More stories

  • in

    Genetic homogeneity, lack of larvae recruitment, and clonality in absence of females across western Mediterranean populations of the starfish Coscinasterias tenuispina

    1.Frankham, R. Challenges and opportunities of genetic approaches to biological conservation. Biol. Conserv. 143, 1919–1927 (2010).Article 

    Google Scholar 
    2.Frankham, R., Ballow, J. D. & Briscoe, D. A. Introduction to Conservation Genetics (Cambridge University Press, 2002).Book 

    Google Scholar 
    3.Grosberg, R. & Cunningham, C. W. Genetic Structure in the Sea. Marine Community Ecology 61–84 (Sinauer, 2001).
    Google Scholar 
    4.Selkoe, K. A., Henzler, C. M. & Gaines, S. D. Seascape genetics and the spatial ecology of marine populations. Fish Fish. 9, 363–377 (2008).Article 

    Google Scholar 
    5.Selkoe, K. A., Gaggiotti, O. E., Laboratory, T., Bowen, B. W. & Toonen, R. J. Emergent patterns of population genetic structure for a coral reef community. Mol. Ecol. 23, 3064–3079 (2014).PubMed 
    Article 

    Google Scholar 
    6.Holland, L., Jenkins, T. & Stevens, J. Contrasting patterns of population structure and gene flow facilitate exploration of connectivity in two widely distributed temperate octocorals. Heredity 119, 35–48 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    7.Pérez-Portela, R. & Riesgo, A. Population Genomics: Marine Organisms 103–137 (Springer, 2018).Book 

    Google Scholar 
    8.Jackson, J. & Coates, A. Life cycles and evolution of clonal (modular) animals. Philos. Trans. R Soc. Lond. B Biol. Sci. 313, 7–22 (1986).ADS 
    Article 

    Google Scholar 
    9.Mladenov, P. V. & Emson, R. H. Divide and broadcast: Sexual reproduction in the West Indian brittle star Ophiocomella ophiactoides and its relationship to fissiparity. Mar. Biol. 81, 273–282. https://doi.org/10.1007/BF00393221 (1984).Article 

    Google Scholar 
    10.Emson, R. H. & Wilkie, I. C. Fission and Autotomy in Echinoderms (Aberdeen University Press, 1980).
    Google Scholar 
    11.Haramoto, S., Komatsu, M. & Yamazaki, Y. Population genetic structures of the fissiparous seastar Coscinasterias acutispina in the Sea of Japan. Mar. Biol. 149, 813–820 (2006).Article 

    Google Scholar 
    12.Barker, M. F. & Scheibling, R. E. Rates of fission, somatic growth and gonadal development of a fissiparous sea star, Allostichaster insignis, in New Zealand. Mar. Biol. 153, 815–824 (2008).Article 

    Google Scholar 
    13.Garcia-Cisneros, A. et al. Intraspecific genetic structure, divergence and high rates of clonality in an amphi-Atlantic starfish. Mol. Ecol. 27, 752–772 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    14.De Meeûs, T., Prugnolle, F. & Agnew, P. Asexual reproduction: Genetics and evolutionary aspects. Cell. Mol. Life Sci. 64, 1355–1372 (2007).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    15.Balloux, F., Lehmann, L. & de Meeûs, T. The population genetics of clonal and partially clonal diploids. Genetics 164, 1635–1644 (2003).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    16.Arnaud-Haond, S., Stoeckel, S. & Bailleul, D. New insights into the population genetics of partially clonal organisms: When seagrass data meet theoretical expectations. Mol. Ecol. 29, 3248–3260 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    17.Bengtsson, B. O. Genetic variation in organisms with sexual and asexual reproduction. J. Evol. Biol. 16, 189–199 (2003).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    18.McGovern, T. M. Sex-ratio bias and clonal reproduction in the brittle star Ophiactis savignyi. Evolution 56, 511–517 (2002).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    19.Alves, L., Pereira, A. & Ventura, C. Sexual and asexual reproduction of Coscinasterias tenuispina (Echinodermata: Asteroidea) from Rio de Janeiro, Brazil. Mar. Biol. 140, 95–101 (2002).Article 

    Google Scholar 
    20.Lawrence, J. M. Starfish: Biology and Ecology of the Asteroidea (JHU Press, 2013).
    Google Scholar 
    21.Barker, M. Descriptions of the larvae of Stichaster australis (Verrill) and Coscinasterias calamaria (Gray) (Echinodermata: Asteroidea) from New Zealand, obtained from laboratory culture. Biol. Bull. 154, 32–46 (1978).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    22.Shibata, D., Hirano, Y. & Komatsu, M. Life cycle of the multiarmed sea star Coscinasterias acutispina (Stimpson, 1862) in laboratory culture: Sexual and asexual reproductive pathways. Zoolog. Sci. 28, 313–317 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    23.Garcia-Cisneros, A., Pérez-Portela, R., Wangensteen, O. S., Campos-Canet, M. & Palacín, C. Hope springs eternal in the starfish gonad: Preserved potential for sexual reproduction in a single-clone population of a fissiparous starfish. Hydrobiologia 787, 291–305 (2017).Article 

    Google Scholar 
    24.Wangensteen, O. S., Dupont, S., Casties, I., Turon, X. & Palacín, C. Some like it hot: Temperature and pH modulate larval development and settlement of the sea urchin Arbacia lixula. J. Exp. Mar. Biol. Ecol. 449, 304–311 (2013).Article 

    Google Scholar 
    25.Patarnello, T. O. M. A., Volckaert, F. A. M. J. & Castilho, R. I. T. A. Pillars of Hercules: Is the Atlantic–Mediterranean transition a phylogeographical break?. Mol. Ecol. 16, 4426–4444 (2007).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    26.Pascual, M., Rives, B., Schunter, C. & Macpherson, E. Impact of life history traits on gene flow: A multispecies systematic review across oceanographic barriers in the Mediterranean Sea. PLoS One 12, e0176419 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    27.Perez-Portela, R. & Turon, X. Cryptic divergence and strong population structure in the colonial invertebrate Pycnoclavella communis (Ascidiacea) inferred from molecular data. Zoology 111, 163–178 (2008).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    28.Riesgo, A. et al. Population structure and connectivity in the Mediterranean sponge Ircinia fasciculata are affected by mass mortalities and hybridization. Heredity 117, 427 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    29.Carreras, C. et al. East is East and West is West: Population genomics and hierarchical analyses reveal genetic structure and adaptation footprints in the keystone species Paracentrotus lividus (Echinoidea). Divers. Distrib. 26, 382–398 (2020).Article 

    Google Scholar 
    30.Pérez-Portela, R. et al. Spatio-temporal patterns of genetic variation in Arbacia lixula, a thermophilous sea urchin in expansion in the Mediterranean. Heredity 122, 244–259 (2019).PubMed 
    Article 

    Google Scholar 
    31.Pérez-Portela, R., Almada, V. & Turon, X. Cryptic speciation and genetic structure of widely distributed brittle stars (Ophiuroidea) in Europe. Zoolog. Scr. 42, 151–169. https://doi.org/10.1111/j.1463-6409.2012.00573.x (2013).Article 

    Google Scholar 
    32.Taboada, S. & Pérez-Portela, R. Contrasted phylogeographic patterns on mitochondrial DNA of shallow and deep brittle stars across the Atlantic-Mediterranean area. Sci. Rep. 6, 32425 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    33.Perez-Portela, R., Turon, X. & Bishop, J. D. D. Bottlenecks and loss of genetic diversity: Spatio-temporal patterns of genetic structure in an ascidian recently introduced in Europe. Mar. Ecol. Prog. Ser. 105, 93–105 (2012).ADS 
    Article 
    CAS 

    Google Scholar 
    34.Garcia-Cisneros, A. et al. Long telomeres are associated with clonality in wild populations of the fissiparous starfish Coscinasterias tenuispina. Heredity 115, 437–443 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    35.Epel, E. S. et al. Accelerated telomere shortening in response to life stress. Proc. Natl. Acad. Sci. 101, 17312–17315 (2004).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    36.Kotrschal, A., Ilmonen, P. & Penn, D. J. Stress impacts telomere dynamics. Biol. Let. 3, 128–130 (2007).CAS 
    Article 

    Google Scholar 
    37.Sköld, H. N., Asplund, M. E., Wood, C. A. & Bishop, J. D. Telomerase deficiency in a colonial ascidian after prolonged asexual propagation. J. Exp. Zool. B Mol. Dev. Evol. 316, 276–283 (2011).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    38.Marriage, T. N. & Orive, M. E. Mutation-selection balance and mixed mating with asexual reproduction. J. Theor. Biol. 308, 25–35 (2012).ADS 
    MathSciNet 
    PubMed 
    MATH 
    Article 

    Google Scholar 
    39.Lamare, M. D., Channon, T., Cornelisen, C. & Clarke, M. Archival electronic tagging of a predatory sea star—Testing a new technique to study movement at the individual level. J. Exp. Mar. Biol. Ecol. 373, 1–10 (2009).Article 

    Google Scholar 
    40.Johnson, M. & Threlfall, T. Fissiparity and population genetics of Coscinasterias calamaria. Mar. Biol. 93, 517–525 (1987).Article 

    Google Scholar 
    41.Sköld, M., Wing, S. R. & Mladenov, P. V. Genetic subdivision of a sea star with high dispersal capability in relation to physical barriers in a fjordic seascape. Mar. Ecol. Prog. Ser. 250, 163–174 (2003).ADS 
    Article 

    Google Scholar 
    42.Waters, J. & Roy, M. Global phylogeography of the fissiparous sea-star genus Coscinasterias. Mar. Biol. 142, 185–191 (2003).Article 

