of the Na+–K+–Cl− cotransporter (NKCC1) in the gills of Atlantic killifish (Fundulus heteroclitus) during acclimation to water of varying salinity. J. Exp. Biol. 213, 1558–1566. https://doi.org/10.1242/jeb.039644 (2010).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    76.Delpire, E. & Gagnon, K. B. SPAK and OSR1: STE20 kinases involved in the regulation of ion homoeostasis and volume control in mammalian cells. Biochem. J. 409, 321–331. https://doi.org/10.1042/BJ20071324 (2008).CAS 
    Article 
    PubMed 

    Google Scholar 
    77.Rinehart, J. et al. WNK2 kinase is a novel regulator of essential neuronal cation-chloride cotransporters. J. Biol. Chem. 286, 30171–30180. https://doi.org/10.1074/jbc.M111.222893 (2011).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    78.Li, J. et al. Gill transcriptomes reveal expression changes of genes related with immune and ion transport under salinity stress in silvery pomfret (Pampus argenteus). Fish Physiol. Biochem. 46, 1255–1277. https://doi.org/10.1007/s10695-020-00786-9 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    79.Yancey, P. H., Clark, M. E., Hand, S. C., Bowlus, R. D. & Somero, G. N. Living with water stress: Evolution of osmolyte systems. Science 217, 1214–1222. https://doi.org/10.1126/science.7112124 (1982).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    80.Kalujnaia, S., McVee, J., Kasciukovic, T., Stewart, A. J. & Cramb, G. A role for inositol monophosphatase 1 (IMPA1) in salinity adaptation in the euryhaline eel (Anguilla anguilla). FASEB J. 24, 3981–3991. https://doi.org/10.1096/fj.10-161000 (2010).CAS 
    Article 
    PubMed 

    Google Scholar 
    81.Cui, W. X. et al. myo-inositol facilitates salinity tolerance by modulating multiple physiological functions in the turbot Scophthalmus maximus. Aquaculture 527, 735451. https://doi.org/10.1016/j.aquaculture.2020.735451 (2020).CAS 
    Article 

    Google Scholar 
    82.Ma, A. et al. Osmoregulation by the myo-inositol biosynthesis pathway in turbot Scophthalmus maximus and its regulation by anabolite and c-Myc. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 242, 110636. https://doi.org/10.1016/j.cbpa.2019.110636 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    83.Wang, Y. F., Yan, J. J., Tseng, Y. C., Chen, R. D. & Hwang, P. P. Molecular physiology of an extra-renal Cl− uptake mechanism for body fluid Cl− homeostasis. Int. J. Biol. Sci. 11, 1190–1203. https://doi.org/10.7150/ijbs.11737 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    84.Leguen, I., Le Cam, A., Montfort, J., Peron, S. & Fautrel, A. Transcriptomic analysis of trout gill ionocytes in fresh water and sea water using laser capture microdissection combined with microarray analysis. PLoS One 10, e0139938. https://doi.org/10.1371/journal.pone.0139938 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    85.Richards, J. G., Semple, J. W., Bystriansky, J. S. & Schulte, P. M. Na+/K+-ATPase alpha-isoform switching in gills of rainbow trout (Oncorhynchus mykiss) during salinity transfer. J. Exp. Biol. 206, 4475–4486. https://doi.org/10.1242/jeb.00701 (2003).CAS 
    Article 
    PubMed 

    Google Scholar 
    86.McCormick, S. D., Regish, A. M. & Christensen, A. K. Distinct freshwater and seawater isoforms of Na+/K+-ATPase in gill chloride cells of Atlantic salmon. J. Exp. Biol. 212, 3994–4001. https://doi.org/10.1242/jeb.037275 (2009).CAS 
    Article 
    PubMed 

    Google Scholar 
    87.Bystriansky, J. S., Richards, J. G., Schulte, P. M. & Ballantyne, J. S. Reciprocal expression of gill Na+/K+-ATPase alpha-subunit isoforms alpha1a and alpha1b during seawater acclimation of three salmonid fishes that vary in their salinity tolerance. J. Exp. Biol. 209, 1848–1858. https://doi.org/10.1242/jeb.02188 (2006).CAS 
    Article 
    PubMed 

    Google Scholar 
    88.Tipsmark, C. K. et al. Switching of Na+, K+-ATPase isoforms by salinity and prolactin in the gill of a cichlid fish. J. Endocrinol. 209, 237–244. https://doi.org/10.1530/JOE-10-0495 (2011).CAS 
    Article 
    PubMed 

    Google Scholar 
    89.Urbina, M. A., Schulte, P. M., Bystriansky, J. S. & Glover, C. N. Differential expression of Na+, K+-ATPase alpha-1 isoforms during seawater acclimation in the amphidromous galaxiid fish Galaxias maculatus. J. Comp. Physiol. B 183, 345–357. https://doi.org/10.1007/s00360-012-0719-y (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    90.Velotta, J. P. et al. Transcriptomic imprints of adaptation to fresh water: Parallel evolution of osmoregulatory gene expression in the Alewife. Mol. Ecol. 26, 831–848. https://doi.org/10.1111/mec.13983 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    91.Ip, Y. K. et al. Roles of three branchial Na+-K+-ATPase alpha-subunit isoforms in freshwater adaptation, seawater acclimation, and active ammonia excretion in Anabas testudineus. Am. J. Physiol. Regul. Integr. Comp. Physiol. 303, R112–R125. https://doi.org/10.1152/ajpregu.00618.2011 (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    92.Birrer, S. C., Reusch, T. B. & Roth, O. Salinity change impairs pipefish immune defence. Fish Shellfish Immunol. 33, 1238–1248. https://doi.org/10.1016/j.fsi.2012.08.028 (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    93.Delamare-Deboutteville, J., Wood, D. & Barnes, A. C. Response and function of cutaneous mucosal and serum antibodies in barramundi (Lates calcarifer) acclimated in seawater and freshwater. Fish Shellfish Immunol. 21, 92–101. https://doi.org/10.1016/j.fsi.2005.10.005 (2006).CAS 
    Article 
    PubMed 

    Google Scholar 
    94.Koppang, E. O., Kvellestad, A. & Fischer, U. In Mucosal Health in Aquaculture (eds Beck, B. H. & Peatman, E.) 93–133 (Academic Press, 2015).Chapter 

    Google Scholar 
    95.Poulin, R., Blanar, C. A., Thieltges, D. W. & Marcogliese, D. J. The biogeography of parasitism in sticklebacks: Distance, habitat differences and the similarity in parasite occurrence and abundance. Ecography 34, 540–551. https://doi.org/10.1111/j.1600-0587.2010.06826.x (2011).Article 

    Google Scholar 
    96.Takemura, A. F., Chien, D. M. & Polz, M. F. Associations and dynamics of Vibrionaceae in the environment, from the genus to the population level. Front. Microbiol. 5, 38. https://doi.org/10.3389/fmicb.2014.00038 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    97.Nitzan, S., Shwartsburd, B. & Heller, E. D. The effect of growth medium salinity of Photobacterium damselae subsp. piscicida on the immune response of hybrid bass (Morone saxatilis × M. chrysops). Fish Shellfish Immunol. 16, 107–116. https://doi.org/10.1016/s1050-4648(03)00045-7 (2004).CAS 
    Article 
    PubMed 

    Google Scholar 
    98.Zheng, D. H. et al. Effect of temperature and salinity on virulence of Edwardsiella tarda to Japanese flounder, Paralichthys olivaceus (Temminck et Schlegel). Aquac. Res. 35, 494–500. https://doi.org/10.1111/j.1365-2109.2004.01044.x (2004).Article 

    Google Scholar 
    99.Dominguez, M., Takemura, A., Tsuchiya, M. & Nakamura, S. Impact of different environmental factors on the circulating immunoglobulin levels in the Nile tilapia, Oreochromis niloticus. Aquaculture 241, 491–500. https://doi.org/10.1016/j.aquaculture.2004.06.027 (2004).CAS 
    Article 

    Google Scholar 
    100.Mozanzadeh, M. T. et al. The effect of salinity on growth performance, digestive and antioxidant enzymes, humoral immunity and stress indices in two euryhaline fish species: Yellowfin seabream (Acanthopagrus latus) and Asian seabass (Lates calcarifer). Aquaculture 534, 736329. https://doi.org/10.1016/j.aquaculture.2020.736329 (2021).CAS 
    Article 

    Google Scholar 
    101.Gao, Y., Tang, X., Sheng, X., Xing, J. & Zhan, W. Antigen uptake and expression of antigen presentation-related immune genes in flounder (Paralichthys olivaceus) after vaccination with an inactivated Edwardsiella tarda immersion vaccine, following hyperosmotic treatment. Fish Shellfish Immunol. 55, 274–280. https://doi.org/10.1016/j.fsi.2016.05.042 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    102.Salinas, I. The mucosal immune system of teleost fish. Biology 4, 525–539. https://doi.org/10.3390/biology4030525 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    103.Reverter, M., Tapissier-Bontemps, N., Lecchini, D., Banaigs, B. & Sasal, P. Biological and ecological roles of external fish mucus: A review. Fishes 3, 41. https://doi.org/10.3390/fishes3040041 (2018).Article 

    Google Scholar 
    104.Shephard, K. L. Functions for fish mucus. Rev. Fish Biol. Fish. 4, 401–429. https://doi.org/10.1007/Bf00042888 (1994).Article 

    Google Scholar 
    105.Wong, M. K. S. et al. A sodium binding system alleviates acute salt stress during seawater acclimation in eels. Zool. Lett. 3, 22. https://doi.org/10.1186/s40851-017-0081-8 (2017).Article 

    Google Scholar 
    106.Malachowicz, M., Wenne, R. & Burzynski, A. De novo assembly of the sea trout (Salmo trutta m. trutta) skin transcriptome to identify putative genes involved in the immune response and epidermal mucus secretion. PLoS One 12, e0172282. https://doi.org/10.1371/journal.pone.0172282 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    107.Roberts, S. D. & Powell, M. D. Comparative ionic flux and gill mucous cell histochemistry: Effects of salinity and disease status in Atlantic salmon (Salmo salar L.). Comp. Biochem. Physiol. A Mol. Integr. Physiol. 134, 525–537. https://doi.org/10.1016/s1095-6433(02)00327-6 (2003).Article 
    PubMed 

    Google Scholar 
    108.Mylonas, C. C. et al. Growth performance and osmoregulation in the shi drum (Umbrina cirrosa) adapted to different environmental salinities. Aquaculture 287, 203–210. https://doi.org/10.1016/j.aquaculture.2008.10.024 (2009).CAS 
    Article 

    Google Scholar 
    109.Roberts, S. D. & Powell, M. D. The viscosity and glycoprotein biochemistry of salmonid mucus varies with species, salinity and the presence of amoebic gill disease. J. Comp. Physiol. B 175, 1–11. https://doi.org/10.1007/s00360-004-0453-1 (2005).CAS 
    Article 
    PubMed 

    Google Scholar 
    110.Kalujnaia, S. et al. Transcriptomic approach to the study of osmoregulation in the European eel Anguilla anguilla. Physiol. Genomics 31, 385–401. https://doi.org/10.1152/physiolgenomics.00059.2007 (2007).CAS 
    Article 
    PubMed 

    Google Scholar 
    111.Shaw, J. R. et al. The role of SGK and CFTR in acute adaptation to seawater in Fundulus heteroclitus. Cell Physiol. Biochem. 22, 69–78. https://doi.org/10.1159/000149784 (2008).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    112.Kammerer, B. D., Sardella, B. A. & Kultz, D. Salinity stress results in rapid cell cycle changes of tilapia (Oreochromis mossambicus) gill epithelial cells. J. Exp. Zool. A Ecol. Genet. Physiol. 311, 80–90. https://doi.org/10.1002/jez.498 (2009).Article 
    PubMed 

    Google Scholar 
    113.Ronkin, D., Seroussi, E., Nitzan, T., Doron-Faigenboim, A. & Cnaani, A. Intestinal transcriptome analysis revealed differential salinity adaptation between two tilapiine species. Comp. Biochem. Physiol. Part D Genomics Proteomics 13, 35–43. https://doi.org/10.1016/j.cbd.2015.01.003 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    114.Dong, Y. W. et al. Genomic and physiological mechanisms underlying skin plasticity during water to air transition in an amphibious fish. J. Exp. Biol. 224, jeb235515. https://doi.org/10.1242/jeb.235515 (2021).Article 
    PubMed 

    Google Scholar 
    115.Inokuchi, M. & Kaneko, T. Recruitment and degeneration of mitochondrion-rich cells in the gills of Mozambique tilapia Oreochromis mossambicus during adaptation to a hyperosmotic environment. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 162, 245–251. https://doi.org/10.1016/j.cbpa.2012.03.018 (2012).CAS 
    Article 
    PubMed 

    Google Scholar  More

  • in

    Selection of mesophotic habitats by Oculina patagonica in the Eastern Mediterranean Sea following global warming

    1.Cook, B. I., Wolkovich, E. M. & Parmesan, C. Divergent responses to spring and winter warming drive community level flowering trends. Proc. Natl. Acad. Sci. USA 109, 9000–9005 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    2.Chen, I. C., Hill, J. K., Ohlemüller, R., Roy, D. B. & Thomas, C. D. Rapid range shifts of species associated with high levels of climate warming. Science (80-). 333, 1024–1026 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    3.Suggitt, A. J. et al. Habitat microclimates drive fine-scale variation in extreme temperatures. Oikos 120, 1–8 (2011).Article 

    Google Scholar 
    4.Poloczanska, E. S. et al. Global imprint of climate change on marine life. Nat. Clim. Change 3, 919–925 (2013).ADS 
    Article 

    Google Scholar 
    5.Suggitt, A. J., et al. Habitatmicroclimates drive fine-scale variation in extreme temperatures. Oikos 120, 1–8. https://doi.org/10.1111/j.1600-0706.2010.18270.x (2011).Article 

    Google Scholar 
    6.Kersting, D. K., Bensoussan, N. & Linares, C. Long-term responses of the endemic reef-builder cladocora caespitosa to mediterranean warming. PLoS ONE 8, e70820 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    7.Rodolfo-Metalpa, R. et al. Thermally tolerant corals have limited capacity to acclimatize to future warming. Glob. Change Biol. 20, 3036–3049 (2014).ADS 
    Article 

    Google Scholar 
    8.Fine M., & Loya Y. Coral bleaching in a temperate sea: From colony physiology to population ecology. In: Coral Health and Disease (eds. Rosenberg, E., & Loya, Y). https://doi.org/10.1007/978-3-662-06414-6_6 (Springer, Berlin, Heidelberg 2004).9.Liu, G., Strong, A. E., Skirving, W. J. & Arzayus, L. F. Overview of NOAA Coral Reef Watch Program’s near-real-time satellite global coral bleaching monitoring activities. Proc. 10th Int. Coral Reef Symp. 1793, 1783–1793 (2006).
    Google Scholar 
    10.Glynn, P. W. Coral reef bleaching: Facts, hypotheses and implications. Glob. Change Biol. 2, 495–509 (1996).ADS 
    Article 

    Google Scholar 
    11.Price, N. N. et al. Global biogeography of coral recruitment: Tropical decline and subtropical increase. Mar. Ecol. Prog. Ser. 621, 1–17 (2019).ADS 
    Article 

    Google Scholar 
    12.Serrano, E. et al. Rapid northward spread of a zooxanthellate coral enhanced by artificial structures and sea warming in the Western Mediterranean. PLoS One 8(1), e52739. https://doi.org/10.1371/journal.pone.0052739 (2013).CAS 
    Article 