    Google Scholar 
    43.Pazoto, C., Ventura, C. & Silva, E. Genetic contribution of sexual and asexual reproduction to the recruitment of a sexually unbalanced population of Coscinasterias tenuispina (Echinodermata: Asteroidea) in Rio De Janeiro, Brazil. Echinoderms, 473–478 (CRC Press/Balkema, 2010).44.Gélin, P. et al. Superclone expansion, long-distance clonal dispersal and local genetic structuring in the coral Pocillopora damicornis type β in Reunion Island South Western Indian Ocean. PLoS One 12, e0169692 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    45.Puritz, J. B. et al. Extraordinarily rapid life-history divergence between Cryptasterina sea star species. Proc. R. Soc. B Biol. Sci. https://doi.org/10.1098/rspb.2012.1343 (2012).Article 

    Google Scholar 
    46.Keever, C. C. et al. Shallow gene pools in the high intertidal: Extreme loss of genetic diversity in viviparous sea stars (Parvulastra). Biol. Lett. 9, 20130551 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    47.Delmotte, F., Leterme, N., Gauthier, J. P., Rispe, C. & Simon, J. C. Genetic architecture of sexual and asexual populations of the aphid Rhopalosiphum padi based on allozyme and microsatellite markers. Mol. Ecol. 11, 711–723 (2002).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    48.Ventura, C., Alves, S., Maurício, C. & Silva, E. Reproduction and population genetics of Coscinasterias tenuispina (Asteroidea, Asteriidae) on the Brazilian coast. Echinoderms: Müchen, 73–77 (Taylor and Francis Group, 2004).49.Zitari-Chatti, R. et al. Mitochondrial DNA variation in the caramote prawn Penaeus (Melicertus) kerathurus across a transition zone in the Mediterranean Sea. Genetica 136, 439–447 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    50.Pérez-Portela, R., Rius, M. & Villamor, A. Lineage splitting, secondary contacts and genetic admixture of a widely distributed marine invertebrate. J. Biogeogr. https://doi.org/10.1111/jbi.12917 (2016).Article 

    Google Scholar 
    51.Perez-Portela, R., Villamor, A. & Almada, V. Phylogeography of the sea star Marthasterias glacialis (Asteroidea, Echinodermata): Deep genetic divergence between mitochondrial lineages in the north-western mediterranean. Mar. Biol. 157, 2015–2028 (2010).Article 

    Google Scholar 
    52.Candela, J. The Gibraltar Strait and its role in the dynamics of the Mediterranean Sea. Dyn. Atmos. Oceans 15, 267–299. https://doi.org/10.1016/0377-0265(91)90023-9 (1991).ADS 
    Article 

    Google Scholar 
    53.Waters, J. M., Fraser, C. I. & Hewitt, G. M. Founder takes all: Density-dependent processes structure biodiversity. Trends Ecol. Evol. 28, 78–85 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    54.Garcia-Cisneros, A., Valero-Jiménez, C., Palacín, C. & Pérez-Portela, R. Characterization of thirty two microsatellite loci for three Atlanto-Mediterranean echinoderm species. Conserv. Genet. Resour. 5, 749–753. https://doi.org/10.1007/s12686-013-9897-5 (2013).Article 

    Google Scholar 
    55.Alberto, F. MsatAllele_1.0: An R package to visualize the binning of microsatellite alleles. J. Hered. 100, 394–397 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    56.Meirmans, P. G. & Van Tienderen, P. H. GENOTYPE and GENODIVE: Two programs for the analysis of genetic diversity of asexual organisms. Mol. Ecol. Notes 4, 792–794 (2004).Article 

    Google Scholar 
    57.Goudet, J. Hierfstat, a package for R to compute and test hierarchical F-statistics. Mol. Ecol. Notes 5, 184–186 (2005).Article 

    Google Scholar 
    58.Arnaud-Haond, S. & Belkhir, K. GENCLONE: A computer program to analyse genotypic data, test for clonality and describe spatial clonal organization. Mol. Ecol. Notes 7, 15–17 (2007).CAS 
    Article 

    Google Scholar 
    59.Sarkar, D. Lattice: Multivariate Data Visualization with R (Springer Science & Business Media, 2008).MATH 
    Book 

    Google Scholar 
    60.Warnes, M. G. R., Bolker, B., Bonebakker, L., Gentleman, R. & Huber, W. Package ‘gplots’. Various R programming tools for plotting data (2016).61.Jombart, T., Devillard, S. & Balloux, F. Discriminant analysis of principal components: A new method for the analysis of genetically structured populations. BMC Genet. 11, 94 (2010).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    62.Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    63.Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software structure: A simulation study. Mol. Ecol. 14, 2611–2620 (2005).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    64.Kopelman, N. M., Mayzel, J., Jakobsson, M., Rosenberg, N. A. & Mayrose, I. Clumpak: A program for identifying clustering modes and packaging population structure inferences across K. Mol. Ecol. Resour. 15, 1179–1191 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    65.Kamvar, Z. N., Tabima, J. F. & Grünwald, N. J. Poppr: An R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. PeerJ 2, e281 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    66.Beerli, P. & Felsenstein, J. Maximum likelihood estimation of a migration matrix and effective population sizes in n subpopulations by using a coalescent approach. Proc. Natl. Acad. Sci. 98, 4563–4568 (2001).ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 
    Article 

    Google Scholar  More

  • in

    A meta-analysis of the ecological and economic outcomes of mangrove restoration

    1.Donato, D. C. et al. Mangroves among the most carbon-rich forests in the tropics. Nat. Geosci. 4, 293–297 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    2.Carrasquilla-Henao, M. & Juanes, F. Mangroves enhance local fisheries catches: a global meta-analysis. Fish Fish 18, 79–93 (2017).Article 

    Google Scholar 
    3.Hochard, J. P., Hamilton, S. & Barbier, E. B. Mangroves shelter coastal economic activity from cyclones. Proc. Natl Acad. Sci. USA 116, 12232–12237 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    4.Spalding, M. & Parrett, C. L. Global patterns in mangrove recreation and tourism. Mar. Policy 110, 103540 (2019).Article 

    Google Scholar 
    5.Goldberg, L., Lagomasino, D., Thomas, N. & Fatoyinbo, T. Global declines in human‐driven mangrove loss. Glob. Change Biol. 26, 5844–5855 (2020).ADS 
    Article 

    Google Scholar 
    6.Thomas, N. et al. Distribution and drivers of global mangrove forest change, 1996–2010. PLoS ONE 12, e0179302 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    7.Maiti, S. K. & Chowdhury, A. Effects of anthropogenic pollution on mangrove biodiversity: a review. J. Environ. Prot. 4, 1428–1434 (2013).Article 

    Google Scholar 
    8.Saintilan, N. et al. Thresholds of mangrove survival under rapid sea level rise. Science 368, 1118–1121 (2020).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.Worthington, T. & Spalding, M. Mangrove Restoration Potential: A Global Map Highlighting A Critical Opportunity (Apollo – University of Cambridge Repository, 2018).10.Bosire, J. O. et al. Functionality of restored mangroves: a review. Aquat. Bot. 89, 251–259 (2008).Article 

    Google Scholar 
    11.Lewis, R. R. Ecological engineering for successful management and restoration of mangrove forests. Ecol. Eng. 24, 403–418 (2005).Article 

    Google Scholar 
    12.Howard, R. J. et al. Hydrologic restoration in a dynamic subtropical mangrove-to-marsh ecotone: hydrologic restoration in a mangrove-marsh ecotone. Restor. Ecol. 25, 471–482 (2017).Article 

    Google Scholar 
    13.Kamali, B. & Hashim, R. Mangrove restoration without planting. Ecol. Eng. 37, 387–391 (2011).Article 

    Google Scholar 
    14.Dung, L. V., Tue, N. T., Nhuan, M. T. & Omori, K. Carbon storage in a restored mangrove forest in Can Gio Mangrove Forest Park, Mekong Delta, Vietnam. Ecol. Manag. 380, 31–40 (2016).Article 

    Google Scholar 
    15.Das, S. Ecological restoration and livelihood: contribution of planted mangroves as nursery and habitat for artisanal and commercial fishery. World Dev. 94, 492–502 (2017).Article 

    Google Scholar 
    16.Deng, J. et al. An evaluation on the bioavailability of heavy metals in the sediments from a restored mangrove forest in the Jinjiang Estuary, Fujian, China. Ecotoxicol. Environ. Saf. 180, 501–508 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    17.Rahman, M. M. & Mahmud, Md. A. Economic feasibility of mangrove restoration in the Southeastern Coast of Bangladesh. Ocean Coast. Manag. 161, 211–221 (2018).Article 

    Google Scholar 
    18.Bullock, J. M., Aronson, J., Newton, A. C., Pywell, R. F. & Rey-Benayas, J. M. Restoration of ecosystem services and biodiversity: conflicts and opportunities. Trends Ecol. Evol. 26, 541–549 (2011).PubMed 
    Article 

    Google Scholar 
    19.Ellison, A. M. Mangrove restoration: do we know enough? Restor. Ecol. 8, 219–229 (2000).Article 

    Google Scholar 
    20.Iftekhar. Functions and development of reforested mangrove areas: a review. Int. J. Biodivers. Sci. Manag. 4, 1–14 (2008).Article 

    Google Scholar 
    21.Lewis, R. Mangrove Restoration: Costs And Benefits Of Successful Ecological Restoration. p. 4–8 (Beijer International Institute of Ecological Economics, Stockholm, 2001).22.Altman, N. & Krzywinski, M. Analyzing outliers: influential or nuisance? Nat. Methods 13, 281–282 (2016).PubMed 
    Article 

    Google Scholar 
    23.Himes-Cornell, A., Grose, S. O. & Pendleton, L. Mangrove ecosystem service values and methodological approaches to valuation: where do we stand? Front. Mar. Sci. 5, 376 (2018).Article 

    Google Scholar 
    24.Chowdhury, A., Naz, A., Bhattacharyya, S. & Sanyal, P. Cost–benefit analysis of ‘Blue Carbon’ sequestration by plantation of few key mangrove species at Sundarban Biosphere Reserve, India. Carbon. Manag. 9, 575–586 (2018).CAS 
    Article 

    Google Scholar 
    25.Sillanpää, M., Vantellingen, J. & Friess, D. A. Vegetation regeneration in a sustainably harvested mangrove forest in West Papua, Indonesia. Ecol. Manag. 390, 137–146 (2017).Article 

    Google Scholar 
    26.Sasmito, S. D. et al. Effect of land‐use and land‐cover change on mangrove blue carbon: a systematic review. Glob. Change Biol. 25, 4291–4302 (2019).ADS 
    Article 

    Google Scholar 
    27.Meli, P., Rey Benayas, J. M., Balvanera, P. & Martínez Ramos, M. Restoration enhances wetland biodiversity and ecosystem service supply, but results are context-dependent: a meta-analysis. PLoS ONE 9, e93507 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    28.Barral, M. P., Rey Benayas, J. M., Meli, P. & Maceira, N. O. Quantifying the impacts of ecological restoration on biodiversity and ecosystem services in agroecosystems: a global meta-analysis. Agric. Ecosyst. Environ. 202, 223–231 (2015).Article 

    Google Scholar 
    29.Ren, Y., Lü, Y. & Fu, B. Quantifying the impacts of grassland restoration on biodiversity and ecosystem services in China: a meta-analysis. Ecol. Eng. 95, 542–550 (2016).Article 

    Google Scholar 
    30.Lu, W. et al. Changes in carbon pool and stand structure of a native subtropical mangrove forest after inter-planting with exotic species Sonneratia apetala. PLoS ONE 9, e91238 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    31.Li, W. et al. Effect of mangrove restoration on crab burrow density in Luoyangjiang Estuary. For. Ecosyst. 2, 21 (2015).Article 

    Google Scholar 
    32.Zhang, J., Shen, C., Ren, H., Wang, J. & Han, W. Estimating change in sedimentary organic carbon content during mangrove restoration in southern china using carbon isotopic measurements. Pedosphere 22, 58–66 (2012).Article 

    Google Scholar 
    33.Feng, J. et al. Effects of exotic and native mangrove forests plantation on soil organic carbon, nitrogen, and phosphorus contents and pools in Leizhou, China. CATENA 180, 1–7 (2019).CAS 
    Article 

    Google Scholar 
    34.Leung, J. Y. S. Habitat heterogeneity affects ecological functions of macrobenthic communities in a mangrove: implication for the impact of restoration and afforestation. Glob. Ecol. Conserv. 4, 423–433 (2015).Article 

    Google Scholar 
    35.Peters, J. R., Yeager, L. A. & Layman, C. A. Comparison of fish assemblages in restored and natural mangrove habitats along an urban shoreline. Bull. Mar. Sci. 91, 125–139 (2015).Article 

    Google Scholar 
    36.Chen, G., Gao, M., Pang, B., Chen, S. & Ye, Y. Top-meter soil organic carbon stocks and sources in restored mangrove forests of different ages. Ecol. Manag. 422, 87–94 (2018).Article 

    Google Scholar 
    37.Cameron, C., Hutley, L. B., Friess, D. A. & Brown, B. Community structure dynamics and carbon stock change of rehabilitated mangrove forests in Sulawesi, Indonesia. Ecol. Appl. 29, e01810 (2019).38.Ashton, E. C., Hogarth, P. J. & Macintosh, D. J. A comparison of brachyuran crab community structure at four mangrove locations under different management systems along the Melaka Straits-Andaman Sea Coast of Malaysia and Thailand. Estuaries 26, 1461–1471 (2003).Article 

    Google Scholar 
    39.Peralta-Milan, S. A. & Salmo, S. G. III Evaluating patterns of fish assemblage changes from different-aged reforested mangroves in lingayen gulf. J. Environ. Sci. Manag. 16, 11–19 (2013).
    Google Scholar 
    40.Alongi, D. M. Present state and future of the world’s mangrove forests. Environ. Conserv. 29, 331–349 (2002).Article 

    Google Scholar 
    41.Lee, S. Y., Hamilton, S., Barbier, E. B., Primavera, J. & Lewis, R. R. Better restoration policies are needed to conserve mangrove ecosystems. Nat. Ecol. Evol. 3, 870–872 (2019).PubMed 
    Article 

    Google Scholar 
    42.Bai, J. et al. Mangrove diversity enhances plant biomass production and carbon storage in Hainan island, China. Funct. Ecol. 35, 774–786 (2021).Article 

    Google Scholar 
    43.Kirui, B., Kairo, J., Skov, M., Mencuccini, M. & Huxham, M. Effects of species richness, identity and environmental variables on growth in planted mangroves in Kenya. Mar. Ecol. Prog. Ser. 465, 1–10 (2012).ADS 
    Article 

    Google Scholar 
    44.Zimmer, M. In Threats to Mangrove Forests. (eds Makowski, C. & Finkl, C. W.) (Springer Berlin Heidelberg, New York, 2018).45.Fazlioglu, F. & Chen, L. Introduced non-native mangroves express better growth performance than co-occurring native mangroves. Sci. Rep. 10, 3854 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    46.He, Z. et al. Colonization by native species enhances the carbon storage capacity of exotic mangrove monocultures. Carbon Balance Manag. 15, 28 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    47.Kodikara, K. A. S., Mukherjee, N., Jayatissa, L. P., Dahdouh-Guebas, F. & Koedam, N. Have mangrove restoration projects worked? An in-depth study in Sri Lanka: evaluation of mangrove restoration in Sri Lanka. Restor. Ecol. 25, 705–716 (2017).Article 

    Google Scholar 
    48.Thornton, A. Publication bias in meta-analysis its causes and consequences. J. Clin. Epidemiol. 53, 207–216 (2000).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    49.Song, F., Hooper & Loke, Y. Publication bias: what is it? How do we measure it? How do we avoid it? Open Access J. Clin. Trials 5, 71–81 (2013).50.Møller, A. P. & Jennions, M. D. Testing and adjusting for publication bias. Trends Ecol. Evol. 16, 580–586 (2001).Article 

    Google Scholar 
    51.Salem, M. E. & Mercer, D. E. The economic value of mangroves: a meta-analysis. Sustainability 4, 359–383 (2012).Article 

    Google Scholar 
    52.Lahjie, A. M., Nouval, B., Lahjie, A. A., Ruslim, Y. & Kristiningrum, R. Economic valuation from direct use of mangrove forest restoration in Balikpapan Bay, East Kalimantan, Indonesia. F1000Research 8, 9 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    53.Hutchison, J., Spalding, M. & zu Ermgassen, P. The Role of Mangroves in Fisheries Enhancement (The Nature Conservancy and Wetlands International, 2014).54.Bayraktarov, E. et al. The cost and feasibility of marine coastal restoration. Ecol. Appl. 26, 1055–1074 (2016).PubMed 
    Article 

    Google Scholar 
    55.Taillardat, P., Thompson, B. S., Garneau, M., Trottier, K. & Friess, D. A. Climate change mitigation potential of wetlands and the cost-effectiveness of their restoration. Interface Focus 10, 20190129 (2020).PubMed 
    Article 

    Google Scholar 
    56.De Groot, R. S. et al. Benefits of investing in ecosystem restoration: investing in ecosystem restoration. Conserv. Biol. 27, 1286–1293 (2013).Article 

    Google Scholar 
    57.Ellison, A. M., Felson, A. J. & Friess, D. A. Mangrove rehabilitation and restoration as experimental adaptive management. Front. Mar. Sci. 7, 327 (2020).Article 

    Google Scholar 
    58.Jakovac, C. C. et al. Costs and carbon benefits of mangrove conservation and restoration: a global analysis. Ecol. Econ. 176, 106758 (2020).Article 

    Google Scholar 
    59.Waltham, N. J. et al. UN decade on ecosystem restoration 2021–2030—what chance for success in restoring coastal ecosystems? Front. Mar. Sci. 7, 71 (2020).Article 

    Google Scholar 
    60.United Nations. Sustainable Development. Blue Economy Concept Paper (2014).61.UNEP. Blue Economy: Sharing Success Stories to Inspire Change (UNEP Regional Seas Report and Studies, 2015).62.Mcleod, E. et al. A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Front. Ecol. Environ. 9, 552–560 (2011).Article 

    Google Scholar 
    63.CBD. Zero Draft of the Post-2020 Global Biodiversity Framework (Convention on Biological Diversity, 2020).64.Taillardat, P., Friess, D. A. & Lupascu, M. Mangrove blue carbon strategies for climate change mitigation are most effective at the national scale. Biol. Lett. 14, 20180251 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    65.IUCN & Ramsar. The Community of Ocean Action for Mangroves –Towards the Implementation of SDG14 (Department of Economic and Social Affairs, United Nations, 2019).66.International Council for Science (ICSU). A Guide to SDG Interactions: From Science To Implementation (International Council for Science, Paris, 2017).67.Spalding, M. D. et al. The role of ecosystems in coastal protection: Adapting to climate change and coastal hazards. Ocean Coast. Manag. 90, 50–57 (2014).Article 

    Google Scholar 
    68.Aronson, J. et al. Are socioeconomic benefits of restoration adequately quantified? a meta-analysis of recent papers (2000-2008) in Restoration Ecology and 12 other scientific Journals. Restor. Ecol. 18, 143–154 (2010).Article 

    Google Scholar 
    69.Cooke, S. J. et al. Evidence-based restoration in the Anthropocene-from acting with purpose to acting for impact: evidence-based restoration. Restor. Ecol. 26, 201–205 (2018).Article 

    Google Scholar 
    70.Lovelock, C. E. & Brown, B. M. Land tenure considerations are key to successful mangrove restoration. Nat. Ecol. Evol. 3, 1135–1135 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    71.Thompson, B. S., Clubbe, C. P., Primavera, J. H., Curnick, D. & Koldewey, H. J. Locally assessing the economic viability of blue carbon: a case study from Panay Island, the Philippines. Ecosyst. Serv. 8, 128–140 (2014).Article 