    Google Scholar 
    13.Grupstra, C. G. B. et al. Evidence for coral range expansion accompanied by reduced diversity of Symbiodinium genotypes. Coral Reefs 2017 363. 36, 981–985 (2017).
    Google Scholar 
    14.Serrano, E., Ribes, M. & Coma, R. Demographics of the zooxanthellate coral Oculina patagonica along the Mediterranean Iberian coast in relation to environmental parameters. Sci. Total Environ. 634, 1580–1592 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    15.Leichter, J. J., Helmuth, B. & Fischer, A. M. Variation beneath the surface: Quantifying complex thermal environments on coral reefs in the Caribbean, Bahamas and Florida. J. Mar. Res. 64, 563–588 (2006).Article 

    Google Scholar 
    16.Gould, K., Bruno, J. F., Ju, R. & Goodbody-Gringley, G. Upper-mesophotic and shallow reef corals exhibit similar thermal tolerance, sensitivity and optima. Coral Reefs https://doi.org/10.1007/s00338-021-02095-w (2021).Article 

    Google Scholar 
    17.Semmler, R. F., Hoot, W. C. & Reaka, M. L. Are mesophotic coral ecosystems distinct communities and can they serve as refugia for shallow reefs?. Coral Reefs 36, 433–444 (2017).ADS 
    Article 

    Google Scholar 
    18.Shlesinger, T. & Loya, Y. Depth-dependent parental effects create invisible barriers to coral dispersal. Commun. Biol. 4(202), https://doi.org/10.1038/s42003-021-01727-9 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    19.Ledoux, J.-B. et al. Potential for adaptive evolution at species range margins: Contrasting interactions between red coral populations and their environment in a changing ocean. Ecol. Evol. 5, 1178–1192 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    20.Liberman, R., Shlesinger, T., Loya, Y. & Benayahu, Y. Octocoral sexual reproduction: Temporal disparity between mesophotic and shallow-reef populations. Front. Mar. Sci. 5, 1–14 (2018).Article 

    Google Scholar 
    21.Rapuano, H., Shlesinger, T., Loya, Y., Amit, T. & Grinblat, M. Can mesophotic reefs replenish shallow reefs? Reduced coral reproductive performance casts a doubt. Ecology 99, 421–437 (2017).
    Google Scholar 
    22.Bongaerts, P., Ridgway, T., Sampayo, E. M. & Hoegh-Guldberg, O. Assessing the ‘deep reef refugia’ hypothesis: Focus on Caribbean reefs. Coral Reefs 29, 1–19 (2010).Article 

    Google Scholar 
    23.Hoogenboom, M., Rodolfo-Metalpa, R. & Ferrier-Pagès, C. Co-variation between autotrophy and heterotrophy in the Mediterranean coral Cladocora caespitosa. J. Exp. Biol. 213, 2399–2409 (2010).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    24.Mass, T. et al. Photoacclimation of Stylophora pistillata to light extremes: Metabolism and calcification. Mar. Ecol. Prog. Ser. 334, 93–102 (2007).ADS 
    CAS 
    Article 

    Google Scholar 
    25.Bednarz, V. N., Grover, R., Maguer, J. F., Fine, M. & Ferrier-Pagès, C. The assimilation of diazotroph-derived nitrogen by scleractinian corals depends on their metabolic status. MBio 8, e02058-16 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    26.Grottoli, A. G., Rodrigues, L. J. & Palardy, J. E. Heterotrophic plasticity and resilience in bleached corals. Nature 440, 1186–1189 (2006).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    27.Tremblay, P. et al. Controlling effects of irradiance and heterotrophy on carbon translocation in the temperate coral Cladocora caespitosa. PLoS ONE 7, e44672 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    28.Aichelman, H. E., Zimmerman, R. C. & Barshis, D. J. Adaptive signatures in thermal performance of the temperate coral Astrangia poculata. J. Exp. Biol. 222, jeb189225 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    29.Shenkar, N., Fine, M. & Loya, Y. Size matters: Bleaching dynamics of the coral Oculina patagonica. Mar. Ecol. Prog. Ser. 294, 181–188 (2005).ADS 
    Article 

    Google Scholar 
    30.Zaquin, T., Zaslansky, P., Pinkas, I. & Mass, T. Simulating bleaching: Long-term adaptation to the dark reveals phenotypic plasticity of the Mediterranean Sea coral Oculina patagonica. Front. Mar. Sci. 6, 662 https://doi.org/10.3389/fmars.2019.00662 (2019).Article 

    Google Scholar 
    31.De Angelis d’Ossat, G. Altri Zoantari del Terziario della Patagonia. (1908).32.Fine, M. & Loya, Y. The coral Oculina patagonica a new immigrant to the Mediterranean coast of Israel. Isr. J. Zool. 41, 84 (1995).
    Google Scholar 
    33.Salomidi, M., Katsanevakis, S., Issaris, Y., Tsiamis, K. & Katsiaras, N. Anthropogenic disturbance of coastal habitats promotes the spread of the introduced scleractinian coral Oculina patagonica in the Mediterranean Sea. Biol. Invasions 15, 1961–1971 (2013).Article 

    Google Scholar 
    34.Fine, M., Zibrowius, H. & Loya, Y. Oculina patagonica: A non-lessepsian scleractinian coral invading the Mediterranean Sea. Mar. Biol. 138, 1195–1203 (2001).Article 

    Google Scholar 
    35.Sartoretto, S. et al. The alien coral Oculina patagonica De Angelis, 1908 (Cnidaria, Scleractinia) in Algeria and Tunisia. Aquat. Invasions 3, 173–180 (2008).Article 

    Google Scholar 
    36.Ozer, T., Gertman, I., Kress, N., Silverman, J. & Herut, B. Interannual thermohaline (1979–2014) and nutrient (2002–2014) dynamics in the Levantine surface and intermediate water masses, SE Mediterranean Sea. Glob. Planet. Change 151, 60–67 (2017).ADS 
    Article 

    Google Scholar 
    37.Leydet, K. P. & Hellberg, M. E. The invasive coral Oculina patagonica has not been recently introduced to the Mediterranean from the western Atlantic. BMC Evol. Biol. 15(79), https://doi.org/10.1186/s12862-015-0356-7 (2015).38.Veron, J. E. N. Título: Corals of the world. P.imprenta: Australia. Australian Institute of Marine Science. 463, 31 (2000).39.Einbinder, S. et al. Changes in morphology and diet of the coral Stylophora pistillata along a depth gradient. Mar. Ecol. Prog. Ser. 381, 167–174 (2009).ADS 
    Article 

    Google Scholar 
    40.Goodbody-Gringley, G. & Waletich, J. Morphological plasticity of the depth generalist coral, Montastraea cavernosa, on mesophotic reefs in Bermuda. Ecology 99, 1688–1690 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    41.Malik, A. et al. Molecular and skeletal fingerprints of scleractinian coral biomineralization: From the sea surface to mesophotic depths. Acta Biomater. https://doi.org/10.1016/j.actbio.2020.01.010 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    42.Frade, P. R., Englebert, N., Faria, J., Visser, P. M. & Bak, R. P. M. Distribution and photobiology of Symbiodinium types in different light environments for three colour morphs of the coral Madracis pharensis: Is there more to it than total irradiance?. Coral Reefs 27, 913–925 (2008).ADS 
    Article 

    Google Scholar 
    43.Lesser, M. P. et al. Photoacclimatization by the coral Montastraea cavernosa in the mesophotic zone: Light, food, and genetics. Ecology 91, 990–1003 (2010).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    44.Byler, K. A., Carmi-Veal, M., Fine, M. & Goulet, T. L. Multiple symbiont acquisition strategies as an adaptive mechanism in the coral Stylophora pistillata. PLoS ONE 8, 1–7 (2013).Article 
    CAS 

    Google Scholar 
    45.Scucchia, F., Nativ, H., Neder, M., Goodbody-Gringley, G. & Mass, T. Physiological characteristics of Stylophora pistillata larvae across a depth gradient. Front. Mar. Sci. https://doi.org/10.3389/fmars.2020.00013 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    46.Leydet, K. P. & Hellberg, M. E. Discordant coral–symbiont structuring: factors shaping geographical variation of Symbiodinium communities in a facultative zooxanthellate coral genus, Oculina. Coral Reefs 35, 583–595 (2016).ADS 
    Article 

    Google Scholar 
    47.Rubio-Portillo, E. et al. Eukarya associated with the stony coral Oculina patagonica from the Mediterranean Sea. Mar. Genom. 17, 17–23 (2014).Article 

    Google Scholar 
    48.Brakel, W. H. Small-scale spatial variation in light available to coral reef benthos: Quantum irradiance measurements from a Jamaican reef. Bull. Mar. Sci. 29, 406–413 (1979).ADS 

    Google Scholar 
    49.Ben-Zvi, O. et al. Photophysiology of a mesophotic coral 3 years after transplantation to a shallow environment. Coral Reefs 39, 903–913 (2020).Article 

    Google Scholar 
    50.Wang, C., Arneson, E. M., Gleason, D. F. & Hopkinson, B. M. Resilience of the temperate coral Oculina arbuscula to ocean acidification extends to the physiological level. Coral Reefs 40, 201–214 (2021).Article 

    Google Scholar 
    51.Hoogenboom, M., Béraud, E. & Ferrier-Pagès, C. Relationship between symbiont density and photosynthetic carbon acquisition in the temperate coral Cladocora caespitosa. Coral Reefs 29, 21–29. https://doi.org/10.1007/s00338-009-0558-9 (2010).ADS 
    Article 

    Google Scholar 
    52.Martinez, S. et al. Effect of different derivatization protocols on the calculation of trophic position using amino acids compound-specific stable isotopes. Front. Mar. Sci. 7, 1–7. https://doi.org/10.3389/fmars.2020.561568 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    53.Wall, C. B., Wallsgrove, N. J., Gates, R. D. & Popp, B. N. Amino acid δ 13C and δ 15N analyses reveal distinct species‐specific patterns of trophic plasticity in a marine symbiosis. Limnol. Oceanogr. 66, 2033–2050. https://doi.org/10.1002/lno.11742 (2021).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    54.Ferrier-Pagès, C. et al. Tracing the trophic plasticity of the coral-dinoflagellate symbiosis using amino acid compound-specific stable isotope analysis. Microorganisms 9, 1–16 (2021).Article 

    Google Scholar 
    55.Grossowicz, M., Shemesh, E., Martinez, S., Benayahu, Y. & Tchernov, D. New evidence of Melithaea erythraea colonization in the Mediterranean. Estuar. Coast. Shelf Sci. 236, 106652 (2020).Article 

    Google Scholar 
    56.Leal, M. C. et al. Trophic ecology of the facultative symbiotic coral Oculina arbuscula. Mar. Ecol. Prog. Ser. 504, 171–179 (2014).ADS 
    Article 

    Google Scholar 
    57.Ferrier-Pagès, C. et al. Summer autotrophy and winter heterotrophy in the temperate symbiotic coral Cladocora caespitosa. Limnol. Oceanogr. 56, 1429–1438 (2011).ADS 
    Article 

    Google Scholar 
    58.Ezzat, L., Fine, M., Maguer, J.-F., Grover, R. & Ferrier-Pagès, C. Carbon and nitrogen acquisition in shallow and deep holobionts of the Scleractinian coral S. pistillata. Front. Mar. Sci. 4, 1–12. https://doi.org/10.3389/fmars.2017.00102 (2017).Article 

    Google Scholar 
    59.Martinez, S. et al. Energy sources of the depth-generalist mixotrophic coral Stylophora pistillata. Front. Mar. Sci. 7, 1–16 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    60.Wall, C. B., Kaluhiokalani, M., Popp, B. N., Donahue, M. J. & Gates, R. D. Divergent symbiont communities determine the physiology and nutrition of a reef coral across a light-availability gradient. ISME J. 14, 945–958 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    61.Fox, M. D., Elliott Smith, E. A., Smith, J. E. & Newsome, S. D. Trophic plasticity in a common reef-building coral: Insights from δ13C analysis of essential amino acids. Funct. Ecol. 33, 2203–2214 (2019).Article 

    Google Scholar 
    62.Godinot, C., Grover, R., Allemand, D. & Ferrier-Pagès, C. High phosphate uptake requirements of the scleractinian coral Stylophora pistillata. J. Exp. Biol. 214, 2749–2754 (2011).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    63.Kersting, D. K. et al. Experimental evidence of the synergistic effects of warming and invasive algae on a temperate reef-builder coral. Sci. Rep. 2015 51 5, 1–8 (2015).
    Google Scholar 
    64.Suari, Y. et al. A long term physical and biogeochemical database of a hyper-eutrophicated Mediterranean micro-estuary. Data Br. 27, 104809 (2019).Article 

    Google Scholar 
    65.Liberman, R., Fine, M. & Benayahu, Y. Simulated climate change scenarios impact the reproduction and early life stages of a soft coral. Mar. Environ. Res. 163, 105215. https://doi.org/10.1016/j.marenvres.2020.105215 (2021).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    66.Jeffrey, S. W. & Humphrey, G. F. New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochem. Physiol. Pflanz. 167, 191–194 (1975).CAS 
    Article 

    Google Scholar 
    67.Marsh, J. A. Primary productivity of reef-building calcareous red algae. Ecology 51, 255–263 (1970).Article 

    Google Scholar 
    68.Chisholm, J. R. M. & Gattuso, J.-P. Validation of the alkalinity anomaly technique for investigating calcification of photosynthesis in coral reef communities. Limnol. Oceanogr. 36, 1232–1239 (1991).ADS 
    CAS 
    Article 

    Google Scholar 
    69.Schneider, K. & Erez, J. The effect of carbonate chemistry on calcification and photosynthesis in the hermatypic coral Acropora eurystoma. Limnol. Oceanogr. 51, 1284–1293 (2006).ADS 
    CAS 
    Article 

    Google Scholar 
    70.Folmer, O., Black, M., Hoeh, W., Lutz, R. & Vrijenhoek, R. DNA primers for amplification of mitochondrial Cytochrome C oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 3, 294–299 (1994).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    71.Arif, C. et al. Assessing Symbiodinium diversity in scleractinian corals via next-generation sequencing-based genotyping of the ITS2 rDNA region. Mol. Ecol. 23, 4418–4433 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    72.Larkin, M. A. et al. Clustal W and Clustal X version 2.0. Bioinformatics 23, 2947–2948 (2007).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    73.Hume, B. C. C. et al. SymPortal: A novel analytical framework and platform for coral algal symbiont next-generation sequencing ITS2 profiling. Mol. Ecol. Resour. 19, 1063–1080 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    74.Grover, R., Maguer, J.-F., Reynaud-Vaganay, S. & Ferrier-Pagès, C. Uptake of ammonium by the scleractinian coral Stylophora pistillata : Effect of feeding, light, and ammonium concentrations. Limnol. Oceanogr. 47, 782–790 (2002).ADS 
    Article 

    Google Scholar 
    75.Tremblay, P., Grover, R., Maguer, J. F., Legendre, L. & Ferrier-Pagès, C. Autotrophic carbon budget in coral tissue: A new 13C-based model of photosynthate translocation. J. Exp. Biol. 215, 1384–1393 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    76.Cowie, G. L. & Hedges, J. I. Improved amino acid quantification in environmental samples: Charge-matched recovery standards and reduced analysis time. Mar. Chem. 37, 223–238 (1992).CAS 
    Article 