    Google Scholar 
    72.Wylie, L., Sutton-Grier, A. E. & Moore, A. Keys to successful blue carbon projects: lessons learned from global case studies. Mar. Policy 65, 76–84 (2016).Article 

    Google Scholar 
    73.Peng, Y., Li, X., Wu, K., Peng, Y. & Chen, G. Effect of an integrated mangrove-aquaculture system on aquacultural health. Front. Biol. China 4, 579–584 (2009).Article 

    Google Scholar 
    74.Moher, D., Liberati, A., Tetzlaff, J. & Altman, D. G., The PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 6, e1000097 (2009).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    75.Betran, A. P. et al. What is the optimal rate of caesarean section at population level? A systematic review of ecologic studies. Reprod. Health 12, 57 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    76.Mupepele, A. C., Walsh, J. C., Sutherland, W. J. & Dormann, C. F. An evidence assessment tool for ecosystem services and conservation studies. Ecol. Appl. 26, 1295–1301 (2016).PubMed 
    Article 

    Google Scholar 
    77.Field, C. B. et al. Mangrove biodiversity and ecosystem function. Glob. Ecol. Biogeogr. Lett. 7, 3 (1998).Article 

    Google Scholar 
    78.Nakagawa, S. & Santos, E. S. A. Methodological issues and advances in biological meta-analysis. Evol. Ecol. 26, 1253–1274 (2012).Article 

    Google Scholar 
    79.Koricheva, J. & Gurevitch, J. Uses and misuses of meta-analysis in plant ecology. J. Ecol. 102, 828–844 (2014).Article 

    Google Scholar 
    80.Noble, D. W. A., Lagisz, M., O’dea, R. E. & Nakagawa, S. Nonindependence and sensitivity analyses in ecological and evolutionary meta-analyses. Mol. Ecol. 26, 2410–2425 (2017).PubMed 
    Article 

    Google Scholar 
    81.Greenland, S. et al. Statistical tests, P values, confidence intervals, and power: a guide to misinterpretations. Eur. J. Epidemiol. 31, 337–350 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    82.Hoekstra, R., Finch, S., Kiers, H. A. L. & Johnson, A. Probability as certainty: dichotomous thinking and the misuse of p values. Psychon. Bull. Rev. 13, 1033–1037 (2006).PubMed 
    Article 

    Google Scholar 
    83.Nakagawa, S. & Cuthill, I. C. Effect size, confidence interval and statistical significance: a practical guide for biologists. Biol. Rev. 82, 591–605 (2007).PubMed 
    Article 

    Google Scholar 
    84.Hedges, L. & Olkin, I. Statistical Methods For Meta-analysis (Academic Press, Orlando, 1985).85.Thompson, S. G. & Higgins, J. P. T. How should meta-regression analyses be undertaken and interpreted? Stat. Med. 21, 1559–1573 (2002).PubMed 
    Article 

    Google Scholar 
    86.Cook, R. D. & Weisberg, S. Residuals and Influence in Regression (Chapman and Hall, New York, 1982).87.Egger, M., Smith, G. D., Schneider, M. & Minder, C. Bias in meta-analysis detected by a simple, graphical test. BMJ 315, 629–634 (1997).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    88.Nakagawa, S., Noble, D. W. A., Senior, A. M. & Lagisz, M. Meta-evaluation of meta-analysis: ten appraisal questions for biologists. BMC Biol. 15, 18 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    89.Viechtbauer, W. Conducting meta-analyses in R with the metafor Package. J. Stat. Softw. 36, 1–48 (2010).90.van der Ploeg, S., De Groot, D. & Wang, Y. The TEEB Valuation Database: Overview Of Structure, Data And Results (Foundation for Sustainable Development, Wageningen, 2010).91.Mukherjee, N. et al. Ecosystem service valuations of mangrove ecosystems to inform decision making and future valuation exercises. PLoS ONE 9, e107706 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    92.Corlett, R. T. Impacts of warming on tropical lowland rainforests. Trends Ecol. Evol. 26, 606–613 (2011).PubMed 
    Article 

    Google Scholar 
    93.Møller, A. P., Thornhill, R. & Gangestad, S. W. Direct and indirect tests for publication bias: asymmetry and sexual selection. Anim. Behav. 70, 497–506 (2005).Article 

    Google Scholar 
    94.Bayraktarov, E. et al. Priorities and motivations of marine coastal restoration. Res. Front. Mar. Sci. 7, 484 (2020).Article 

    Google Scholar 
    95.Konno, K. et al. Ignoring non‐English‐language studies may bias ecological meta‐analyses. Ecol. Evol. 10, 6373–6384 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    96.van Aert, R. C. M., Wicherts, J. M. & van Assen, M. A. L. M. Conducting meta-analyses based on p values: reservations and recommendations for applying p-Uniform and p-Curve. Perspect. Psychol. Sci. 11, 713–729 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    97.Terrin, N., Schmid, C. H., Lau, J. & Olkin, I. Adjusting for publication bias in the presence of heterogeneity. Stat. Med. 22, 2113–2126 (2003).PubMed 
    Article 

    Google Scholar 
    98.Giri, C. et al. Global Distribution of Mangroves USGS. UN Environment Programme World Conservation Monitoring Centre (UNEP-WCMC) https://doi.org/10.34892/1411-W728 (2011).99.Cook, B. G., Cook, L. & Therrien, W. J. Group-difference effect sizes: gauging the practical importance of findings from group-experimental research. Learn. Disabil. Res. Pract. 33, 56–63 (2018).Article 

    Google Scholar  More

  • in

    Short-term heat shock perturbation affects populations of Daphnia magna and Eurytemora carolleeae: a warning to the water thermal pollution

    1.Orr, J. A. et al. Towards a unified study of multiple stressors: Divisions and common goals across research disciplines. Proc. R. Soc. B 287(1926), 20200421. https://doi.org/10.1098/rspb.2020.0421 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    2.de Oliveira Naliato, D. A., Nogueira, M. G. & Perbiche-Neves, G. Discharge pulses of hydroelectric dams and their effects in the downstream limnological conditions: A case study in a large tropical river (SE Brazil). Lakes Reserv. Res. Manag. 14(4), 301–314 (2009).Article 
    CAS 

    Google Scholar 
    3.Brenden, T. O., Wang, L. & Su, Z. Quantitative identification of disturbance thresholds in support of aquatic resource management. Environ Manage. 42(5), 821–832 (2008).ADS 
    Article 

    Google Scholar 
    4.Raptis, C. E., van Vliet, M. T. & Pfister, S. Global thermal pollution of rivers from thermoelectric power plants. Environ. Res. Lett. 11, 104011. https://doi.org/10.1088/1748-9326/11/10/104011 (2016).ADS 
    Article 

    Google Scholar 
    5.Evans, M. S., Warren, G. J. & Page, D. I. The effects of power plant passage on zooplankton mortalities: Eight years of study at the Donald C. Cook Nuclear Plant. Water Res. 20(6), 725–734 (1986).CAS 

    Google Scholar 
    6.Jiang, Z. et al. Tolerance of copepods to short-term thermal stress caused by coastal power stations. J. Therm. Biol. 33(7), 419–423 (2008).Article 

    Google Scholar 
    7.Dziuba, M. K. et al. Temperature increase altered Daphnia community structure in artificially heated lakes: A potential scenario for a warmer future. Sci. Rep. 10(1), 1–13 (2020).Article 
    CAS 

    Google Scholar 
    8.Graf, R. & Wrzesiński, D. Detecting patterns of changes in river water temperature in Poland. Water 12(5), 1327 (2020).Article 

    Google Scholar 
    9.Lee, P. W., Tseng, L. C. & Hwang, J. S. Comparison of mesozooplankton mortality impacted by the cooling systems of two nuclear power plants at the northern Taiwan coast, southern East China Sea. Mar. Pollut. Bull. 136, 114–124 (2018).Article 
    CAS 

    Google Scholar 
    10.Madden, N., Lewis, A. & Davis, M. Thermal effluent from the power sector: An analysis of once-through cooling system impacts on surface water temperature. Environ. Res. Lett. 8, 035006. https://doi.org/10.1088/1748-9326/8/3/035006 (2013).ADS 
    Article 

    Google Scholar 
    11.Łabęcka, A. M., Domagala, J. & Pilecka-Rapacz, M. First record of Corbicula fluminalis (OF Muller, 1774) (Bivalvia: corbiculidae)–in Poland. Folia Malacol. 13(1), 25–27 (2005).Article 

    Google Scholar 
    12.Czerniawski, R., Pilecka-Rapacz, M. & Domagała, J. Zooplankton communities of inter-connected sections of lower River Oder (NW Poland). Open Life Sci. 8(1), 18–29 (2013).Article 

    Google Scholar 
    13.Yousey, A. E. M. et al. Resurrected ancient Daphnia genotypes show reduced thermal stress tolerance compared to modern descendants. R. Soc. Open Sci. 5, 172193. https://doi.org/10.1098/rsos.172193 (2018).ADS 
    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    14.Van Urk, G. The effects of a temperature shock on zooplankton. Hydrobiol. Bull. 13(2–3), 101–105 (1979).Article 

    Google Scholar 
    15.Shelford, V. E. Some concepts of bioecology. Ecology 12(3), 455–467 (1931).Article 

    Google Scholar 
    16.Halsband-Lenk, C., Hirche, H. J. & Carlotti, F. Temperature impact on reproduction and development of congener copepod populations. J. Exp. Mar. Biol. Ecol. 271(2), 121–153 (2002).Article 

    Google Scholar 
    17.Hopkin, R. S., Qari, S., Bowler, K., Hyde, D. & Cuculescu, M. Seasonal thermal tolerance in marine Crustacea. J. Exp. Mar. Biol. Ecol. 331(1), 74–81 (2006).Article 

    Google Scholar 
    18.McCauley, E. M. W. W., Murdoch, W. W. & Nisbet, R. M. Growth, reproduction, and mortality of Daphnia pulex Leydig: Life at low food. Funct. Ecol. 5, 505–514 (1990).Article 