    Google Scholar 
    77.Docherty, G., Jones, V. & Evershed, R. P. Practical and theoretical considerations in the gas chromatography/combustion/isotope ratio mass spectrometry δ 13C analysis of small polyfunctional compounds. Rapid Commun. Mass Spectrom. 15, 730–738 (2001).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    78.R Core Team. R: A Language and Environment for Statistical Computing. (2020).79.Fox, J. W., & Weisberg, S. An R companion to applied regression. 3rd ed. (Los Angeles: SAGE Publications, Inc, 2019)
    Google Scholar 
    80.Villanueva, R. A. M. & Chen, Z. J. ggplot2: Elegant graphics for data analysis (2nd ed.), Measurement: Interdisciplinary Research and Perspectives, 17(3), 160–167. https://doi.org/10.1080/15366367.2019.1565254 (2019).81.Wilke, C. O. cowplot: Streamlined Plot Theme and Plot Annotations for “ggplot2” (R 74 package version 1.1.0) [Computer software]. https://CRAN.Rproject.org/package=cowplot (2020). More

  • in

    Long term monitoring of the reproductive behavior of wild Chinese pangolin (Manis pentadactyla)

    Despite only focusing on one female Chinese pangolin, LF28, our study, to our knowledge, is the first to provide highly detailed records on the nursing behavior of this poorly studied but critically endangered species. During the entire tracking period, the body weight of LF28 increased from 2 kg at the age of 1 year to 3 kg at the age of 2 years, and LF28 reached her maximum body weight of 4 kg at the age of 3 years. Based on the uninterrupted monitoring between Dec 2014 and June 2016, LF28 gave birth to her first offspring when she was 3 years old and another one at the age of 4 years (Fig. 1). Both infants were born in early December, which were in accordance with the peak birth season of the species10. Our observations confirmed that the Chinese pangolin is a seasonal breeder in the wild, and they give birth once a year10,11. Also, they can give birth in consecutive years with a litter size of one17.Other studies (n = 4) have found that the lightest weight, or youngest age, a female Chinese pangolin can give birth at the age of 2 years or weight of 3 kg11,17,18, which indicated that they can conceive at an age of 1–2 years. Therefore, the first birth of LF28, which took place when she was 3 years old, might suggest a delay in pregnancy or sex maturation. However, information concerning the average primipara age for this species is not available to date, more research, especially in the wild, is necessary.Our results indicate that female Chinese pangolins will carry their offspring frequently from one nursing burrow to another during the entire nursing period. In the case of LF28, nursing burrows were only some of the resting burrows utilized and were predominantly located within the core area (MCP75) of her home range (Fig. 4), despite the close proximity to human settlements. This suggests that familiarity of the environment or food resource availability should be important considerations in nursing burrow selection.Nursing burrows were normally used only once during the same nursing period, with durations varying from 1 day to more than 1 month (Fig. 5). This frequent relocation behavior should be important to avoid predation of the newborn. Our monitoring showed that small carnivores, such as ferret-badgers or crab-eating mongoose, will enter the nursing burrow, which may suggest they are searching for prey. Therefore, this could reflect a potential threat to the infant pangolin, especially when the mother is absent for foraging8.Burrows where LF28 gave birth were not only used for the longest duration after birth, they were also used before parturition. Similar to our findings, a previous study reported that both males and females will collect and pull hay into the resting burrow in the wintertime3. Therefore, in addition to providing insulation, the hay could also serve as necessary bedding for the delivery and nursing of offspring. Other functions of hay that have been proposed include false barriers that can act as predator deterrent structures19.Our records revealed at least two different adult male pangolins approaching and entering the nursing burrows multiple times throughout the nursing period. Most of these visits lasted only minutes, whereas a few lasted longer. During one long visit, in March, mating behavior was observed, therefore the occurrence of post-partum estrus, or even ovulation, may be likely for this species. In captivity, mating behavior was also observed between February and July10,20. Although there is no direct evidence yet, these adult male visits suggest that at least some of them were for mate-searching. It has been proposed that while mammalian females spend more energy on parental care, males often invest more energy towards seeking mates21. For solitary and fossorial species such as the pangolin, a male’s mate-finding tactics can be critical for mating success, especially due to the low population density22,23. Male pangolins most likely depend on olfactory cues to locate females in heat. In mammals, female chemical signals have important roles in sexual attraction and facilitating sexual receptivity24,25,26,27. Female Chinese pangolins tend to defecate close to the burrow during the nursing period (N.C.M. Sun unpubl. data), therefore, despite the frequent relocation behavior expressed by the mother, it was likely to generate sufficient olfactory information for male pangolins.It is also possible that female pangolins will mate more than once, even with different males, during the same nursing period. Sun et al.17 have reported that certain female Chinese pangolins exhibited a lack of mate fidelity based on microsatellite marker assessments. Our observation provides additional support for this phenomenon. Multiple mating with the same or different males has been observed in several solitary carnivores28,29,30,31. For males, frequent pre-copulatory encounters with females may offer advantages that increase opportunities for mating compared to males that are less familiar with females32,33. Hypotheses concerning the advantages of females exhibiting promiscuity have also been widely proposed, including direct benefits (e.g., stimulation of reproduction, fertilization assurance, mate retention etc.) and genetic benefits (e.g., choice of paternity, sperm competition, inbreeding avoidance etc.)34,35.Interestingly, during two separate visitations adult males exhibited excavation behavior, and both events took place shortly after parturition. This excavation behavior at a parturition burrow has never been reported before for male pangolins, therefore, further research is needed to better understand the role male pangolins play in parental care.The fetus of LF28’s second offspring detected in the ultrasonographic image in Aug. 15 provided additional information on the gestation length of the species. Following the fetal and extra-fetal structure development of small-sized (3–8 kg) dogs described in Luvoni and Grioni36 and Kim and Son37, we estimated the gestation period of this fetus may have lasted 30–40 days or less. The implantation of the blastocyst, therefore, most likely occurred in early July. This infant pangolin was born on Dec. 8 later that year, and the gestation length was estimated to be around 150 days, which was shorter than previous reports4,9,10. This was the first estimation of gestation length of the Chinese pangolin based on physiological evidence under natural conditions.Our findings of the gestation period, which took place later in the year (July–December), coupled together with the occurrence of post-partum estrus and mating earlier in the year (December–May), suggests that delayed implantation likely takes place in this species, as proposed by Chin et al.11. This also explains why there was such an extensive variation in the gestation length, from 180 to more than 372 days, determined based on the observation of mating behavior and parturition in captivity10,11,18. More studies on the reproductive physiology for this species are necessary.Lastly, the present study also demonstrated that the difficulties associated with researching the life history and behaviors of the elusive pangolin could be alleviated with the use of technologies (e.g., camera trapping, radio tracking, etc.). This is especially true for non-migratory fossorial species if one has an appropriate knowledge of their home range or residential environment. There are more and more new technologies and devices that have been developed and applied to wildlife research in the field, which should greatly improve our understanding and promote conservation efforts of endangered species such as the pangolin. More

  • in

    Trait gradients inform predictions of seagrass meadows changes to future warming

    1.Lovejoy, T. E. & Hannah, L. Biodiversity and Climate Change: Transforming the Biosphere (Yale University Press, 2005).
    Google Scholar 
    2.Bellard, C., Berttelsmeier, C., Leadley, P., Thuiller, W. & Courchamp, F. Impacts of climate change on the future of biodiversity. Ecol. Lett. 15, 365–377 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    3.Hawkins, B. A. et al. Energy, water, and broad scale geographic patterns of species richness. Ecology 84, 3105–3117 (2003).Article 

    Google Scholar 
    4.Pearce, A. & Feng, M. Observation of warming on the western Australia continental shelf. Mar. Freshwater Res. 58, 914–920 (2007).Article 

    Google Scholar 
    5.Ridgway, K. R. Long-term trend and decadal variability of the southward penetration of the East Australian Current. Geophys. Res. Lett. 34, L13613 (2007).ADS 

    Google Scholar 
    6.Chen, L., Huang, J. G., Ma, Q. & Hanninen, H. Long-term changes in the impacts of global warming on leaf phenology of four temperature tree species. Glob. Change Biol. 25(3), 997–1004 (2018).ADS 
    Article 

    Google Scholar 
    7.Harley, C. D. G. et al. The impacts of climate change in coastal marine systems. Ecol. Lett. 9, 228–241 (2006).ADS 
    PubMed 
    Article 

    Google Scholar 
    8.Poloczanska, E. S. et al. Climate change and Australian marine life. Oceanogr. Mar. Biol. 45, 407–478 (2007).
    Google Scholar 
    9.Maltby, K. M. et al. Projected impacts of warming seas on commercially fished species at a biogeographic boundary of the European continental shelf. J. Appl. Ecol. 57, 2222–2233 (2019).Article 

    Google Scholar 
    10.Melzner, F., Buchholz, B., Wolf, F., Panknin, U. & Wall, M. Ocean winter warming induced starvation of predator and prey. Proc. R. Soc. B 287, 20200970 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    11.He, H. et al. Turning up the heat: Warming influences plankton biomass and spring phenology in subtropical waters characterized by extensive fish omnivory. Oecologia 194, 251–265 (2020).ADS 
    PubMed 
    Article 

    Google Scholar 
    12.Pagès-Escolà, M. et al. Divergent responses to warming of two common co-occurring Mediterranean bryozoans. Sci. Rep. 8, 17455 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    13.Gómez-Gras, D. et al. Response diversity in Mediterranean coralligenous assemblages facing climate change: Insights from a multispecific thermotolerance experiment. Ecol. Evol. 9(7), 4168–4180 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    14.Huret, M., Bourriau, P., Doray, M., Gohin, F., Petitgas, P. Survey timing vs. ecosystem scheduling: Degree-days to underpin observed interannual variability in marine ecosystems. Progr. Oceanogr. 166, 30–40 (2018).15.Strelkov, P., Katolikova, M. & Väinolä, R. Temporal change of the Baltic sea-North Sea mussle hybrid zone over two decades. Mar. Biol. 164, 1–14 (2017).Article 

    Google Scholar 
    16.Chiba, S. et al. Temperature and zooplankton size structure: Climate control and basin-scale comparison in the North Pacific. Ecol. Evol. 5(4), 968–978 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    17.Wernberg, T. et al. Seaweed communities in retreat from ocean warming. Curr. Biol. 21, 1–5 (2011).Article 
    CAS 

    Google Scholar 
    18.Block, S. E., Olesen, E. & Krause-Jensen, D. Life history events of eelgrass Zostera marina L. populations across gradients of latitude and temperature. Mar. Ecol. Progr. Ser. 590, 79–93 (2018).ADS 
    Article 

    Google Scholar 
    19.Cure, K. et al. Spatiotemporal patterns of abundance and ecological requirements of a labrid’s juveniles reveal conditions for establishment success and range shift capacity. J. Exp. Mar. Biol. Ecol. 500, 34–45 (2018).Article 

    Google Scholar 
    20.Smale, D. A. et al. Environmental factors influencing primary productivity of the forest-forming kelp Laminaria hyperborea in the northeast Atlantic. Sci. Rep. 10, 12161 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    21.Ruiz, J. M. et al. Experimental evidence of warming-induced flowering in the Mediterranean seagrass Posidonia oceanica. Mar. Pollut. Bull. 134, 49–54 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    22.Rasconi, S., Winter, K. & Kainz, M. J. Temperature increase and fluctuation induce phytoplankton biodiversity loss—Evidence from a multi-seasonal mesocosm experiment. Ecol. Evol. 7, 2936–2946 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    23.Smale, D. A., Wernberg, T., Yunnie, A. L. E. & Vance, T. The rise of Laminaria ochroleuca in the Western English Channel (UK) and preliminary comparisons with its competitor and assemblage dominant Laminaria hyperborea. Mar. Ecol. 36, 1033–1044 (2015).ADS 
    Article 

    Google Scholar 
    24.Pansch, C. & Hibenthal, C. A new mesocosm system to study the effects of environmental variability on marine species and communities. Limnol. Oceanogr. Methods 17, 145–162 (2019).Article 

    Google Scholar 
    25.Doo, S. S. The challenges of detecting and attributing ocean acidification impacts on marine ecosystems. ICES J. Mar. Sci. 77, 2411–2422 (2020).Article 

    Google Scholar 
    26.Kim, J.-H. et al. Global warming offsets the ecophysiological stress of ocean acidification on temperate crustose coralline algae. Mar. Pollut. Bull. 157, 111324 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    27.Bonaviri, C., Graham, M., Gianguzza, P. & Shears, N. T. Warmer temperatures reduce the influence of an important keystone predator. J. Anim. Ecol. 86, 490–500 (2017).PubMed 
    Article 

    Google Scholar 
    28.Carr, L. A., Gittman, R. K. & Bruno, J. F. Temperature influences herbivory and algal biomass in the Galápagos Islands. Front. Mar. Sci. 5, 279 (2018).Article 

    Google Scholar 
    29.De Frenne, P. et al. Latitudinal gradients as natural laboratories to infer species’ responses to temperature. J. Ecol. 101, 784–795 (2013).Article 

    Google Scholar 
    30.Behrenfeld, M. J. Climate-mediated dance of the plankton. Nat. Clim. Change 4(10), 880–887 (2014).ADS 
    Article 

    Google Scholar 
    31.Behrenfeld, M. J. et al. Climate-driven trends in contemporary ocean productivity. Nature 444(7120), 752–755 (2006).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    32.Bricaud, A., Morel, A., Babin, M., Allali, K. & Hervè, C. Variations of light absorption by suspended particles with chlorophyll a concentration in oceanic waters: Analysis and implications for bio-optical models. J. Geophys. Res. 103, 31033–31044 (1998).ADS 
    Article 

    Google Scholar 
    33.Jaud, T., Dragon, A. C., Garcia, J. V. & Guinet, C. Relationship between chlorophyll a concentration, light attenuation and diving depth of the southern elephant seal Mirounga leonina. PLoS ONE 7(10), e47444 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    34.Dunstan, P. K. et al. Global patterns of change and variation in sea surface temperature and chlorophyll a. Sci. Rep. 8, 14624 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    35.Sanford, E. & Kelly, M. W. Local adaptation of marine invertebrates. Annu. Rev. Mar. Sci. 3, 509–535 (2011).ADS 
    Article 

    Google Scholar 
    36.Oliver, T. A. & Palumbi, S. R. Do fluctuating temperature environments elevate coral thermal tolerance?. Coral Reefs 30, 429–440 (2011).ADS 
    Article 

    Google Scholar 
    37.Baumann, H. & Conover, D. O. Adaptation to climate change: Contrasting patterns of thermal-reaction-norm evolution in Pacific versus Atlantic silversides. Proc. R. Soc. B 278(1716), 2265–2273 (2011).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    38.Castillo, K. D., Ries, J. B., Weiss, J. M. & Lima, F. P. Decline of forereef corals in response to recent warming linked to history of thermal exposure. Nat. Clim. Change 2(10), 756–760 (2012).Article 

    Google Scholar 
    39.Thomas, M. K., Kremer, C. T., Klausmeier, C. T. & Litchman, E. A global pattern of thermal adaptation in marine phytoplankton. Science 338, 6110 (2012).Article 
    CAS 

    Google Scholar 
    40.Chefaoui, R. M., Duarte, C. M. & Serrao, E. A. Dramatic loss of seagrass habitat under projected climate change in the Mediterranean Sea. Glob. Change Biol. 24(10), 4919–4928 (2018).ADS 
    Article 

    Google Scholar 
    41.Duarte, B. et al. Climate change impacts on seagrass meadows and macroalgal forests: an integrative perspective on acclimation and adaptation potential. Front. Mar. Sci. 5, 190 (2018).Article 

    Google Scholar 
    42.Hemminga, M. A. & Duarte, C. M. Seagrass Ecology (Cambridge University Press, 2000).Book 

    Google Scholar 
    43.Larkum, A. W. D., Orth, R. J. & Duarte, C. M. Seagrasses: Biology, Ecology and Conservation (Springer, 2006).
    Google Scholar 
    44.Fourqurean, J. W. et al. Seagrass ecosystems as a globally significant carbon stock. Nat. Geosci. 5(7), 505–509 (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    45.Fonseca, M. S. & Cahalan, J. A. A preliminary evaluation of wave attenuation by four species of seagrass. Estuar. Coast. Shelf Sci. 35, 565–576 (1992).ADS 
    Article 

    Google Scholar 
    46.Fonseca, M. S. & Koehl, M. A. R. Flow in Seagrass canopies: the influence of patch width. Estuar. Coast. Shelf Sci. 67, 1–9 (2006).ADS 
    Article 

    Google Scholar 
    47.Telesca, L. et al. Seagrass meadows (Posidonia oceanica) distribution and trajectories of change. Sci. Rep. 5, 12505 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    48.Marbà, N. & Duarte, C. Mediterranean warming triggers seagrass (Posidonia oceanica) shoot mortality. Glob. Change Biol. 16, 2366–2375 (2010).49.Beca-Carretero, P., Guiheneuf, F., Krause-Jensen, D. & Stengel, D. B. Seagrass fatty acid profiles as a sensitive indicator of climate settings across seasons and latitudes. Mar. Environ. Res. 161, 105075 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    50.Marín-Guirao, L., Ruiz, J., Dattolo, E., Garcia-Munoz, R. & Procaccini, G. Physiological and molecular evidence of differential short-term heat tolerance in Mediterranean seagrasses. Sci. Rep. 6, 28615 (2016).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    51.Marín-Guirao, L., Entrambasaguas, L., Dattolo, E., Ruiz, J. M. & Procaccini, G. Mechanisms of resistance to intense warming events in an iconic seagrass species. Front. Plant Sci. 8, 1142 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    52.Tutar, O., Marín-Guirao, L., Ruiz, J. M. & Procaccini, G. Antioxidant response to heat stress in seagrasses. A gene expression study. Mar. Environ. Res. 132, 94–102 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    53.Marín-Guirao, L., Entrambasaguas, L., Ruiz, J. M. & Procaccini, G. Heat-stress induced flowering can be a potential adaptive response to ocean warming for the iconic seagrass Posidonia oceanica. Mol. Ecol. 28, 2486–2501 (2019).PubMed 
    Article 

    Google Scholar 
    54.Peirano, A. et al. Phenology of the Mediterranean seagrass Posidonia oceanica (L.) Delile: Medium and long-term cycles and climate inferences. Aquat. Bot. 94(2), 77–92 (2011).Article 

    Google Scholar 
    55.Walker, L. R., Wardle, D. A., Bardgett, R. D. & Clarkson, B. D. The use of chronosequences in studies of ecological succession and soil development. J. Ecol. 98(4), 725–736 (2010).Article 

    Google Scholar 
    56.Shaltaut, M. & Omstedt, A. Recent sea surface temperature trends and future scenarios for the Mediterranean. Oceanologia 56(3), 441–443 (2014).
    Google Scholar 
    57.Adloff, F. et al. Mediterranean sea response to climate change in an ensemble of twenty first century scenarios. Clim. Dyn. 45, 2775–2802 (2015).Article 

    Google Scholar 
    58.E.C. Marine Strategy Framework Directive 2008/56/EC of the European Parliament and of the Council, of 17 June 2008, establishing a framework for Community action in the field of marine environmental policy (Marine Strategy Framework Directive). OJEU 164, 19–40 (2008).59.Montefalcone, M. Ecosystem health assessment using the Mediterranean seagrass Posidonia oceanica: A review. Ecol. Indic. 9, 595–604 (2009).Article 

    Google Scholar 
    60.Steinacher, M. et al. Projected 21st century decrease in marine productivity: A multi-model analysis. Biogeosciences 7, 979–1005 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    61.Taucher, J. & Oschlies, A. Can we predict the direction of marine primary production change under global warming?. Geophys. Res. Lett. 38, LO2603 (2011).ADS 
    Article 
    CAS 

    Google Scholar 
    62.Dutkiewicz, S. et al. Ocean colour signature of climate change. Nat. Commun. 10, 578 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    63.Kim, G.-U., Seo, K.-H. & Chen, D. Climate change over the Mediterranean and current destruction of marine ecosystem. Sci. Rep. 9, 18813 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    64.Kimball, S., Angert, A. L., Huxman, T. E. & Venable, D. L. Contemporary climate change in the Sonoran Desert favors cold-adapted species. Glob. Change Biol. 16, 1555–1565 (2010).ADS 
    Article 

    Google Scholar 
    65.Graae, B. J. et al. On the use of weather data in ecological studies along altitudinal and latitudinal gradients. Oikos 121, 3–19 (2012).Article 

    Google Scholar 
    66.Pergent, G., Pergent-Martini, C. & Boudouresque, C. F. Utilisation de l’herbier a Posidonia oceanica comme indicateur biologique de la qualite du milieu littoral en Mediterranee: etat des connaissances. Mesogee 54, 3–27 (1995).
    Google Scholar 
    67.Pergent-Martini, C. & Pergent, G. Spatio-temporal dynamics of Posidonia oceanica beds near a sewage outfall (Mediterranean, France). in Seagrass Biology: Proceeding of an International Workshop, Rottnest Island, Australia, 25–29 January 1996. Faculty of Sciences, the University of Western Australia Publications: Nedlands, Australia, pp. 299–306 (Kuo, J., Phillips, R. C., Walker, D. I., Kirkman, H. eds.) (1996).68.Scardi, M., Chessa, L. A., Fresi, E., Pais, A. & Serra, S. Optimizing interpolation of shoot density data from a Posidonia oceanica seagrass bed. Mar. Ecol. 27, 339–349 (2006).ADS 
    Article 

    Google Scholar 
    69.Kun-Seop, L., Sang, R. P. & Young, K. K. Effects of irradiance, temperature and nutrients on growth dynamics of seagrasses: A review. J. Exp. Mar. Biol. Ecol. 350(1), 144–175 (2007).
    Google Scholar 
    70.Molenaar, H., Barthélémy, D., de Reffye, P., Meinesz, A. & Mialet, I. Modelling architecture and growth patterns of Posidonia oceanica. Aquat. Bot. 66, 85–99 (2000).Article 

    Google Scholar 
    71.Olesen, B., Enrìquez, S., Duarte, C. M. & Sand-Jensen, K. Depth-acclimation of photosynthesis, morphology and demography of Posidonia oceanica and Cymodocea nodosa in the Spanish Mediterranean Sea. Mar. Ecol. Progr. Ser. 236, 89–97 (2002).ADS 
    Article 

    Google Scholar 
    72.Ralph, P. J., Durako, M. J., Enriquez, S., Collier, C. J. & Doblin, M. A. Impact of light limitation on seagrasses. J. Exp. Mar. Biol. Ecol. 350, 176–193 (2007).Article 

    Google Scholar 
    73.Ekstam, B. Ramet size equalization in a clonal plant, Phragmites australis. Oecologia 104, 440–446 (1995).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    74.Van Kleunen, M., Fischer, M. & Schmid, B. Effects of intraspecific competition on size variation and reproductive allocation in a clonal plant. Oikos 94, 515–524 (2001).Article 

    Google Scholar 
    75.Campagne, C. S., Salles, J. M., Boissery, P. & Deter, J. The seagrass Posidonia oceanica: Ecosystem services identification and economic evaluation of goods and benefits. Mar. Pollut. Bull. 97, 391–400 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    76.Nordlund, L. M., Koch, E. W., Barbier, E. B. & Creed, J. C. Seagrass ecosystem services and their variability across genera and geographical regions. PLoS ONE 1(10), e0163091 (2016).Article 
    CAS 

    Google Scholar 
    77.Repolho, T. et al. Seagrass ecophysiological performance under ocean warming and acidification. Sci. Rep. 7, 41443 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    78.Adams, M. P. et al. Predicting seagrass decline due to cumulative stressors. Environ. Model. Softw. 130, 104717 (2020).Article 

    Google Scholar 
    79.Pazzaglia, J., Reusch, T. B. H., Terlizzi, A., Marín-Guirao, L. & Procaccini, G. Phenotypic plasticity under rapid global changes: The intrinsic force for future seagrasses survival. Evol. Appl. 00, 1–21 (2021).
    Google Scholar 
    80.Olita, A., Ribotti, A., Fazioli, L., Perilli, A. & Sorgente, R. Surface circulation and upwelling in the Sardinia Sea: A numerical study. Cont. Shelf Res. 71, 95–108 (2013).ADS 
    Article 

    Google Scholar 
    81.Pinardi, N. et al. Mediterranean Sea large-scale low-frequency ocean variability and water mass formation rates from 1987 to 2007: A retrospective analysis. Prog. Oceanogr. 132, 318–332 (2015).ADS 
    Article 

    Google Scholar 
    82.Smale, D. A. & Wernberg, T. Satellite-derived SST data as a proxy for water temperature in nearshore benthic ecology. Mar. Ecol. Progr. Ser. 387, 27–37 (2009).ADS 
    Article 

    Google Scholar 
    83.Giraud, G. Contribution à la description et à la phénologie quantitative des herbiers de Posidonia oceanica (L.) Delile. Thèse de Doctorat de Spécialité en Océanologie, Université d’Aix-Marseille, Marseille (1977).84.Pergent, G. Lepidochronological analyses of the seagrass Posidonia oceanica (L.) Delile: a standardized approach. Aquat. Bot. 37, 39–54 (1990).85.Pagès, J. F. et al. Indirect interactions in seagrasses: Fish herbivores increase predation risk to sea urchins by modifying plant traits. Funct. Ecol. 26, 1015–1023 (2012).Article 

    Google Scholar 
    86.Zuur, A. F., Leno, E. N. & Elphick, C. S. A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evol. 1, 3–14 (2010).Article 

    Google Scholar 
    87.R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2018).88.Venables, W. N. & Ripley, B. D. Modern Applied Statistics with S 4th edn. (Springer, 2002).MATH 
    Book 

    Google Scholar  More

  • in

    The taxonomy of two uncultivated fungal mammalian pathogens is revealed through phylogeny and population genetic analyses

    After 90 years of taxonomic uncertainties, using phenotypic, phylogenetic, and population genetics analyses, the two uncultivated fungi causing skin disease in humans and dolphins, long known as Lacazia loboi8, are now placed as separate species within the genus Paracoccidioides. Early studies using phenotypic or phylogenetic data alone erroneously placed these two fungal pathogens in different genera and species3,4,5,6,7,8,12,13,15,16,17,24,25. This trend persisted for years2,13,16,17,25. For instance, recent studies using several partial DNA sequences recovered from Brazilian humans with skin disease in phylogenetic analyses concluded that the genus Lacazia, the accepted name at that time, was an independent taxon from Paracoccidioides species16,24,25. Their phylogenetic data was correct, but their analyses missed the inclusion of DNA from the uncultivated pathogen causing skin disease in dolphins. This was an understandable mistake, since the collection and processing specimens from infected dolphins is highly regulated and the fact that the etiology of dolphins’ disease was long believed to be the same as that in humans, as shown in Fig. 1 and Table 1. Although P. cetii has numerous phenotypic differences with Paracoccidioides species (Table 1, Fig. 1), in the pass used to group them in separated clusters2,3,7,8, our data showed they share several phylogenetic features in common (Figs. 4, 5 and 6). With the addition of P. cetii DNA sequences, the phylogenetic support of closely related Paracoccidioides species dramatically changed. For example, P. loboi clustered in a monophyletic group sister to P. lutzii, even with the inclusion of homologous dimorphic Onygenales DNA sequences as outgroup (Figs. 4b, 5), whereas the support of monophyletic species within the genus weakened (Figs. 4, 5 and 6). More dolphin DNA sequences from different geographical locations must be sequenced to understand P. cetii´s true evolutionary traits.Several studies reported geographical cryptic speciation among Paracoccidioides species14,24,26,27,28. In those analyses the presence of at least five species within the genus, including P. lutzii, was found14,15,24,27,29,30. Recent genome sequencing in phylogenetic analysis tend to validate these findings26,28,29. Although the DNA sequences of P. loboi were used in some of the analyses, the human skin pathogen was always placed as an independent genus from that in Paracoccidioides species16,24,25. The placement of P. cetii sister to P. americana DNA sequences in this study, indicates the use of phenotypic or phylogenetic characteristics without the inclusion of anomalous species, can lead to inaccuracies in the taxonomic and phylogenetic classification of these type of microbes. For instance, our data, using several statistical tools, consistently showed the presence of different clusters within Paracoccidioides species. In our analyses, P. americana, P. cetii, P. lutzii, and P. loboi were placed in monophyletic groups sister to the remaining Paracoccidioides species (Figs. 2, 3, 4, 5 and 6). Therefore, the addition of P. cetii to the genus Paracoccidioides not only confirmed that the genus has indeed a high level of speciation but, indicates that the concept of species delimitation in this genus must be revisited12,31.Recently, Vilela et al.16, using phylogenetic analysis of five different genes, showed P. loboi shared the same ancestor with Paracoccidioides species. The results in our study support their proposal. The main obstacle of this hypothesis at that time was the phenotypic features of P. loboi (Fig. 1). However, if P. loboi and P. cetii (both uncultivated and subcutaneous pathogens) share the same ancestor with other Paracoccidioides species (cultivated and causing systemic infections), the likelihood that the ancestor of Paracoccidioides species could growth in culture, as previously suggested, is a strong possibility16. If this concept is correct, when in the evolutionary history of P. cetii and P. loboi they lost the capacity to grow in culture? What evolutionary pressure triggered such a change? Sadly, as is common in neglected pathogens such as P. cetii and P. loboi key questions such as these, remain without an answer. Interestingly, the uncultivated feature found in these two neglected fungi was also reported in a strain of Histoplasma capsulatum infecting monkeys, suggesting that an uncultivated ancestral trait in the Onygenales dimorphic fungi may be at work32. However, the evolutionary pressures that triggered such ancestral feature remains an enigma.The report of new human cases of paracoccidioidomycosis loboi acquired by traveling to endemic areas2,3,4,5,33,34,35,36, suggests P. loboi may has a similar phenotype (hyphae with conidia) to the one displayed by Paracoccidioides species in nature and in culture. Thus, it may be present in specific ecological niches in the endemic areas (around the Amazon basin and other Latin American big rivers)2,14,15,25. Therefore, it is possible P. cetii and P. loboi may have a phenotype in nature similar to that of Paracoccidioides species (hyphae with conidia). Under this scenario, both uncultivated pathogens display a mycelia form with conidia and the classic life cycle style of dimorphic fungi in nature25. As is the case in other dimorphic fungi, these propagules could then contact susceptible hosts (human, dolphins) switching from hyphae → yeast thus, causing subcutaneous infections. Perhaps due to abnormalities on the molecular mechanisms of yeast → hyphae conversion (mutations?), once the hyphae → yeast conversion occurs, it cannot longer switch back from yeast to hyphal phase. However, the yeast phase of both pathogens can infect other hosts, as had been demonstrated in accidental and experimental infection with yeast-like cells from infected humans and dolphins2,37,38,39,40,41,42. Despite attempts made by the Broad Institute (https://www.broadinstitute.org/fungal-genome-initiative/lacazia-loboi-sequencing), only fragmented genomic information is available for P. loboi, and the genome of P. cetii is yet to be sequence. We hypothesize that the genomes of both uncultivated pathogens may hide important genomic clues that could answer this and other evolutionary questions.Several P. cetii DNA sequences recovered from dolphins captured in Brazil, Cuba, Japan, and the USA are currently available in the database (Table S1)19,20,21,22,23. The complete ITS DNA sequences from Brazilian and Cuban dolphins with paracoccidioidomycosis ceti, showed high percentage of identify with the DNA sequences in this study (ITS = 100%) whereas the partial Gp43 DNA sequences from a Japanese dolphin (471 bp) had 98.62% identity with P. cetii DNA sequences from dolphins captured in the Americas. During Gp43 DNA alignment of Japanese and USA dolphins, a five nucleotides gap was consistently present in the DNA sequences of USA dolphins. Moreover, two additional 266 bp GP43 DNA sequences extracted from a Japanese dolphin (Lagenorhynhus obliquidens) with paracoccidioidomycosis ceti showing, 99.62% identity with P. brasiliensis (sensu lato). In our analyses, these two sequences (only 110 bp could be used) clustered also with P. brasiliensis (Fig. 4, red rectangle). However, the same DNA sequences clustered close to P. cetii in haplotype analysis indicating a fragile relationship (Fig. 3). If P. cetii DNA sequences from Japanese dolphins are accurate, the differences in the genetic makeup of these two populations of uncultivated pathogens is intriguing and deserve further analysis. Our data suggest P. cetii strains causing paracoccidioidomycosis ceti in Japanese and USA dolphins, likely are evolving into two different populations.According to Teixeira et al.24, the estimated time for genetic divergence in Paracoccidioides species was calculated around 33 million years. Although, others have questioned this result31, Carruthers et al.43, cautioned that the use of linage-specific data usually demonstrate approximate divergence time regardless of the number of loci interrogated. Nonetheless, according to these reports, Paracoccidioides species probably diverged from their ancestor from a fraction of a million of years (P. restrepiensis and P. venezuelensis) to 10–30 million of years (P. lutzii and P. brasiliensis, sensu lato)24,31. Conversely, dolphins evolved into aquatic mammals ~ 50 to 30 million years ago, around late Paleocene period (Eocene, Oligocene epochs)44. According to fossil records, South America at this time had a large body of water crossing from the north Atlantic Ocean to what is today Bolivia, Brazil, Ecuador, Colombia, Peru and Venezuela45, all endemic areas of these species3,4,5,24,26,29, that lasted for millions of years. A similar situation occurred in what is today the estuary of the Amazon River. The current location of Paracoccidioides species (including P. loboi), coincide with the locations of such geological periods, and then it is quite possible that during the time following these geological events, an ancestor of P. cetii first encountered dolphins entering these areas. Since humans came to South Americas only ~ 15,000-year ago46, likely the ancestor of Paracoccidioides species infected dolphin first and later humans. Whether this event had a role on the pathogenic capabilities of the genus to infect mammals is difficult to determine, nonetheless it is an intriguing possibility.Working with uncultivated pathogens infecting the skin of mammals is challenging. Not only because collecting specimens from these species (dolphins are protected species and human cases are located in poor remote rural areas) is extremely difficult, but because open lesions usually harbor numerous environmental contaminants, which in the past had led to erroneous conclusions on the classifications of these two anomalous pathogens2,8,15,16,25,47. Furthermore, these unusual fungi are not in the list of neglected pathogens, thus discouraging investigators to submit proposals to funding organizations. Previous studies using P. loboi in phenotypic or phylogenetic analyses placed this anomalous pathogen away from the genus Paracoccidioides2,4,15,16,25. This study found that the use of phenotypic or phylogenetic approaches without the inclusion of DNA from infected dolphins, likely led previous studies to flawed data15,16,25. Thus, the failure of including organisms sharing a common ancestor, based in phenotypic or phylogenetic traits alone, could result in incomplete or incorrect assessment of the investigated populations. This study showed that the interpretation of taxonomic and/or phylogenetic data could be affected by missing neighboring anomalous taxa. More