    Google Scholar 
    19.Lürling, M., Roozen, F., Van Donk, E. & Goser, B. Response of Daphnia to substances released from crowded congeners and conspecifics. J. Plankton Res. 25(8), 967–978 (2003).Article 

    Google Scholar 
    20.Gliwicz, Z. M., Maszczyk, P. & Uszko, W. Enhanced growth at low population density in Daphnia: The absence of crowding effects or relief from visual predation?. Freshw. Biol. 57(6), 1166–1179 (2012).Article 

    Google Scholar 
    21.Macarthur, J. W. & Baillie, W. H. T. Metabolic activity and duration of life. J. Exp. Zool. 53(2), 221–242 (1929).Article 

    Google Scholar 
    22.Kozłowski, J. Optimal allocation of resources to growth and reproduction: Implications for age and size at maturity. Trends Ecol. Evol. 7(1), 15–19 (1992).MathSciNet 
    Article 

    Google Scholar 
    23.Mitchell, E., Halves, S. J. & Lampert, W. Coexistence of similar genotypes of Daphnia magna in intermittent populations: Response to thermal stress. Oikos 106(3), 469–478 (2004).Article 

    Google Scholar 
    24.Svetlichny, L., Hubareva, E. & Uttieri, M. Ecophysiological and behavioural responses to salinity and temperature stress in cyclopoid copepod Oithona davisae with comments on gender differences. Mediterr. Mar. Sci. 22(1), 80–101 (2021).
    Google Scholar 
    25.Rahlff, J. et al. Short-term molecular and physiological responses to heat stress in neritic copepods Acartia tonsa and Eurytemora affinis. Comp. Biochem. Physiol. Part A Mol. Integr. 203, 348–358 (2017).Article 
    CAS 

    Google Scholar 
    26.Bradley, B. P., Hakimzadeh, R. & Vincent, J. S. Rapid responses to stress in Eurytemora affinis. In Biology of Copepods: Developments in Hydrobiology Vol. 47 (eds Boxshall, G. A. & Schminke, H. K.) 197–200 (Springer, 1988).Chapter 

    Google Scholar 
    27.Bartholmeé, S., Samchyshyna, L., Santer, B. & Lampert, W. Subitaneous eggs of freshwater copepods pass through fish guts: Survival, hatchability, and potential ecological implications. Limnol. Oceanogr. 50(3), 923–929 (2005).ADS 
    Article 

    Google Scholar 
    28.Belmonte, G. The suspected contradictory role of parental care in the adaption of planktonic calanoida to temporary freshwater. Water 13(1), 100 (2021).Article 

    Google Scholar 
    29.Hoffmeyer, M. S., Biancalana, F. & Berasategui, A. Impact of a power plant cooling system on copepod and meroplankton survival (Bahía Blanca estuary, Argentina). Iheringia Ser. Zool. 95(3), 311–318 (2005).Article 

    Google Scholar 
    30.Williams, P. J., Dick, K. B. & Yampolsky, L. Y. Heat tolerance, temperature acclimation, acute oxidative damage and canalization of haemoglobin expression in Daphnia. Evol. Ecol. 26(3), 591–609 (2012).Article 

    Google Scholar 
    31.Pörtner, H. O. & Farrell, A. P. Physiology and climate change. Science 322(5902), 690–692 (2008).Article 

    Google Scholar 
    32.Guzy, R. D. & Schumacker, P. T. Oxygen sensing by mitochondria at complex III: The paradox of increased reactive oxygen species during hypoxia. Exp. Physiol. 91(5), 807–819 (2006).Article 
    CAS 

    Google Scholar 
    33.Cao, S. S. & Kaufman, R. J. Unfolded protein response. Curr. Biol. 22(16), 622–626 (2012).Article 
    CAS 

    Google Scholar 
    34.Young, J. C., Moarefi, I. & Hartl, F. U. Hsp90: A specialized but essential protein-folding tool. The J. Cell Biol. 154(2), 267–274 (2001).Article 
    CAS 

    Google Scholar 
    35.Jolly, C. & Morimoto, R. I. Role of the heat shock response and molecular chaperones in oncogenesis and cell death. J. Natl. Cancer Inst. 92(19), 1564–1572 (2000).Article 
    CAS 

    Google Scholar 
    36.Mikulski, A., Bernatowicz, P., Grzesiuk, M., Kloc, M. & Pijanowska, J. Differential levels of stress proteins (HSPs) in male and female Daphnia magna in response to thermal stress: A consequence of sex-related behavioral differences?. J. Chem. Ecol. 37(7), 670–676 (2011).Article 
    CAS 

    Google Scholar 
    37.Schumpert, C., Handy, I., Dudycha, J. L. & Patel, R. C. Relationship between heat shock protein 70 expression and life span in Daphnia. Mech. Ageing Dev. 139, 1–10 (2014).Article 
    CAS 

    Google Scholar 
    38.Alekseev, V. R. & Souissi, A. A new species within the Eurytemora affinis complex (Copepoda: Calanoida) from the Atlantic Coast of USA, with observations on eight morphologically different European populations. Zootaxa 2767(1), 41–56 (2011).Article 

    Google Scholar 
    39.Sługocki, Ł., Rymaszewska, A., & Kirczuk, L. To fit or to belong: Characterization of the non-native invader Eurytemora carolleeae (Copepoda: Calanoida) in the Oder River system (Central Europe). Aquat. Invasions 16(3), 443–460 (2021).Article 

    Google Scholar 
    40.Müller, M. F., Colomer, J. & Serra, T. Temperature-driven response reversibility and short-term quasi-acclimation of Daphnia magna. PLoS ONE 13(12), e0209705. https://doi.org/10.1371/journal.pone.0209705 (2018).Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar  More

  • in

    Species diversity and food web structure jointly shape natural biological control in agricultural landscapes

    1.van der Plas, F. Biodiversity and ecosystem functioning in naturally assembled communities. Biol. Rev. 94, 1220–1245 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    2.Lefcheck, J. S. et al. Biodiversity enhances ecosystem multifunctionality across trophic levels and habitats. Nat. Commun. 6, 6936 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    3.Fanin, N. et al. Consistent effects of biodiversity loss on multifunctionality across contrasting ecosystems. Nat. Ecol. Evol. 2, 269–278 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    4.Isbell, F. et al. Linking the influence and dependence of people on biodiversity across scales. Nature 546, 65–72 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    5.Sánchez-Bayo, F. & Wyckhuys, K. A. G. Worldwide decline of the entomofauna: A review of its drivers. Biol. Conserv. 232, 8–27 (2019).Article 

    Google Scholar 
    6.IPBES. Summary for policymakers of the global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. (IPBES secretariat, Bonn, Germany, 2019).7.Smith, H. F. & Sullivan, C. A. Ecosystem services within agricultural landscapes—farmers’ perceptions. Ecol. Econ. 98, 72–80 (2014).Article 

    Google Scholar 
    8.Barnes, A. D. et al. Biodiversity enhances the multitrophic control of arthropod herbivory. Sci. Adv. 6, eabb6603 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    9.Dainese, M. et al. A global synthesis reveals biodiversity-mediated benefits for crop production. Sci. Adv. 5, eaax0121 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    10.Costanza, R. et al. The value of the world’s ecosystem services and natural capital. Nature 387, 253–260 (1997).CAS 
    Article 

    Google Scholar 
    11.Oliver, T. H. et al. Declining resilience of ecosystem functions under biodiversity loss. Nat. Commun. 6, 10122 (2015).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    12.Naranjo, S. E., Ellsworth, P. C. & Frisvold, G. B. Economic value of biological control in integrated pest management of managed plant systems. Annu. Rev. Entomol. 60, 621–645 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.Frishkoff, L. O. et al. Loss of avian phylogenetic diversity in neotropical agricultural systems. Science 345, 1343–1346 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    14.Mendenhall, C. D., Karp, D. S., Meyer, C. F. J., Hadly, E. A. & Daily, G. C. Predicting biodiversity change and averting collapse in agricultural landscapes. Nature 509, 213–217 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    15.Karp, D. S. et al. Crop pests and predators exhibit inconsistent responses to surrounding landscape composition. Proc. Natl Acad. Sci. USA 115, E7863–E7870 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    16.Tamburini, G. et al. Agricultural diversification promotes multiple ecosystem services without compromising yield. Sci. Adv. 6, eaba1715 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    17.Redlich, S., Martin, E. A. & Steffan-Dewenter, I. Landscape-level crop diversity benefits biological pest control. J. Appl. Ecol. 55, 2419–2428 (2018).Article 

    Google Scholar 
    18.Muneret, L. et al. Evidence that organic farming promotes pest control. Nat. Sustain. 1, 361–368 (2018).Article 

    Google Scholar 
    19.Roubos, C. R., Rodriguez-Saona, C. & Isaacs, R. Mitigating the effects of insecticides on arthropod biological control at field and landscape scales. Biol. Control 75, 28–38 (2014).CAS 
    Article 

    Google Scholar 
    20.Roschewitz, I., Hucker, M., Tscharntke, T. & Thies, C. The influence of landscape context and farming practices on parasitism of cereal aphids. Agric. Ecosyst. Environ. 108, 218–227 (2005).Article 

    Google Scholar 
    21.Frago, E., Pujadevillar, J., Guara, M. & Selfa, J. Hyperparasitism and seasonal patterns of parasitism as potential causes of low top-down control in Euproctis chrysorrhoea L. (Lymantriidae). Biol. Control 60, 123–131 (2012).Article 

    Google Scholar 
    22.Rosenheim, J. A., Kaya, H. K., Ehler, L. E., Marois, J. J. & Jaffee, B. A. Intraguild predation among biological-control agents: theory and evidence. Biol. Control 5, 303–335 (1995).Article 

    Google Scholar 
    23.Brobyn, P. J., Clark, S. J. & Wilding, N. The effect of fungus infection of Metopolophium dirhodum [Hom.: Aphididae] on the oviposition behaviour of the aphid parasitoid Aphidius rhopalosiphi [Hym.: Aphidiidae]. Entomophaga 33, 333–338 (1988).Article 