  • in

    Climate variables effect on fruiting pattern of Kinnow mandarin (Citrus nobilis Lour × C. deliciosa Tenora) grown at different agro-climatic regions

    1.Singh, M. & Bhatia, H. S. Thermal time requirement for phenophases of apple genotypes in Kullu valley. J. Agrometeorol. 13(1), 46–49 (2011).
    Google Scholar 
    2.Amgain, L. P. Agro-meteorological indices in relation to phenology and yields of promising wheat cultivars in Chitwan, Nepal. J. Agric. Environ. 14, 111–120 (2013).Article 

    Google Scholar 
    3.Nawaz, R., Abbasi, N. A., Hafiz, I. A. & Khalid, A. Color-break effect on Kinnow (Citrus nobilis Lour x Citrus deliciosa Tenora) fruit‘s internal quality at early ripening stages under varying environmental conditions. Sci. Hortic. 256, 108514 (2019).Article 

    Google Scholar 
    4.Singh, M. & Jangra, S. Thermal indices and heat use cultivars in Himachal Himalay. Clim. Change 4(14), 224–234 (2018).
    Google Scholar 
    5.Singh, M., Niwas, R., Godara, A. K. & Khichar, M. L. Pheno-thermal response of plum genotypes in semi-arid region of Haryana. J. Agrometeorol 17(2), 230–233 (2015).
    Google Scholar 
    6.Nawaz, R., Abbasi, N. A., Hafiz, I. A. & Khalid, A. Impact of varying agrometeorological indices on peel color and composition of Kinnow fruit (Citrus nobilis Lour x Citrus deliciosa Tenora) grown at different ecological zones. J. Sci. Food Agric. 100(6), 2688–2704 (2020).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Nawaz, R., Abbasi, N. A., Hafiz, I. A., Khan, M. F. & Khalid, A. Environmental variables influence the developmental stages of the citrus leafminer, infestation level and mined leaves physiological response of Kinnow mandarin. Sci. Rep. 11(1), 1–20 (2021).Article 
    CAS 

    Google Scholar 
    8.Plett, S. Comparison of seasonal thermal indices for measurement of corn maturity in a prairie environment. Can. J. Plant Sci. 72(4), 1157–1162 (1992).Article 

    Google Scholar 
    9.Dalal, R. P. S., Kumar, A. & Singh, R. Agrometeorological-heat and energy use of Kinnow Mandarin (Citrus nobilis Lour* Citrus deliciosa Tenore). Int. J. Pure App. Biosci 5(2), 506–512 (2017).Article 

    Google Scholar 
    10.Nawaz, R., Abbasi, N. A., Hafiz, I. A. & Khalid, A. Impact of climate variables on growth and development of Kinnow fruit (Citrus nobilis Lour x Citrus deliciosa Tenora) grown at different ecological zones under climate change scenario. Sci. Hortic. 260, 108868 (2020).Article 

    Google Scholar 
    11.Nawaz, R., Abbasi, N. A., Hafiz, I. A. & Khalid, A. Increasing level of abiotic and biotic stress on Kinnow fruit quality at different ecological zones in climate change scenario. Environ. Exp. Bot. 171, 103936 (2020).CAS 
    Article 

    Google Scholar 
    12.Nawaz, R., Abbasi, N. A., Hafiz, I. A. & Khalid, A. Impact of climate variables on fruit internal quality of Kinnow mandarin (Citrus nobilis Lour x Citrus deliciosa Tenora) in ripening phase grown under varying environmental conditions. Sci. Hortic. 265, 109235 (2020).CAS 
    Article 

    Google Scholar 
    13.Nawaz, R., Abbasi, N. A., Hafiz, I. A., Khalid, A. & Ahmad, T. Economic analysis of citrus (Kinnow Mandarin) during on-year and off-year in the Punjab Province. Pakistan. J Hortic 5(250), 2376–3354 (2018).
    Google Scholar 
    14.Khalid, M. S., Malik, A. U., Saleem, B. A., Khan, A. S. & Javed, N. Horticultural mineral oil application and tree canopy management improve cosmetic fruit quality of Kinnow mandarin. Afr. J. Agric. Res. 7(23), 3464–3472 (2012).Article 

    Google Scholar 
    15.Nawaz, R. et al. Impact of climate change on kinnow fruit industry of Pakistan. Agrotechnology https://doi.org/10.4172/2168-9881.1000186 (2019).Article 

    Google Scholar 
    16.Mazhar, M. S., Malik, A. U., Jabbar, A., Malik, O. H. & Khan, M. N. Fruit blemishes caused by abiotic and biotic factors in Kinnow mandarin. Acta Hortic. 1120, 483–490 (2016).Article 

    Google Scholar 
    17.Solomon. Intergovernmental Panel on Climate Change (IPCC). Climate Change 2007: The Physical Science Basis. Contributions of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. (Cambridge University Press, 2007).18.Ullah, R., Shivakoti, G. P. & Ali, G. Factors effecting farmers’ risk attitude and risk perceptions: The case of Khyber Pakhtunkhwa, Pakistan. Int. J. Disast. Risk Reduct. 13, 151–157 (2015).Article 

    Google Scholar 
    19.Ward, N. L. & Masters, G. J. Linking climate change and species invasion: An illustration using insect herbivores. Glob. Change Biol. 13(8), 1605–1615 (2007).ADS 
    Article 

    Google Scholar 
    20.Hellmann, J. J., Byers, J. E., Bierwagen, B. G. & Dukes, J. S. Five potential consequences of climate change for invasive species. Conserv. Biol. 22(3), 534–543 (2008).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    21.Bale, J. S. et al. Herbivory in global climate change research: Direct effects of rising temperature on insect herbivores. Glob. Change Biol. 8(1), 1–6 (2002).ADS 
    Article 

    Google Scholar 
    22.Stocker, T.F. et al. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of IPCC the Intergovernmental Panel on Climate Change (2014).23.Jones, G. V., White, M. A., Cooper, O. R. & Storchmann, K. Climate change and global wine quality. Clim. Change. 73, 319–343 (2005).ADS 
    Article 

    Google Scholar 
    24.Webb, L., Whetton, P. & Barlow, E. W. R. Modeled impact of future climate change on phenology of wine grapes in Australia. Aust. J. Grape Wine Res. 13, 165–175 (2007).Article 

    Google Scholar 
    25.Ferguson, J. J., Koch, K. E. & Huang, T. B. 240 Fruit removal effects on growth and carbon allocation in young citrus trees. HortScience 34(3), 483D – 483 (1999).Article 

    Google Scholar 
    26.Zekri, M. Factors affecting citrus production and quality, Citrus Industry. ifas.ufl.edu (2011).27.Ladaniya, M. S. Physico−chemical, respiratory and fungicide residue changes in wax coated mandarin fruit stored at chilling temperature with intermittent warming. J. Food Sci. Technol. 48(2), 150–158 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    28.Monselise, S. P. & Goldschmidt, E. E. Alternate bearing in fruit trees. Hort. Rev. (Am. Soc. Hort. Sci.) 4, 128–173 (1982).
    Google Scholar 
    29.Garcia-Luis, A., Fornes, F. & Guardiola, J. L. Leaf carbohydrates and flower formation in Citrus. J. Am. Soc. Hort. Sci. 120, 222–227 (1995).CAS 
    Article 

    Google Scholar 
    30.Dalezios, N. R., Loukas, A. & Bampzelis, D. Assessment of NDVI and agrometeorological indices for major crops in central Greece. Phys. Chem. Earth,Parts A/B/C 27(23–24), 1025–1029 (2002).ADS 
    Article 

    Google Scholar 
    31.Dalezios, N. R., Loukas, A. & Bampzelis, D. The role of agrometeorological and agrohydrological indices in the phenology of wheat in central Greece. Phys. Chem. Earth Parts A/B/C 27(23–24), 1019–1023 (2002).ADS 
    Article 

    Google Scholar 
    32.Schmidt, D. et al. Base temperature, thermal time and phyllochron of escarole cultivation. Hortic. Bras. 36(4), 466–472 (2018).Article 

    Google Scholar 
    33.Forland, E. J., Skaugen, T. E., Benestad, R. E., Hanssen-Bauer, I. & Tveito, O. E. Variations in thermal growing, heating, and freezing indices in the Nordic Arctic, 1900–2050. Arct. Antarct. Alp. Res. 36(3), 347–356 (2004).Article 

    Google Scholar 
    34.Gavilan, R. G. The use of climatic parameters and indices in vegetation distribution. A case study in the Spanish Sistema Central. Int. J. Biometeorol. 50(2), 111–120 (2005).ADS 
    PubMed 
    Article 

    Google Scholar 
    35.Schwartz, M. D., Ahas, R. & Aasa, A. Onset of spring starting earlier across the Northern Hemisphere. Glob. Change Biol. 12(2), 343–351 (2006).ADS 
    Article 

    Google Scholar 
    36.Kaleem, S., Hassan, F. & Saleem, A. Influence of environmental variations on physiological attributes of sunflower. Afr. J. Biotechnol. 8(15) (2009).37.Monselise, S. P., Brosh, P. & Costo, J. Off-season bloom in ‘Temple’ orange repressed by Gibberellin [Treatment]. HortScience (1981).38.Davies, F. S. & Albrigo, L. G. Citrus Crop Production Science in Agriculture (CAB International, 1994).
    Google Scholar 
    39.Wheaton, T. A. Alternate bearing of citrus. Proc. Int. Semin. Citric. 1, 224–228 (1992).
    Google Scholar 
    40.Flore, J. A. & Lakso, A. N. Environmental and physiological regulation of photosynthesis in fruit crops. Hortic. Rev. 11, 111–157 (1986).
    Google Scholar 
    41.Goldschmidt, E. E. Carbohydrate supply as a critical factor for citrus fruit development and productivity. Hort. Sci. 34, 1020–1024 (1999).
    Google Scholar 
    42.Stander, O. P. J. 2018. Critical factors concomitant to the physiological development of alternate bearing in citrus (Citrus spp.) (Doctoral dissertation, Stellenbosch: Stellenbosch University) (2018).43.Iglesias, D. J. et al. Physiology of citrus fruiting. Braz. J. Plant. Physiol. 19(4), 333–362 (2007).CAS 
    Article 

    Google Scholar 
    44.Scholefield, P. B., Oag, D. R. & Sedgley, M. The relationship between vegetative and reproductive development in the mango in northern Australia. Aust. J. Agric. Res. 37(4), 425–433 (1986).Article 

    Google Scholar 
    45.Goldschmidt, E. E. & Golomb, A. The carbohydrate balance of alternate-bearing citrus trees and the significance of reserves for flowering and fruiting. J. Am. Soc. Hort. Sci. 107, 206–208 (1982).
    Google Scholar 
    46.Hodgson, R. W. & Cameron, S. H. Studies on the bearing behavior of the “Fuerte” avocado variety. Calif. Avocado Soc. Yrbk. 1935, 150–165 (1935).
    Google Scholar 
    47.Seyyednejad, M., Ebrahimzadeh, H. & Talaie, A. Carbohydrate content in olive Zard cv and alternate bearing pattern. Int. Sugar J. 103(1226), 84–87 (2001).CAS 

    Google Scholar 
    48.Chacko, E. K., Reddy, Y. T. N. & Ananthanarayanan, T. V. Studies on the relationship between leaf number and area and fruit development in mango (Mangifera indica L). J. Hort. Sci. 57, 483–492 (1982).Article 

    Google Scholar 
    49.Nishikawa, F., Iwasaki, M., Fukamachi, H. & Matsumoto, H. The effect of fruit bearing on low-molecular-weight metabolites in stems of Satsuma Mandarin (Citrus unshiu Marc.). Hortic. J. 85(1), 23–29 (2016).CAS 
    Article 

    Google Scholar 
    50.Verreynne, J. S. & Lovatt, C. J. The effect of crop load on budbreak influences return bloom in alternate bearing ‘Pixie’mandarin. J. Am. Soc. Hortic. Sci. 134(3), 299–307 (2009).Article 

    Google Scholar 
    51.Dovis, V. L. et al. Roots are important sources of carbohydrates during flowering and fruiting in ‘Valencia’sweet orange trees with varying fruit load. Sci. Hortic. 174, 87–95 (2014).CAS 
    Article 

    Google Scholar 
    52.Martínez-Alcántara, B. et al. Carbon utilization by fruit limits shoot growth in alternate-bearing citrus trees. J. Plant Physiol. 176, 108–117 (2015).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    53.Monerri, C. et al. Relation of carbohydrate reserves with the forthcoming crop, flower formation and photosynthetic rate, in the alternate bearing ‘Salustiana’ sweet orange (Citrus sinensis L.). Sci. Hortic. 129(1), 71–78 (2011).CAS 
    Article 

    Google Scholar 
    54.Khan, S. R. A. Citrus Quality to meet Global Demand. Pakissan.com. http://www.pakissan.com/english/agri.overview/citrus.quality.to.meet.global.demand (2008).55.Moss, G. I., Bellamy, J. & Bevington, K. B. Controlling biennial bearing. Austral. Citrus News 50, 6–7 (1974).
    Google Scholar 
    56.Davis, K., Stover, E. & Wirth, F. Economic of fruit thinning: A review focusing on apple and citrus Production and marketing reports. Hort. Technol. 14(2), 282–289 (2004).Article 

    Google Scholar 
    57.Usman, M., Ashraf, I., Chaudhary, K. M. & Talib, U. Factors impeding citrus supply chain in central Punjab, Pakistan. Int. J. Agric. Ext. 6, 01–05 (2018).Article 

    Google Scholar 
    58.Ghafoor, U., Muhammad, S. & Chaudhary, K. M. Constrains in availability of inputs and information to citrus (Kinnow) growers of tehsil Toba Tek Singh, Pakistan. J. Agric. Sci. 45(4), 520–522 (2008).
    Google Scholar 
    59.Choudhary, D., Singh, R., Dagar, C. S., Kumar, A. & Singh, S. Temperature based agrometeorological indices for Indian mustard under different growing environments in western Haryana, India. Int. J. Curr. Microbiol. App. Sci. 7(1), 1025–1035 (2018).Article 

    Google Scholar 
    60.Hardy, S. & Khurshid, T. Calculating heat units for citrus. In Primefacts (NSW Department of Primary Industries, 2007).
    Google Scholar 
    61.Bootsma, A., Anderson, D. & Gameda, S. Potential impacts of climate change on agroclimatic indices in southern regions of Ontario and Quebec. Tech. Bull. ECORC Contrib. 03–284, 69–92 (2004).
    Google Scholar 
    62.Gordeev, A. V., Kleschenko, A. D., Chernyakov, B. A. & Sirotenko, O. D. Bioclimatic Potential of Russia: Theory and Practice (Tovarischestvo nauchnykh izdanyi KMK, 2006) ((in Russian)).
    Google Scholar 
    63.Karing, P., Kallis, A. & Tooming, H. Adaptation principles of agriculture to climate change. Climate Res. 12(2–3), 175–183 (1999).ADS 
    Article 

    Google Scholar 
    64.Chen, C. S. Digital computer simulation of heat units and their use for predicting plant maturity. Int. J. Biometeorol. 17(4), 329–335 (1973).ADS 
    Article 

    Google Scholar 
    65.Darby, H. M. & Lauer, J. G. Harvest date and hybrid influence on corn forage yield, quality, and preservation. Agron. J. 94(3), 559–566 (2002).Article 

    Google Scholar 
    66.Cesaraccio, C., Spano, D., Duce, P. & Snyder, R. L. An improved model for determining degree-day values from daily temperature data. Int. J. Biometeorol. 45(4), 161–169 (2001).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    67.Fealy, R. & Fealy, R. M. The spatial variation in degree days derived from locational attributes for the 1961 to 1990 period. Ir. J. Agric. Food Res. 47, 1–11 (2008).
    Google Scholar 
    68.Dolkar, D. et al. Effect of meteorological parameters on plant growth and fruit quality of Kinnow mandarin. Indian J. Agric. Sci. 88(7), 1004–1012 (2018).
    Google Scholar 
    69.Ferree, D. C. & Warrington, I. J. (eds) Apples: Botany, Production, and Uses (CABI, 2003).
    Google Scholar 
    70.Moretti, C. L., Mattos, L. M., Calbo, A. G. & Sargent, S. A. Climate changes and potential impacts on postharvest quality of fruit and vegetable crops: A review. Food Res. Int. 43(7), 1824–1832 (2010).CAS 
    Article 

    Google Scholar 
    71.Chelong, I. A. & Sdoodee, S. Pollen viability, pollen germination and pollen tube growth of shogun (Citrus reticulate Blanco) under climate variability in southern Thailand. J. Agric. Technol 8, 2297–2307 (2012).
    Google Scholar 
    72.García-Tejero, I. et al. Positive impact of regulated deficit irrigation on yield and fruit quality in a commercial citrus orchard [Citrus sinensis (L.) Osbeck, cv. salustiano]. Agric. Water Manag. 97(5), 614–622 (2010).Article 

    Google Scholar 
    73.Zekri, M. & Rouse, R. E. Citrus Problems in the Home Landscape (University of Florida Cooperative Extension Service, 2002).
    Google Scholar 
    74.Barkhordarian, A., Saatchi, S. S., Behrangi, A., Loikith, P. C. & Mechoso, C. R. A recent systematic increase in vapor pressure deficit over tropical South America. Sci. Rep. 9(1), 1–12 (2019).CAS 
    Article 

    Google Scholar 
    75.Li, M., Yao, J., Guan, J. & Zheng, J. Observed changes in vapor pressure deficit suggest a systematic drying of the atmosphere in Xinjiang of China. Atmos. Res. 248, 105199 (2020).Article 

    Google Scholar 
    76.Carnicer, J., Barbeta, A., Sperlich, D., Coll, M. & Peñuelas, J. Contrasting trait syndromes in angiosperms and conifers are associated with different responses of tree growth to temperature on a large scale. Front. Plant Sci. 4, 409 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    77.Hatfield, J. L. & Prueger, J. H. Temperature extremes: Effect on plant growth and development. Weather Clim. Extrem. 10, 4–10 (2015).Article 

    Google Scholar 
    78.Brodribb, T. J. & McAdam, S. A. Passive origins of stomatal control in vascular plants. Science 331(6017), 582–585 (2011).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    79.Mott, K. A. & Peak, D. Testing a vapour-phase model of stomatal responses to humidity. Plant Cell Environ. 36(5), 936–944 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    80.Allen, L. H. & Vu, J. C. Carbon dioxide and high temperature effects on growth of young orange trees in a humid, subtropical environment. Agric. For. Meteorol. 149(5), 820–830 (2009).ADS 
    Article 

    Google Scholar 
    81.Novick, K. A. et al. The increasing importance of atmospheric demand for ecosystem water and carbon fluxes. Nat. Clim. Change 6(11), 1023–1027 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    82.De Carcer, P. S., Signarbieux, C., Schlaepfer, R., Buttler, A. & Vollenweider, P. Responses of antinomic foliar traits to experimental climate forcing in beech and spruce saplings. Environ. Exp. Bot. 140, 128–140 (2017).Article 

    Google Scholar 
    83.Dai, A. Increasing drought under global warming in observations and models. Nat. Clim. Change 3(1), 52–58 (2013).ADS 
    Article 

    Google Scholar 
    84.Franks, P. J., Cowan, I. R. & Farquhar, G. D. The apparent feedforward response of stomata to air vapour pressure deficit: Information revealed by different experimental procedures with two rainforest trees. Plant Cell Environ. 20(1), 142–145 (1997).Article 

    Google Scholar 
    85.Grossiord, C. et al. Plant responses to rising vapor pressure deficit. New Phytol. 226(6), 1550–1566 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    86.do Carmo Araújo, S. A. et al. Photosynthetic characteristics of dwarf elephant grass (Pennisetum purpureum Schum.) genotypes, under stress water. Acta Sci. Anim. Sci. 32(1), 1–7 (2010).
    Google Scholar 
    87.Shirke, P. A. & Pathre, U. V. Influence of leaf-to-air vapour pressure deficit (VPD) on the biochemistry and physiology of photosynthesis in Prosopis juliflora. J. Exp. Bot. 55(405), 2111–2120 (2004).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    88.Ribeiro, R. V., Machado, E. C., Santos, M. G. & Oliveira, R. F. Photosynthesis and water relations of well-watered orange plants as affected by winter and summer conditions. Photosynthetica 47(2), 215–222 (2009).Article 

    Google Scholar 
    89.Ribeiro, R. V., Machado, E. C., Santos, M. G. & Oliveira, R. F. Seasonal and diurnal changes in photosynthetic limitation of young sweet orange trees. Environ. Exp. Bot. 66(2), 203–211 (2009).CAS 
    Article 

    Google Scholar 
    90.Wong, S. C., Cowan, I. R. & Farquhar, G. D. Stomatal conductance correlates with photosynthetic capacity. Nature 282(5737), 424–426 (1979).ADS 
    Article 

    Google Scholar 
    91.Bevington, K. B. & Castle, W. S. Annual root growth pattern of young citrus trees in relation to shoot growth, soil temperature, and soil water content. J. Am. Soc. Hortic. Sci. 110(6), 840–845 (1985).
    Google Scholar 
    92.Khurshid, T. & Hutton, R. J. Heat unit mapping a decision support system for selection and evaluation of citrus cultivars. In International Symposium on Harnessing the Potential of Horticulture in the Asian-Pacific Region 694, 265–269 (2004).93.Dalal, R. P. S. & Raj Singh, A. K. ,. Prevailing weather condition impact on different phenophases of Kinnow Mandarin (Citrus nobilis Lour* Citrus deliciosa Tenore). Int. J. Pure App. Biosci 5(2), 497–505 (2017).Article 

    Google Scholar 
    94.Koshita, Y. Effect of temperature on fruit color development. In Abiotic Stress Biology in Horticultural Plants 47–58 (Springer, 2015).
    Google Scholar 
    95.Sastry, P. S. N. & Chakravarty, N. V. K. Energy summation indices for wheat crop in India. Agric. Meteorol. 27, 45–48 (1982).Article 

    Google Scholar 
    96.Moriondo, M., Giannakopoulos, C. & Bindi, M. Climate change impact assessment: The role of climate extremes in crop yield simulation. Clim. Change 104(3), 679–701 (2011).ADS 
    Article 

    Google Scholar 
    97.Hilgeman, R. H., Dunlap, J. A. & Sharp, P. O. Effect of time of harvest of ‘Valencia’ oranges in Arizona on fruit grade and size and yield, the following year. Proc. Amer. Soc. Hort. Sci. 90, 103–109. Fruit Load Limits Root Growth, Summer Vegetative Shoot Development, and Flowering in Alternatebearing ‘Nadorcott’ Mandarin Trees (1967).98.Dalal, R. P. S., Beniwal, B. S. & Sehrawat, S. K. Seasonal variation in growth, leaf physiology and fruit development in Kinnow, a Mandarin Hybrid. J. Plant Stud. 2(1), 72–77 (2013).
    Google Scholar 
    99.Bower, J. P. The Pre-and post -Harvest Application Potential for Crop- Set TM and ISR2000TM on Citrus. http://en.engormix.com/MAagriculture/articles/th-pre (2007).100.Sharma, N., Sharma, S. & Niwas, R. Thermal time and phenology of citrus in semi-arid conditions. J. Pharmacogn. Phytochem. 6(5), 27–30 (2017).
    Google Scholar 
    101.Goldschmidt, E. E. & Koch, K. E. Citrus. In Photoassimilate Distribution in Plants and Crops: Source-Sink Relations (eds Zaminski, E. & Schaffer, A. A.) 797–823 (Marcel Dekker, 1996).
    Google Scholar 
    102.Munoz-Fambuena, N. et al. Fruit regulates seasonal expression of flowering genes in alternate-bearing ‘Moncada’ mandarin. Ann. Bot. 108, 511–519 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    103.Shalom, L. et al. Fruit load induces changes in global gene expression and in abscisic acid (ABA) and indole acetic acid (IAA) homeostasis in citrus buds. J. Exp. Bot. 65(12), 3029–3044 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    104.Smith, P. F. Collapse of ‘Murcott’ tangerine trees [Root starvation]. J. Am. Soc. Hortic. Sci. 101, 23–25 (1976).CAS 

    Google Scholar 
    105.Koshita, Y., Takahara, T., Ogata, T. & Goto, A. Involvement of endogenous plant hormones (IAA, ABA, GAs) in leaves and flower bud formation of satsuma mandarin (Citrus unshiu Marc). Sci. Hortic. 79(3–4), 185–194 (1999).CAS 
    Article 

    Google Scholar 
    106.Whiley, A. W., Rasmussen, T. S. & Wolstenholme, B. N. Delayed harvest effects on yield, fruit size and starch cycling in avocado (Persea americana Mill.) in subtropical environments. I. the early-maturing cv. Fuerte. Sci. Hortic. 66(1–2), 23–34 (1996).CAS 
    Article 

    Google Scholar 
    107.Syvertsen, J. P. & Lloyd, J. J. Citrus. Handb. Environ. Physiol. Fruit Crops 2, 65–99 (1994).
    Google Scholar 
    108.Scholefield, P. B., Sedgley, M. & Alexander, D. M. Carbohydrate cycling in relation to shoot growth, floral initiation and development and yield in the avocado. Sci. Hortic. 25(2), 99–110 (1985).Article 

    Google Scholar 
    109.Shalom, L. et al. Alternate bearing in citrus: Changes in the expression of flowering control genes and in global gene expression in on-versus off-crop trees. PLoS ONE 7(10), e46930 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    110.der Merwe, V. & Schalk, I. Studies on the Phenology and Carbohydrate Status of Alternate Bearing ‘Nadorcott’mandarin trees (Doctoral dissertation, Stellenbosch: Stellenbosch University, 2012).111.Ward, D. L. Factors affecting Pre-harvest Fruit Drop of Apple. Ph.D thesis. Virginia Polytechnic Institute and State University 143 (2004).112.Blanusa, T., Else, M. A., Davies, W. J. & Atkinson, C. J. Regulation of sweet cherry fruit abscission: The role of photo-assimilation, sugars and abscisic acid. J. Hortic. Sci. Biotechnol. 81(4), 613–620 (2006).CAS 
    Article 

    Google Scholar 
    113.Nartvaranant, P., Sornsanid, K. & Nuanpraluk, S. Preharvest Fruit Drop and Seasonal Variation of Plant Nutrient in ‘Thongdee’and ‘Khao Nam Pleung’pummelo on Nakhon Chaisri-Mae Klong river basin regions. Research Project Report (Thailand Research Fund, 2010).
    Google Scholar 
    114.Ruiz, R., Garcıa-Luis, A., Monerri, C. & Guardiola, J. L. Carbohydrate availability in relation to fruitlet abscission in Citrus. Ann. Bot. 87(6), 805–812 (2001).CAS 
    Article 

    Google Scholar 
    115.Atkinson, C. J. The effects of phloem girdling on the abscission of Prunus avium L. fruits. J. Hortic. Sci. Biotechnol. 77(1), 22–27 (2002).Article 

    Google Scholar 
    116.Spiegel-Roy, P. & Goldschmidt, E. E. The Biology of Citrus (Cambridge University Press, 1996).Book 