    Google Scholar 
    24.Tscharntke, T. et al. Conservation biological control and enemy diversity on a landscape scale. Biol. Control 43, 294–309 (2007).Article 

    Google Scholar 
    25.Rand, T. A., van Veen, F. J. F. & Tscharntke, T. Landscape complexity differentially benefits generalized fourth, over specialized third, trophic level natural enemies. Ecography 35, 97–104 (2012).Article 

    Google Scholar 
    26.Zhao, Z. H., Hui, C., He, D. H. & Li, B. L. Effects of agricultural intensification on ability of natural enemies to control aphids. Sci. Rep. 5, 8024 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    27.Vollhardt, I. M. G., Tscharntke, T., Wäckers, F. L., Bianchi, F. J. J. A. & Thies, C. Diversity of cereal aphid parasitoids in simple and complex landscapes. Agric. Ecosyst. Environ. 126, 289–292 (2008).Article 

    Google Scholar 
    28.Tomanović, Z. et al. Regional tritrophic relationship patterns of five aphid parasitoid species (Hymenoptera: Braconidae: Aphidiinae) in agroecosystem-dominated landscapes of southeastern Europe. J. Econ. Entomol. 102, 836–854 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    29.Kaartinen, R. & Roslin, T. Shrinking by numbers: landscape context affects the species composition but not the quantitative structure of local food webs. J. Anim. Ecol. 80, 622–631 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    30.Wang, S. & Brose, U. Biodiversity and ecosystem functioning in food webs: the vertical diversity hypothesis. Ecol. Lett. 21, 9–20 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    31.Garzke, J., Connor, S. J., Sommer, U. & O’Connor, M. I. Trophic interactions modify the temperature dependence of community biomass and ecosystem function. PLoS Biol. 17, e2006806 (2019).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    32.Pocock, M. J. O. et al. The visualisation of ecological networks, and their use as a tool for engagement, advocacy and management. Adv. Ecol. Res. 54, 41–85 (2016).Article 

    Google Scholar 
    33.Bersier, L.-F., Banašek-Richter, C. & Cattin, M.-F. Quantitative descriptors of food-web matrices. Ecology 83, 2394–2407 (2002).Article 

    Google Scholar 
    34.Tylianakis, J. M., Laliberté, E., Nielsen, A. & Bascompte, J. Conservation of species interaction networks. Biol. Conserv. 143, 2270–2279 (2010).Article 

    Google Scholar 
    35.Gilbert, A. J. Connectance indicates the robustness of food webs when subjected to species loss. Ecol. Indic. 9, 72–80 (2009).Article 

    Google Scholar 
    36.Williams, R. J. & Martinez, N. D. Simple rules yield complex food webs. Nature 404, 180–183 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    37.Galiana, N., Hawkins, B. A. & Montoya, J. M. The geographical variation of network structure is scale dependent: understanding the biotic specialization of host–parasitoid networks. Ecography 42, 1175–1187 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    38.Banašek-Richter, C., Cattin, M.-F. & Bersier, L.-F. Sampling effects and the robustness of quantitative and qualitative food-web descriptors. J. Theor. Biol. 226, 23–32 (2004).PubMed 
    Article 

    Google Scholar 
    39.Varennes, Y. D., Boyer, S. & Wratten, S. D. Un-nesting DNA Russian dolls—the potential for constructing food webs using residual DNA in empty aphid mummies. Mol. Ecol. 23, 3925–3933 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    40.Zhu, Y. L. et al. A molecular detection approach for a cotton aphid-parasitoid complex in northern China. Sci. Rep. 9, 15836 (2019).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    41.Staniczenko, P. P. A. et al. Predicting the effect of habitat modification on networks of interacting species. Nat. Commun. 8, 792 (2018).Article 
    CAS 

    Google Scholar 
    42.Thies, C. & Tscharntke, T. In Biocontrol-Based Integrated Management of Oilseed Rape Pests (ed. Williams, I.H.). (Springer Netherlands, 2010).43.Tylianakis, J. M., Tscharntke, T. & Lewis, O. T. Habitat modification alters the structure of tropical host-parasitoid food webs. Nature 445, 202–205 (2007).CAS 
    Article 

    Google Scholar 
    44.Grass, I., Jauker, B., Steffandewenter, I., Tscharntke, T. & Jauker, F. Past and potential future effects of habitat fragmentation on structure and stability of plant-pollinator and host-parasitoid networks. Nat. Ecol. Evol. 2, 1408–1417 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    45.Gagic, V. et al. Food web structure and biocontrol in a four-trophic level system across a landscape complexity gradient. Proc. Roy. Soc. B. 278, 2946–2953 (2011).Article 

    Google Scholar 
    46.Lundgren, J. G. & Fausti, S. W. Trading biodiversity for pest problems. Sci. Adv. 1, e1500558 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    47.Zhou, K. et al. Effects of land use and insecticides on natural enemies of aphids in cotton: first evidence from smallholder agriculture in the North China Plain. Agric. Ecosyst. Environ. 183, 176–184 (2014).Article 

    Google Scholar 
    48.Zhang, Z. Q. The natural enemies of Aphis gossypii Glover (Hom., Aphididae) in China. J. Appl. Entomol. 114, 251–262 (2009).Article 

    Google Scholar 
    49.Gagic, V. et al. Agricultural intensification and cereal aphid–parasitoid–hyperparasitoid food webs: network complexity, temporal variability and parasitism rates. Oecologia 170, 1099–1109 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    50.Vollhardt, I. M. G. et al. Influence of plant fertilisation on cereal aphid-primary parasitoid-secondary parasitoid networks in simple and complex landscapes. Agric. Ecosyst. Environ. 281, 47–55 (2019).CAS 
    Article 

    Google Scholar 
    51.Sullivan, D. J. & Völkl, W. Hyperparasitism: multitrophic ecology and behavior. Annu. Rev. Entomol. 44, 291–315 (1999).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    52.Dainese, M., Montecchiari, S., Sitzia, T., Sigura, M. & Marini, L. High cover of hedgerows in the landscape supports multiple ecosystem services in Mediterranean cereal fields. J. Appl. Ecol. 54, 380–388 (2016).Article 

    Google Scholar 
    53.Landis, D. A., Wratten, S. D. & Gurr, G. M. Habitat management to conserve natural enemies of arthropod pests in agriculture. Annu. Rev. Entomol. 45, 175–201 (2000).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    54.Thies, C., Roschewitz, I. & Tscharntke, T. The landscape context of cereal aphid-parasitoid interactions. Proc. Roy. Soc. B. 272, 203–210 (2005).Article 

    Google Scholar 
    55.Plećaš, M. et al. Landscape composition and configuration influence cereal aphid–parasitoid–hyperparasitoid interactions and biological control differentially across years. Agric. Ecosyst. Environ. 183, 1–10 (2014).Article 

    Google Scholar 
    56.Sirami, C. et al. Increasing crop heterogeneity enhances multitrophic diversity across agricultural regions. Proc. Natl Acad. Sci. USA 116, 16442–16447 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    57.Lichtenberg, E. M. et al. A global synthesis of the effects of diversified farming systems on arthropod diversity within fields and across agricultural landscapes. Glob. Change Biol. 23, 4946–4957 (2017).Article 

    Google Scholar 
    58.Osorio, S., Arnan, X., Bassols, E., Vicens, N. & Bosch, J. Local and landscape effects in a host-parasitoid interaction network along a forest-cropland gradient. Ecol. Appl. 25, 1869–1879 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    59.Dunne, J., Williams, R. & Martinez, N. Network topology and biodiversity loss in food webs: robustness increases with connectance. Ecol. Lett. 5, 558–567 (2002).Article 

    Google Scholar 
    60.Montoya, J. M., Rodríguez, M. A. & Hawkins, B. A. Food web complexity and higher-level ecosystem services. Ecol. Lett. 6, 587–593 (2003).Article 

    Google Scholar 
    61.Hawkins, B. A. Parasitoid-host food webs and donor control. Oikos 65, 159–162 (1992).Article 

    Google Scholar 
    62.Yeakel, J. D. et al. Diverse interactions and ecosystem engineering can stabilize community assembly. Nat. Commun. 11, 3307 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    63.Poisot, T., Mouquet, N. & Gravel, D. Trophic complementarity drives the biodiversity-ecosystem functioning relationship in food webs. Ecol. Lett. 16, 853–861 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    64.White, L., O’Connor, N. E., Yang, Q., Emmerson, M. C. & Donohue, I. Individual species provide multifaceted contributions to the stability of ecosystems. Nat. Ecol. Evol. 4, 1594–1601 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    65.Ho, H.-C., Tylianakis, J. M. & Pawar, S. Behaviour moderates the impacts of food-web structure on species coexistence. Ecol. Lett. 24, 298–309 (2021).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    66.Holland, J. M. et al. Agri-environment scheme enhancing ecosystem services: A demonstration of improved biological control in cereal crops. Agric. Ecosyst. Environ. 155, 147–152 (2012).Article 

    Google Scholar 
    67.Batary, P., Dicks, L., Kleijn, D. & Sutherland, W. The role of agri-environment schemes in conservation and environmental management: European Agri-Environment Schemes. Conserv. Biol. 29, 1006–1016 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    68.McGarigal, K., Cushman, S., Maile, N. & Ene, E. FRAGSTATS v4: Spatial Pattern Analysis Program for Categorical and Continuous Maps. Computer software program produced by the authors at the University of Massachusetts, Amherst. http://www.umass.edu/landeco/research/fragstats/fragstats.html (2012).69.Liu, B. et al. Secondary crops and non-crop habitats within landscapes enhance the abundance and diversity of generalist predators. Agric. Ecosyst. Environ. 258, 30–39 (2018).Article 