    Google Scholar 
    117.Thind, S. K. & Kumar, K. Integrated management of fruit drop in Kinnow mandarin. Indian J Hort 65(4), 497–499 (2008).
    Google Scholar 
    118.Kumar, A., Avasthe, R. K., Pandey, B., Lepcha, B. & Rahman, H. Effect of fruit size and orchard location on fruit quality and seed traits of mandarin (Citrus reticulata) in Sikkim Himalayas. Indian J. Agric. Sci. 81(9), 821 (2011).CAS 

    Google Scholar 
    119.Ashraf, M. Y., Gul, A., Ashraf, M., Hussain, F. & Ebert, G. Improvement in yield and quality of Kinnow (Citrus deliciosa × Citrus nobilis) by potassium fertilization. J. Plant Nutr. 33, 1625–1637 (2010).CAS 
    Article 

    Google Scholar 
    120.Ibrahim, M., Ahmad, N., Anwar, S. A. & Majeed, T. Effect of micronutrients on citrus fruit yield growing on calcareous soils. In Advances in Plant and Animal Boron Nutrition 179–182 (2007).121.Razi, M. F. D., Khan, I. A. & Jaskani, M. J. Citrus plant nutritional profile in relation to Huanglongbing prevalence in Pakistan. Pak. J. Agri. Sci. 48, 299–304 (2011).
    Google Scholar 
    122.Valiente, J. I. & Albrigo, L. G. Flower bud induction of sweet orange trees [Citrus sinensis (L.) Osbeck]: Effect of low temperatures, crop load, and bud age. J. Am. Soc. Hortic. Sci. 129(2), 158–164 (2004).Article 

    Google Scholar 
    123.Yakushiji, H. et al. Sugar accumulation enhanced by osmoregulation in satsuma mandarin fruit. J. Am. Soc. Hortic. Sci. 121, 466–472 (1996).CAS 
    Article 

    Google Scholar 
    124.Holland, N., Menezes, H. C. & Lafuente, M. T. Carbohydrates as related to the heat induced chilling tolerance and respiratory rate of ‘Fortune’ mandarin fruit harvested at different maturity stages. Postharvest Biol. Technol. 25, 181–191 (2002).CAS 
    Article 

    Google Scholar 
    125.Chelong, I. A. & Sdoodee, S. Effect of climate variability and degree-day on development, yield and quality of shogun (Citrus reticulata Blanco) in Southern Thailand. J. Nat. Sci. 47, 333–341 (2013).
    Google Scholar 
    126.Khalid, M. S. et al. Geographical location and agro-ecological conditions influence kinnow mandarin (Citrus nobilis × Citrus deliciosa) fruit quality. Int. J. Agric. Biol. 20, 647–654 (2018).Article 

    Google Scholar 
    127.Guardiola, J. L. & García-Luis, A. Increasing fruit size in Citrus. Thinning and stimulation of fruit growth. Plant Growth Regul. 31(1–2), 121–132 (2000).CAS 
    Article 

    Google Scholar 
    128.Hield, H. Z. & Hilgeman, R. H. Alternate bearing and chemical fruit thinning of certain citrus varieties. Proc. Intl. Citrus Symp. 3, 1145–1153 (1969).
    Google Scholar 
    129.Verreynne, J. S. The Mechanism and Underlying Physiology Perpetuating Alternate Bearing in ‘Pixie’mandarin (Citrus reticulata Blanco) (University of California, 2005).
    Google Scholar 
    130.Sanginés de Cárcer, P. et al. Vapor–pressure deficit and extreme climatic variables limit tree growth. Glob. Change Biol. 24(3), 1108–1122 (2018).ADS 
    Article 

    Google Scholar  More

  • in

    ROV assessment of mesophotic fish and associated habitats across the continental shelf of the Amathole region

    1.Milligan, R. J., Spence, G., Roberts, J. M. & Bailey, D. M. Fish communities associated with cold-water corals vary with depth and substratum type. Deep Sea Res. Part I Oceanogr. Res. Pap. 114, 43–54 (2016).ADS 
    Article 

    Google Scholar 
    2.Anderson, T. J., Syms, C., Roberts, D. A. & Howard, D. F. Multi-scale fish-habitat associations and the use of habitat surrogates to predict the organisation and abundance of deep-water fish assemblages. J. Exp. Mar. Bio. Ecol. 379, 34–42 (2009).Article 

    Google Scholar 
    3.Agardy, T., di Sciara, G. N. & Christie, P. Mind the gap: Addressing the shortcomings of marine protected areas through large scale marine spatial planning. Mar. Policy 35, 226–232 (2011).Article 

    Google Scholar 
    4.Hinderstein, L. M. et al. Mesophotic coral ecosystems: Characterization, ecology, and management. Coral Reefs 29, 247–251 (2010).ADS 
    Article 

    Google Scholar 
    5.Baldwin, C. C., Tornabene, L. & Robertson, D. R. Below the mesophotic. Sci. Rep. 8, 1–13 (2018).
    Google Scholar 
    6.Hoegh-Guldberg, O., Poloczanska, E. S., Skirving, W. & Dove, S. Coral reef ecosystems under climate change and ocean acidification. Front. Mar. Sci. 4, 158 (2017).Article 

    Google Scholar 
    7.Rocha, L. A. et al. Mesophotic coral ecosystems are threatened and ecologically distinct from shallow water reefs. Science 361(6399), 281–284 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    8.Cerrano, C. et al. Temperate mesophotic ecosystems: gaps and perspectives of an emerging conservation challenge for the Mediterranean Sea. Eur. Zool. J. 86, 370–388 (2019).Article 

    Google Scholar 
    9.Williams, J., Jordan, A., Harasti, D., Davies, P. & Ingleton, T. Taking a deeper look: Quantifying the differences in fish assemblages between shallow and mesophotic temperate rocky reefs. PLoS ONE 14, e0206778 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    10.Lesser, M. P., Slattery, M. & Leichter, J. J. Ecology of mesophotic coral reefs. J. Exp. Mar. Bio. Ecol. 375, 1–8 (2009).Article 

    Google Scholar 
    11.Armstrong, R. A., Pizarro, O. & Roman, C. Underwater robotic technology for imaging mesophotic coral ecosystems. in Mesophotic Coral Ecosystems. 973–988. (Springer, 2019).12.Stoner, A. W., Ryer, C. H., Parker, S. J., Auster, P. J. & Wakefield, W. W. Evaluating the role of fish behavior in surveys conducted with underwater vehicles. Can. J. Fish. Aquat. Sci. 65, 1230–1243 (2008).Article 

    Google Scholar 
    13.Durden, J. M. et al. Perspectives in visual imaging for marine biology and ecology: From acquisition to understanding. Oceanogr. Mar. Biol. Annu. Rev. 54, 1–72 (2016).
    Google Scholar 
    14.Stevens, T. & Connolly, R. M. Local-scale mapping of benthic habitats to assess representation in a marine protected area. Mar. Freshw. Res. 56, 111–123 (2005).Article 

    Google Scholar 
    15.Bernard, A. T. et al. New possibilities for research on reef fish across the continental shelf of South Africa. S. Afr. J. Sci. 110, 1–5. https://doi.org/10.1590/sajs.2014/a0079 (2014).Article 

    Google Scholar 
    16.Rees, S. E., Foster, N. L., Langmead, O., Pittman, S. & Johnson, D. E. Defining the qualitative elements of Aichi Biodiversity Target 11 with regard to the marine and coastal environment in order to strengthen global efforts for marine biodiversity conservation outlined in the United Nations Sustainable Development Goal 14. Mar. Policy 93, 241–250 (2018).Article 

    Google Scholar 
    17.South African National Biodiversity Institute. South Africa Announces New Marine Protected Area Network. https://www.sanbi.org/media/south-africa-announces-new-marine-protected-area-network/. (2018).18.der Bank, V., Harris, L., Atkinson, L., Kirkman, S., & Karenyi, N. Marine Realm in South African National Biodiversity Assessment 2018 Technical Report. Vol. 4 (South African National Biodiversity Institute, 2019).19.Sink, K. The marine protected areas debate: Implications for the proposed Phakisa marine protected areas network. S. Afr. J. Sci. 112, 9–10 (2016).Article 

    Google Scholar 
    20.Turpie, J. K., Beckley, L. E. & Katua, S. M. Biogeography and the selection of priority areas for conservation of South African coastal fishes. Biol. Conserv. 92, 59–72 (2000).Article 

    Google Scholar 
    21.Götz, A. & Phillips, M. SAEON Elwandle Applies Expertise to Marine Protected Area Management in Amathole. http://www.saeon.ac.za/enewsletter/archives/2016/august2016/doc03 (2019).22.DEA (Department of Environmental Affairs). Notice Declaring the Amathole Offshore Marine Protected Area Under Section 22A of the National Environmental Management: Protected Areas Act, 2003 (Act No.57 of 2003). Government Gazette, Republic of South Africa (2016).23.Green, A. N. et al. Relict and contemporary influences on the postglacial geomorphology and evolution of a current swept shelf: The Eastern Cape Coast, South Africa. Mar. Geol. 427, 106230 (2020).ADS 
    Article 

    Google Scholar 
    24.Parker, D., Winker, H., Attwood, C. & Kerwath, S. Dark times for dageraad Chrysoblephus cristiceps: Evidence for stock collapse. Afr. J. Mar. Sci. 38, 341–349. https://doi.org/10.2989/1814232X.2016.1200142 (2016).Article 

    Google Scholar 
    25.Kerwath, S. et al. Tracking the decline of the world’s largest seabream against policy adjustments. Mar. Ecol. Prog. Ser. 610, 163–173. https://doi.org/10.3354/meps12853 (2019).ADS 
    Article 

    Google Scholar 
    26.African Coelacanth Ecosystem Programme Project. African Coelacanth Ecosystem Programme Project Overviews 2017/2018. (2018).27.Donovan, B. A Retrospective Assessment of the Port Alfred Linefishery with Respect to the Changes in the South African Fisheries Management Environment (Rhodes University, 2010).
    Google Scholar 
    28.International Union for Conservation of Nature and Natural Resources. The IUCN Red List of Threatened Species (IUCN Global Species Programme Red List Unit, 2017).
    Google Scholar 
    29.Götz, A., Kerwath, S. E., Attwood, C. G. & Sauer, W. H. H. Effects of fishing on population structure and life history of roman Chrysoblephus laticeps (Sparidae). Mar. Ecol. Prog. Ser. 362, 245–259 (2008).ADS 
    Article 

    Google Scholar 
    30.McCord, M. & Zweig, T. Fisheries: Facts and Trends. http://awsassets.wwf.org.za/downloads/wwf_a4_fish_facts_report_lr.pdf (2011).31.Southern African Marine Linefish Species Profiles (South African Association for Marine Biological Research, 2013).32.Smith, J. L. B. Smiths’ Sea Fishes. https://doi.org/10.1007/978-3-642-82858-4 (Springer, 1986).33.Compagno, L. J. V., Ebert, D. A. & Smale, M. J. Guide to the Sharks and Rays of Southern Africa (Struik, 1989).
    Google Scholar 
    34.Peres, M. B. & Klippel, S. Reproductive biology of Southwestern Atlantic wreckfish, Polyprion americanus (Teleostei: Polyprionidae). Environ. Biol. Fish. 68, 163–173 (2003).Article 

    Google Scholar 
    35.Baillon, S., Hamel, J.-F., Wareham, V. E. & Mercier, A. Deep cold-water corals as nurseries for fish larvae. Front. Ecol. Environ. 10, 351–356 (2012).Article 

    Google Scholar 
    36.Sink, K. J., Boshoff, W., Samaai, T., Timm, P. G. & Kerwath, S. E. Observations of the habitats and biodiversity of the submarine canyons at Sodwana Bay: Coelacanth research. S. Afr. J. Sci. 102, 466–474 (2006).
    Google Scholar 
    37.Heemstra, P. C. & Heemstra, E. Coastal Fishes of Southern Africa (National Inquiry Services Centre, 2004).
    Google Scholar 
    38.Epstein, H. E. & Kingsford, M. J. Are soft coral habitats unfavourable? A closer look at the association between reef fishes and their habitat. Environ. Biol. Fish. 102, 479–497. https://doi.org/10.1007/s10641-019-0845-4 (2019).Article 

    Google Scholar 
    39.Booth, A. J. & Buxton, C. D. The biology of the panga, Pterogymnus laniarius (Teleostei: Sparidae), on the Agulhas Bank, South Africa. Environ. Biol. Fish. 49, 207–226 (1997).Article 

    Google Scholar 
    40.Turner, J. A., Babcock, R. C., Hovey, R. & Kendrick, G. A. Deep thinking: A systematic review of mesophotic coral ecosystems. ICES J. Mar. Sci. 74, 2309–2320. https://doi.org/10.1093/icesjms/fsx085 (2017).Article 

    Google Scholar 
    41.Heyns, E., Bernard, A. T., Richoux, N. & Götz, A. Depth-related distribution patterns of subtidal macrobenthos in a well-established marine protected area. Mar. Biol. 163, 39. https://doi.org/10.1007/s00227-016-2816-z (2016).CAS 
    Article 

    Google Scholar 
    42.Bridge, T. C. L. et al. Topography, substratum and benthic macrofaunal relationships on a tropical mesophotic shelf margin, central Great Barrier Reef, Australia. Coral Reefs 30, 143–153 (2011).ADS 
    Article 

    Google Scholar 
    43.Doty, M. S. & Oguri, M. The Island mass effect. ICES J. Mar. Sci. 22, 33–37 (1956).Article 

    Google Scholar 
    44.Fabricius, K. E., Logan, M., Weeks, S. & Brodie, J. The effects of river run-off on water clarity across the central Great Barrier Reef. Mar. Pollut. Bull. 84, 191–200 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    45.Foster, M. S. Rhodoliths: Between rocks and soft places. J. Phycol. 37, 659–667 (2001).Article 

    Google Scholar 
    46.Littler, M. M., Littler, D. S. & Dennis Hanisak, M. Deep-water rhodolith distribution, productivity, and growth history at sites of formation and subsequent degradation. J. Exp. Mar. Bio. Ecol. 150, 163–182 (1991).Article 

    Google Scholar 
    47.Tait, R. V. & Dipper, F. Elements of marine ecology (Butterworth-Heinemann, 1998).
    Google Scholar 
    48.Williams, A. & Bax, N. J. Delineating fish-habitat associations for spatially based management: An example from the south-eastern Australian continental shelf. Mar. Freshw. Res. 52, 513 (2001).Article 

    Google Scholar 
    49.Pearson, R. & Stevens, T. Distinct cross-shelf gradient in mesophotic reef fish assemblages in subtropical eastern Australia. Mar. Ecol. Prog. Ser. 532, 185–196 (2015).ADS 
    Article 

    Google Scholar 
    50.MacDonald, C., Bridge, T. & Jones, G. Depth, bay position and habitat structure as determinants of coral reef fish distributions: Are deep reefs a potential refuge?. Mar. Ecol. Prog. Ser. 561, 217–231 (2016).ADS 
    Article 

    Google Scholar 
    51.Fukunaga, A., Kosaki, R. K. & Wagner, D. Changes in mesophotic reef fish assemblages along depth and geographical gradients in the Northwestern Hawaiian Islands. Coral Reefs 36, 785–790 (2017).ADS 
    Article 