    Google Scholar 
    70.Lu, Y. H., Qi, F. J. & Zhang, Y. J. Integrated Management of Diseases and Insect Pests in Cotton (Golden Shield Press, Beijing 2010).71.Shannon, C. E., Weaver, W., Blahut, R. E. & Hajek, B. The Mathematical Theory of Communications (University of Illinois Press, Urbana, 1949).72.Kembel, S. W. et al. Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26, 1463–1464 (2010).CAS 
    Article 

    Google Scholar 
    73.R Development Core Team. R: A language and environment for statistical computing, Version 4.0.2. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org (2020).74.Dormann, C. F., Fründ, J. & Gruber, B. Package ‘bipartite’: Visualising bipartite networks and calculating some (ecological) indices. (2019).75.Huang, H. Y., Zhou, L., Chen, J. & Wei, T. Y. ggcor: Extended tools for correlation analysis and visualization. R package version 0.9.7. (2020).76.Oksanen, J. et al. vegan: community ecology package. R. package version 2, 5–6 (2020).
    Google Scholar 
    77.Kassambara, A. & Fabian, M. factoextra: Extract and Visualize the Results of Multivariate Data analyses. R package version 1.0.7. (2020).78.Akaike, H. An information criterion (AIC). Math. Sci. 14, 5–9 (1976).
    Google Scholar 
    79.Burnham, K. P. & Anderson, D. R. Multimodel inference understanding AIC and BIC in model selection. Sociol. Method. Res. 33, 261–304 (2004).Article 

    Google Scholar 
    80.Cardinale, B. J. et al. Effects of biodiversity on the functioning of trophic groups and ecosystems. Nature 443, 989–992 (2006).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    81.Fox, J. & Weisberg, S. An R Companion to Applied Regression, Third Edition. (Thousand Oaks CA: Sage., 2011).82.Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).Article 

    Google Scholar 
    83.Bartoń, K. MuMIn: Multi-Model Inference. R package version 1.43.17. (2020).84.Thompson, R. M. et al. Food webs: reconciling the structure and function of biodiversity. Trends Ecol. Evol. 27, 689–697 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    85.Tylianakis, J. M. & Binzer, A. Effects of global environmental changes on parasitoid–host food webs and biological control. Biol. Control 75, 77–86 (2014).Article 

    Google Scholar 
    86.Lefcheck, J. S. piecewiseSEM: Piecewise structural equation modelling in r for ecology evolution, and systematics. Methods Ecol. Evol. 7, 573–579 (2016).Article 

    Google Scholar 
    87.Shipley, B. The AIC model selection method applied to path analytic models compared using a d-separation test. Ecology 94, 560–564 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    88.Yang, F. et al. The data for “Species diversity and food web structure jointly shape natural biological control in agricultural landscapes”. Dryad, Dataset https://doi.org/10.5061/dryad.pc866t1kz (2021).Article 

    Google Scholar  More

  • in

    Predator cue-induced plasticity of morphology and behavior in planthoppers facilitate the survival from predation

    To defend against predators, insects often modify their morphology, flexibly, to enhance survival and reproductive advantages. Here, we report that predation risks from either isolated predator or predator odor cues, induce a higher proportion of nymphs to developed into long-winged females among the parent generation, as well as among F1 generation offspring. Surprisingly, these previously threatened long-winged adults survived better when attacked by a predator owing to the enhanced agility level gained from risk experience. The long wing, and increased agility level, provide adaptive benefits for SBPHs to escape from predation and so are able to go on to reproduce.SBPHs responded more strongly to the caged predators (visual + odor risk cues) and predator odor cues, than just the visual cue of the predator. Different risk cues can elicit different levels of responses in prey33,34,35,36. For example, in the case of the Colorado potato beetle, volatile odor cues from the predator stronger reduced the beetle feeding on plants than predator visual and tactile cues35. But a visual cue has been shown to be crucial for insect pollinators detecting and avoiding flowers with predators37. Insect herbivores frequently communicate via chemical odors33,38. Exploiting the odor cue to perceive the presence of predators should have advantages, because the odor cue can be sensed from a long distance and penetrate the blocking effect of foliage or canopy structure39, enabling the prior detection of risks and the preparation of antipredation behaviors.In densely planted rice paddies, the active foraging behavior of rove beetle may serve as a selective pressure favouring the development in SBPHs of a chemical instead of visual pathway to detect the approach of a rove beetle. However, in the F1 generation, the influence of a predator odor cue on the proportion of winged forms was weaker than that of caged predators, indicating the combined effects of odor and visual cues might be stronger than only an odor cue, suggesting that visual cues cannot be ignored. In our experiments, sealed predator cadavers may have weakened the visual cue of the rove beetles, because the lack of motion did not fully represent the normal visual cue.SBPHs frequently exhibit wing plasticity in response to population density and food quality28,29. When nymph density is higher, or food has deteriorated, a higher proportion of macropters will arise28,29. The development of the winged form is thought to be a strategy for SBPHs to emigrate from inhospitable environments. However, we assumed, predation risks could also induce the occurrence of the winged form, because long wings might enable SBPHs to escape from predation. As expected, the results presented here show that a higher proportion of long-winged females and their offspring arose when nymphs or adults were previously exposed to predation risk, demonstrating that SBPHs can express morphologically plastic defenses in response to prior predation risk. Additionally, the higher proportion of wing forms was not only due to the increasing number of winged females (see Fig. 1, the number of winged females in “caged rove beetle” treatment was lower), but also the increasing proportion of winged females among female groups (the decreasing numbers and proportions of wingless females, Fig. 1). To date, similar patterns have only been shown in pea aphids, in which when predation risk (foot prints from lady beetles) is higher during the parent generation, a higher proportion of winged morphs arise in the offspring40,41. In our experiments, we tested the risk effects passing from nymphs to adults and from parents to their offspring with combined risk cues, an odor cue or a visual cue, which better reveals the capacity for flexible defense strategies within SBPHs and the nature of predation risks in the perpetual ‘arms race’ against predation. This is the first example of how insects can express both within- generational and transgenerational morphological plasticity as a defense strategy in response to prior predator threat, and we suggest that this phenomenon is likely to occur more widely.However, SBPHs do not only face a single lethal pressure from their environment as we discussed above. Nymph density, food quality, even the temperatures or photoperiods may play or interplay roles in the induction of wing plasticity in SBPHs28,29. In these situations, the responses of SBPHs may differ from present results, or opposite results can occur. As an example, the growth rates of snails vary depending on snail densities, food supply and the strength of predation risks. Growth rates were higher when snails were reared on high nutrients and in low densities, but decreased steeply as the predation risk increased. Conversely, the growth rate was lower at high densities and with high predation risk, but increased as nutrient availability increased42. As for SBPHs, the proportion of winged adults may be higher if we reared in higher densities combined with high predation risk, or may be lower if the nutrient condition of the rice plants increases (for example, higher fertilizer inputs benefit the development of planthoppers43) and predators are removed. This hypothesis needs to be tested. Further, the rice plant phenotypes (resistant or sensitive phenotypes) are important to the development of planthoppers or leafhoppers44,45,46, and tests of the interactive effects of plant phenotype, plant quality/quantity, nymph density and predation risk on the wing plasticity of SBPHs should provide insights into the evolution of insects within changing environments.Induced transgenerational defense plasticity as shown in SBPHs may be common in many organisms20,47. It allows parents to transfer their risk experience to offspring and promotes their evolutionary fitness20. When SBPH nymphs are exposed to predation risk, they are likely to develop into long-winged females, because it is an advantageous form for them in the current risk environment. However, such predation risk is variable in time and space, and SBPH parents cannot predict when or whether the predators will disappear. Thus, an appropriate strategy to enhance the survival rate of offspring in an unpredictable environment is to continue producing a higher proportion of long-winged forms. Within-generational and transgenerational plasticity of defense should be a successful adaptive defense strategy for SBPHs, given that rove beetle and other groups of predators such as predatory spiders are abundant all around the year in rice paddies.The higher mortality of SBPH nymphs when they experience predation risk, has been broadly addressed before24,48,49. Reduced food intake during risk periods may contribute to this poorer survival outcome, because insects are likely to alter their feeding behavior50,51, or shift from a high-risk host to a safer, but nutritionally inferior, one52, when they detect the presence of predators. However, we did not observe an apparent behavior change in threatened nymphs in our experiments, even those going on to be macropters, compared to the non-threatened ones. For example, changing feeding location, non-feeding related motility, an increase in jump frequency, etc. did not occur in threatened nymphs. Thus, behavior plasticity seems not to be invoked to explain this phenomenon. However, considering the food consumption of sap-sucking SBPHs is difficult to determine, experiments employing electrical penetration graph (EPG) techniques should be conducted to quantify the amounts of sap consumption during risk periods53. This will help to explain whether the higher mortality is due to a change of feeding behavior (less food intake). Furthermore, some obscure internal physiological plasticity may also cause the higher mortality of SBPH nymphs at risk. For example, increased oxidative damage and decreased assimilation efficiency during the risk period may weaken the survival success of SBPH nymphs. Unfortunately, few studies have verified this assumption, although it has been shown that different assimilation efficiencies may arise under predation risk17, or oxidative damage may be induced by predation risk resulting in a slower growth rate54 and decreased escape performance55.SBPHs exhibit sexual differences in both with- and trans- generational morphological plasticity in relation to defense, i.e., threatened nymphs/parents are more likely to develop into long-winged females, due to the different vulnerability of females and males to predation. This predation difference is particularly acute between short-winged females and males, given that the proportion of short-winged females is lower than that seen in control settings (Fig. 1), and we assume the level of vulnerability may depend on their body size and reproductive role. The body sizes of short-winged females are larger than those of long-winged females or males, causing them to be more vulnerable to predation because they are more highly preferred targets for predator. Also, the short-winged female needs to stay and deposit eggs in the bare rice stem, which increases the time window of exposure to predators while, by contrast, long-winged males are slim and are not required to lay eggs, and so should be not be heavily predated. It follows that short-winged females should be more vulnerable to predation than long-winged females or males. Hence, in SHPBs, increasing the proportion of long-wing females in a population creates greater opportunities to migrate to predator-free habitats for reproduction, while at the same time reducing their vulnerability to predation. We hypothesize that the sexual difference in responses should be adaptive, and might be inheritable if predation pressure frequently favors the long-winged forms among populations over multiple generations.Results presented here also show that previously threatened long-winged offspring survived better than previosuly non-threatened ones when attacked by P. fuscipes. Studies suggest prey-altered morphology in response to predation risks should confer a survival advantage (fitness gained), i.e., a better-developed defensive structure13,24, or refuge in having a larger size that increase survival success57. However, wings themselves are without protective functions for SBPHs, as seen in pea aphids41. Thus, we setup behavioral experiments to reveal how threatened long-winged adults may increase their survival when attacked by a predator. Results show threatened long- winged offspring (but not parents) are more active, and respond more quickly, than unthreatened ones, i.e., a higher number of attacks are needed for P. fuscipes to capture a previously threatened long-winged offspring than one that has not been threatened before. We suggest the increased agility level is not because of the long wing itself, but due to the enhanced muscle strength in the legs of long-winged adults, because in our observation, long-winged adults avoid attack mainly by jumping but not by flight, probably because a jump needs less reaction time than flight.We only observed transgenerational plasticity of induced behavioral defense in SBPHs. This generational difference (within- and trans-generational) in behavioral defense in SBPHs may reflect potential carry-over effects from parents. To our knowledge, the generational difference in defense has rarely been shown in insects, though in pea aphids a fluctuating expression of transgenerational defensive traits (long wing) over generations when predation risk was present or absent has been reported58. We also expect there will be cumulative effects59 accumulated by SBPHs from the parent generation to the F1 generation. However, we are not certain whether these effects exist in our experiments. To determine this, experiments examining defensive traits across multigeneration should be conducted.However, if predation risk increases the number of agile, long-winged SBPH adults, which are of benefit in respect of dispersal, migration, and thus spreading rice viruses, the application of P. fuscipes in biological control appears ultimately to weaken the control effectiveness. Also, a study with field experiments found that predatory ladybugs increase the number of dispersed aphid nymphs, especially in plants with lower resistance. However, surprising results show that the higher number of dispersed aphid nymphs will not necessarily translate into population growth because dispersed aphids are weak (less food intake) and more easily predated by predators60. Thus, the benefits of anti-predator defense in aphids will, over time, translate into negative developmental costs that suppress the aphid population. As for SBPHs, threatened long-winged females perform well in dispersal and defense, but worse in development and reproduction. Recent experiments reveal that previously threatened long-winged females have a longevity that is three days shorter, and produces about 60 fewer eggs per female, than non-threatened long-winged females (unpublished data). Consequently, these negative effects would eventually translate into lower population growth rates within SBPHs. Thus, the introduction of the predation risk from P. fuscipes to control SBPHs is workable, since field experiments in controlling western flower thrips and grasshoppers by exposure to predation risk have been successful49,61, and the main purpose of biological control is to suppress the pest population beneath the relevant economic threshold, and reduce plant mass loss without necessarily eliminating the pest altogether.This study advances the importance of predation risk on the induction of flexible anti-predation defenses in insect parents and their offspring, uncovers the mediating mechanisms, shows how this anti-predation defense expresses differently between sexes, and further explores the adaptation significance of these defense traits for insects exposed to unpredictable environments. These findings should prove important for predicting SBPH migration or dispersal, conducting effective pest control, and better understanding prey-predator interactions. However, future work should examine the effects of predation risks from other groups of predators or parasites on the physiological and behavioral plasticity of SBPHs. More