    Google Scholar 
    52.Sih, T. L., Cappo, M. & Kingsford, M. Deep-reef fish assemblages of the Great Barrier Reef shelf-break (Australia). Sci. Rep. 7, 10886 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    53.Colwell, R. K. & Lees, D. C. The mid-domain effect: Geometric constraints on the geography of species richness. Trends Ecol. Evol. 15, 70–76 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    54.Colwell, R. K., Rahbek, C. & Gotelli, N. J. The mid-domain effect and species richness patterns: What have we learned so far?. Am. Nat. 163, E1-23 (2004).PubMed 
    Article 

    Google Scholar 
    55.Makwela, M. S. et al. Notes on a remotely operated vehicle survey to describe reef ichthyofauna and habitats—Agulhas Bank, South Africa. Bothalia 46, 1–7 (2016).Article 

    Google Scholar 
    56.Quantum GIS Development Team. Quantum GIS Geographic Information System. (2002).57.Kleczkowski, M., Babcock, R. C. & Clapin, G. Density and size of reef fishes in and around a temperate marine reserve. Mar. Freshw. Res. 59, 165 (2008).Article 

    Google Scholar 
    58.Althaus, F. et al. A standardised vocabulary for identifying benthic biota and substrata from underwater imagery: The CATAMI classification scheme. PLoS ONE 10, e0141039 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    59.R Core Team. R: A Language and Environment for Statistical Computing. https://www.R-project.org/. (R Foundation for Statistical Computing, 2020).60.Charrad, M., Ghazzali, N., Boiteau, V. & Maintainer, A. N. NbClust: An R package for determining the relevant number of clusters in a data set. J. Stat. Softw. 61, 1 (2014).Article 

    Google Scholar 
    61.Liaw, A. & Wiener, M. Classification and regression by randomForest. R. News 2, 18–22 (2002).
    Google Scholar 
    62.De’ath, G. Multivariate regression trees: A new technique for modeling species-environment relationships. Ecology 83, 1105 (2002).
    Google Scholar 
    63.Zuur, A. F. Mixed Effects Models and Extensions in Ecology with R (Springer, 2009).MATH 
    Book 

    Google Scholar 
    64.South African National Biodiversity Institute. https://www.sanbi.org/. (2021). More

  • in

    Microbial transfers from permanent grassland ecosystems to milk in dairy farms in the Comté cheese area

    1.Mauchamp, L., Mouly, A., Badot, P.-M. & Gillet, F. Impact of nitrogen inputs on multiple facets of plant biodiversity in mountain grasslands: Does nutrient source matter?. Appl. Veg. Sci. 19, 206–217 (2016).Article 

    Google Scholar 
    2.Mesbahi, G., Michelot-Antalik, A., Goulnik, J. & Plantureux, S. Permanent grassland classifications predict agronomic and environmental characteristics well, but not ecological characteristics. Ecol. Indic. 110, 105956 (2020).Article 

    Google Scholar 
    3.Karimi, B. et al. Biogeography of soil microbial habitats across France. Glob. Ecol. Biogeogr. 29, 1399–1411 (2020).Article 

    Google Scholar 
    4.Mahaut, L., Fort, F., Violle, C. & Freschet, G. T. Multiple facets of diversity effects on plant productivity: Species richness, functional diversity, species identity and intraspecific competition. Funct. Ecol. 34, 287–298 (2020).Article 

    Google Scholar 
    5.Tilman, D. The ecological consequences of changes in biodiversity: A search for general principles. Ecology 80, 1455–1474 (1999).
    Google Scholar 
    6.van der Heijden, M. G. A., Bardgett, R. D. & van Straalen, N. M. The unseen majority: Soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol. Lett. 11, 296–310 (2008).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Tardy, V. et al. Stability of soil microbial structure and activity depends on microbial diversity: Linking microbial diversity and stability. Environ. Microbiol. Rep. 6, 173–183 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    8.Philippot, L. et al. Loss in microbial diversity affects nitrogen cycling in soil. ISME J. 7, 1609–1619 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    9.Fierer, N., Barberan, A. & Laughlin, D. C. Seeing the forest for the genes: Using metagenomics to infer the aggregated traits of microbial communities. Front. Microbiol. 5, 614 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    10.Loreau, M. Linking biodiversity and ecosystems: Towards a unifying ecological theory. Philos. Trans. R. Soc. B 365, 49–60 (2010).Article 

    Google Scholar 
    11.Buchin, S., Martin, B., Dupont, D., Bornard, A. & Achilleos, C. Influence of the composition of Alpine highland pasture on the chemical, rheological and sensory properties of cheese. J. Dairy Res. 66, 579–588 (1999).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    12.Bugaud, C., Buchin, S., Hauwy, A. & Coulon, J.-B. Flavour and texture of cheeses according to grazing type: The Abundance cheese. INRA Prod. Anim. 15, 31–36 (2002).Article 

    Google Scholar 
    13.Monnet, J. C., Berodier, F. & Badot, P. M. Characterization and localization of a cheese georegion using edaphic criteria (Jura Mountains, France). J. Dairy Sci. 83, 1692–1704 (2000).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    14.Mariotte, P., Vandenberghe, C., Kardol, P., Hagedorn, F. & Buttler, A. Subordinate plant species enhance community resistance against drought in semi-natural grasslands. J. Ecol. 101, 763–773 (2013).Article 

    Google Scholar 
    15.Montel, M.-C. et al. Traditional cheeses: Rich and diverse microbiota with associated benefits. Int. J. Food Microbiol. 177, 136–154 (2014).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    16.Bouton, Y., Guyot, P., Berthier, F., & Beuvier, E. Investigation of bacterial community development from raw milk and starter to curd and mature Comte cheese. in Cheese ripening and technology: abstracts of IDF symposium held in Banff, Canada, March 2000 (ed. International Dairy Federation) 85 (Brussel, Belgium, 2000).17.Demarigny, Y., Beuvier, E., Buchin, S., Pochet, S. & Grappin, R. Influence of raw milk microflora on the characteristics of Swiss-type cheese. Lait 77, 151–167 (1997).CAS 
    Article 

    Google Scholar 
    18.Bouton, Y., Buchin, S., Duboz, G., Pochet, S. & Beuvier, E. Effect of mesophilic lactobacilli and enterococci adjunct cultures on the final characteristics of a microfiltered milk Swiss-type cheese. Food Microbiol. 26, 183–191 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    19.Vacheyrou, M. et al. Cultivable microbial communities in raw cow milk and potential transfers from stables of sixteen French farms. Int. J. Food Microbiol. 146, 253–262 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    20.Verdier-Metz, I. et al. Cow teat skin, a potential source of diverse microbial populations for cheese production. Appl. Environ. Microbiol. 78, 326–333 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    21.Doyle, C. J., Gleeson, D., O’Toole, P. W. & Cotter, P. D. Impacts of seasonal housing and teat preparation on raw milk microbiota: A high-throughput sequencing study. Appl. Environ. Microbiol. 83(e02694–16), e02694-e2716 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    22.Frétin, M. et al. Bacterial community assembly from cow teat skin to ripened cheeses is influenced by grazing systems. Sci. Rep. 8, 200 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    23.Falentin, H. et al. Bovine teat microbiome analysis revealed reduced alpha diversity and significant changes in taxonomic profiles in quarters with a history of mastitis. Front. Microbiol. 7, 480 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    24.Fierer, N. Embracing the unknown: disentangling the complexities of the soil microbiome. Nat. Rev. Microbiol. 15, 579–590 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    25.Vorholt, J. A. Microbial life in the phyllosphere. Nat. Rev. Microbiol. 10, 828–840 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    26.Dequiedt, S. et al. Biogeographical patterns of soil bacterial communities. Environ. Microbiol. Rep. 1, 251–255 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    27.Sadet-Bourgeteau, S. et al. Lasting effect of repeated application of organic waste products on microbial communities in arable soils. Appl. Soil Ecol. 125, 278–287 (2018).Article 

    Google Scholar 
    28.Nacke, H. et al. Pyrosequencing-based assessment of bacterial community structure along different management types in german forest and grassland soils. PLoS ONE 6, e17000 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    29.Coolon, J. D., Jones, K. L., Todd, T. C., Blair, J. M. & Herman, M. A. Long-term nitrogen amendment alters the diversity and assemblage of soil bacterial communities in Tallgrass Prairie. PLoS ONE 8, e67884 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    30.Toyota, K. & Kuninaga, S. Comparison of soil microbial community between soils amended with or without farmyard manure. Appl. Soil Ecol. 33, 39–48 (2006).Article 

    Google Scholar 
    31.Garnier, E. & Navas, M.-L. A trait-based approach to comparative functional plant ecology: Concepts, methods and applications for agroecology: A review. Agron. Sustain. Dev. 32, 365–399 (2012).Article 

    Google Scholar 
    32.Mauchamp, L., Mouly, A., Badot, P.-M. & Gillet, F. Impact of management type and intensity on multiple facets of grassland biodiversity in the French Jura Mountains. Appl. Veg. Sci. 17, 645–657 (2014).Article 

    Google Scholar 
    33.Chytrý, M. et al. European map of alien plant invasions based on the quantitative assessment across habitats. Divers. Distrib. 15, 98–107 (2009).Article 

    Google Scholar 
    34.Klaudisová, M., Hejcman, M. & Pavlů, V. Long-term residual effect of short-term fertilizer application on Ca, N and P concentrations in grasses Nardus stricta L. and Avenella flexuosa L. Nutr. Cycl. Agroecosyst. 85, 187–193 (2009).Article 
    CAS 

    Google Scholar 
    35.Terrat, S. et al. Mapping and predictive variations of soil bacterial richness across France. PLoS ONE 12, e0186766 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    36.Terrat, S. et al. Improving soil bacterial taxa–area relationships assessment using DNA meta-barcoding. Heredity 114, 468–475 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    37.Navrátilová, D. et al. Diversity of fungi and bacteria in species-rich grasslands increases with plant diversity in shoots but not in roots and soil. FEMS Microbiol. Ecol. https://doi.org/10.1093/femsec/fiy208 (2018).Article 

    Google Scholar 
    38.Zhang, Q. et al. Niche differentiation in the composition, predicted function, and co-occurrence networks in bacterial communities associated with antarctic vascular plants. Front. Microbiol. 11, 1036 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    39.Falardeau, J., Keeney, K., Trmčić, A., Kitts, D. & Wang, S. Farm-to-fork profiling of bacterial communities associated with an artisan cheese production facility. Food Microbiol. 83, 48–58 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    40.Plassart, P. et al. Soil parameters, land use, and geographical distance drive soil bacterial communities along a European transect. Sci. Rep. 9, 605 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    41.Rastogi, G., Coaker, G. L. & Leveau, J. H. J. New insights into the structure and function of phyllosphere microbiota through high-throughput molecular approaches. FEMS Microbiol. Lett. 348, 1–10 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    42.Andrews, T., Neher, D. A., Weicht, T. R. & Barlow, J. W. Mammary microbiome of lactating organic dairy cows varies by time, tissue site, and infection status. PLoS ONE 14, e0225001 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    43.Karimi, B. et al. Biogeography of soil bacteria and archaea across France. Sci. Adv. 4, 1808 (2018).ADS 
    Article 

    Google Scholar 
    44.Lewin, G. R. et al. Evolution and ecology of Actinobacteria and their bioenergy applications. Annu. Rev. Microbiol. 70, 235–254 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    45.Li, N. et al. Variation in raw milk microbiota throughout 12 months and the impact of weather conditions. Sci. Rep. 8, 2371 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    46.Lavoie, K., Touchette, M., St-Gelais, D. & Labrie, S. Characterization of the fungal microflora in raw milk and specialty cheeses of the province of Quebec. Dairy Sci. Technol. 92, 455–468 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    47.Verdier-Metz, I. & Monsallier, F. Place des pâturages des bovins dans les flux microbiens laitiers. Fourrages 6, 1–10 (2012).
    Google Scholar 
    48.Laforest-Lapointe, I., Paquette, A., Messier, C. & Kembel, S. W. Leaf bacterial diversity mediates plant diversity and ecosystem function relationships. Nature 546, 145–147 (2017).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    49.Fierer, N. & Jackson, R. B. The diversity and biogeography of soil bacterial communities. Proc. Natl. Acad. Sci. USA 103, 626–631 (2006).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    50.Mallet, A. et al. Quantitative and qualitative microbial analysis of raw milk reveals substantial diversity influenced by herd management practices. Int. Dairy J. 27, 13–21 (2012).Article 

    Google Scholar 
    51.Kottek, M., Grieser, J., Beck, C., Rudolf, B. & Rubel, F. World Map of the Köppen-Geiger climate classification updated. Metz 15, 259–263 (2006).ADS 
    Article 

    Google Scholar 
    52.Beck, H. E. et al. Present and future Köppen-Geiger climate classification maps at 1-km resolution. Sci. Data 5, 180214 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    53.QGIS.org. QGIS Geographic Information System. QGIS Association. http://www.qgis.org (2021).54.Homburger, H. & Hofer, G. Diversity change of mountain hay meadows in the Swiss Alps. Basic Appl. Ecol. 13, 132–138 (2012).Article 

    Google Scholar 
    55.Gillet, F., Mauchamp, L., Badot, P.-M. & Mouly, A. Recent changes in mountain grasslands: a vegetation resampling study. Ecol. Evol. 6, 2333–2345 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    56.Maabel, E. Transformation of cover-abundance values in phytosociology and its effects on community similarity. Vegetatio 39, 97–114 (1979).Article 

    Google Scholar 
    57.Jost, L. The relation between evenness and diversity. Diversity 26, 207–230 (2010).Article 

    Google Scholar 
    58.ChemidlinPrévost-Bouré, N. et al. Validation and application of a PCR primer set to quantify fungal communities in the soil environment by real-time quantitative PCR. PLoS ONE 6, e24166 (2011).ADS 
    Article 
    CAS 

    Google Scholar 
    59.Djemiel, C. et al. BIOCOM-PIPE: A new user-friendly metabarcoding pipeline for the characterization of microbial diversity from 16S, 18S and 23S rRNA gene amplicons. BMC Bioinform. 21, 492. https://doi.org/10.1186/s12859-020-03829-3 (2020).CAS 
    Article 

    Google Scholar 
    60.Cole, J. R. et al. The ribosomal database project: Improved alignments and new tools for rRNA analysis. Nucleic Acids Res. 37, D141–D145 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    61.Bardou, P., Mariette, J., Escudié, F., Djemiel, C. & Klopp, C. jvenn: An interactive Venn diagram viewer. BMC Bioinform. 15, 293 (2014).Article 

    Google Scholar 
    62.Oksanen, J. et al. vegan: Community Ecology Package. R package version 2.5–7. https://CRAN.R-project.org/package=vegan (2020).63.Segata, N. et al. Metagenomic biomarker discovery and explanation. Genome Biol. 12, R60 (2011).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    64.Asnicar, F., Weingart, G., Tickle, T. L., Huttenhower, C. & Segata, N. Compact graphical representation of phylogenetic data and metadata with GraPhlAn. PeerJ 3, e1029. https://doi.org/10.7717/peerj.1029 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    65.Yekutieli, D. & Benjamini, Y. The control of the false discovery rate in multiple testing under dependency. Ann. Statist. 29, 1165–1188 (2001).MathSciNet 
    MATH 

    Google Scholar 
    66.Gysi, D. M., Voigt, A., Fragoso, T. M., Almaas, E. & Nowick, K. wTO: an R package for computing weighted topological overlap and a consensus network with integrated visualization tool. BMC Bioinform. 19, 392 (2018).Article 

    Google Scholar 
    67.Kursa, M. B. & Rudnicki, W. R. Feature Selection with the Boruta Package. J. Stat. Soft. 36, 11 (2010).Article 

    Google Scholar  More