  • in

    Great Barrier Reef: accept ‘in danger’ status, there’s more to gain than lose

    WORLD VIEW
    18 August 2021

    Great Barrier Reef: accept ‘in danger’ status, there’s more to gain than lose

    The Australian government must embrace UNESCO’s assessment to marshal the resources needed to protect the unique coral ecosystem.

    Tiffany H. Morrison

    0

    Tiffany H. Morrison

    Tiffany H. Morrison is a political geographer specializing in marine interventions at James Cook University in Townsville, Australia.

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Share on Twitter
    Share on Twitter

    Share on Facebook
    Share on Facebook

    Share via E-Mail
    Share via E-Mail

    Download PDF

    No one denies the cascade of climate-induced coral bleaching that devastated huge portions of the Great Barrier Reef in 2016, nor the subsequent bleaching. No one questions the Queensland government’s 2019 report (see go.nature.com/3ckg) that the reef’s condition near the shore is poor.Yet last month, the World Heritage Committee of the United Nations organization UNESCO caved to lobbying from the Australian government — pressured by fossil-fuel, agricultural and mining interests — and kept the Great Barrier Reef off its list of ecosystems ‘in danger’. In my view, this decision is wrong, factually and strategically. It leaves both UNESCO and Australia weaker against the climate crisis.I study the governance of approximately 250 ecosystems with World Heritage status because of their outstanding value to humanity — including attempts to curtail runaway industrial development of Vietnam’s Ha Long Bay and overzealous urbanization along Florida’s Everglades wetlands.There are benefits to an in-danger listing: the Belize Barrier Reef Reserve System was placed on the list in 2009. The World Heritage Fund then provided technical and financial assistance for its restoration. By 2018, mangrove coverage was restored nearly to 1996 levels, with clearing in protected areas almost entirely curtailed. The whole maritime zone was under a moratorium on oil and gas production. Restoration work is ongoing, but the Belize reef is no longer on the list.
    Save reefs to rescue all ecosystems
    This July, UNESCO proposed to list the Great Barrier Reef as in danger owing to severe coral bleaching, poor water quality and inaction on climate change.In arguing against the listing, the Australian government did not directly deny the reef’s parlous state, but did play down its condition. The government also argued that the listing would decrease tourism revenues, that Australia had too little time to respond and should not be held responsible for global change, and that UNESCO should not supersede national sovereignty on climate-change policy.Australian environment minister Sussan Ley lobbied committee members from more than a dozen countries to override UNESCO’s recommendation. Australia avoided an in-danger listing in 2015 using similar tactics and by touting a sustainability plan. The following year saw the worst coral bleaching in the world’s history.But changes are in the wind. After back-to-back coral bleaching in 2016–17 and the tragic 2020 bush fires, more Australian voters, industries and even conservative politicians are calling for strong efforts against climate change.Accepting an in-danger listing for the reef could tip the balance past gridlock. More than 70% of Australians think that formally acknowledging the reef’s endangered state would spur action. In 1993, former US president Bill Clinton’s administration requested that UNESCO certify Florida’s Everglades as in danger. This helped to bring industry opponents on board to better manage coastal development. Had the Great Barrier Reef been listed as in danger in 2015, fossil-fuel developments in the catchment areas draining into the reef would have struggled to get approval.Australia’s most conservative politicians will argue that avoiding an in-danger listing in 2022 is necessary to boost economic development. But this will embarrass Australia later. As more marine heating occurs globally, Australia will struggle to defend its inaction on climate to the UN climate-change conference in November and to the World Heritage Committee next year. Even the Queensland Tourism Industry Council has said keeping the reef’s status under the spotlight is a “call to the world to do more on climate change”.
    Fevers are plaguing the oceans — and climate change is making them worse
    And undercutting the listing undermines the purpose of the World Heritage Committee. Since 1972, 41 ecosystems have been considered for the in-danger list — 27 of them more than once — but not officially inscribed, even though UNESCO and its advisory body had assessed these ecosystems as threatened, or more threatened than those already listed. The number of sites on the list has declined by almost one-third since 2001, although threats continue to grow and there are more ecosystems on the overall World Heritage List.However, destabilizing strategies are mainly due to a small group of nations — including countries in the Organisation for Economic Co-operation and Development, such as Australia and Spain. World Heritage status and in-danger listings often work as intended: the managers of 73% of sites do comply with their responsibilities.Concerned observers are helping the World Heritage Committee to protect itself from political manipulation. In February 2020, a consortium of 76 organizations and individuals petitioned UNESCO to consider climate change in its World Heritage decisions. A nascent international network known as World Heritage Watch hopes to provide more oversight and monitoring of self-interested states. Ecologists and non-profit organizations are using remote sensing and citizen science to track and expose degradation of protected areas (see go.nature.com/2xn1) and hold governments accountable.UNESCO and its World Heritage Committee grasp the stakes. A new draft policy clearly states that climate-related degradation of a World Heritage Area can be used as the basis for in-danger listing; it will probably be ratified later this year at the UNESCO General Assembly. This policy will shine a harsh light on the intensifying geopolitics of climate change. Advanced economies, such as Australia, with high per-capita emissions but limited climate action, will need to find alternative ways to protect resources and jobs.

    Nature 596, 319 (2021)
    doi: https://doi.org/10.1038/d41586-021-02220-3

    Related Articles

    Fevers are plaguing the oceans — and climate change is making them worse

    Save reefs to rescue all ecosystems

    Subjects

    Climate change

    Conservation biology

    Government

    Latest on:

    Climate change

    ‘Polluter pays’ policy could speed up emission reductions and removal of atmospheric CO2
    News & Views 16 AUG 21

    Warming world, women in science — the week in infographics
    News 13 AUG 21

    IPCC climate report: Earth is warmer than it’s been in 125,000 years
    News 09 AUG 21

    Government

    Brazilian road proposal threatens famed biodiversity hotspot
    News 17 AUG 21

    The world must cooperate to avoid a catastrophic space collision
    Editorial 11 AUG 21

    From the archive
    News & Views 10 AUG 21

    Jobs

    Locum Associate or Senior Editor, Immunology

    Springer Nature
    London, United Kingdom

    Position title: Postdoctoral Research Fellows – Air Force Science & Technology Fellowship Program

    National Academies of Sciences, Engineering, and Medicine
    Various locations in the U.S., United States

    Postdoctoral Research Associates – NRC Research Associateship Programs

    National Academies of Sciences, Engineering, and Medicine
    Various locations in the U.S., United States

    Research Associate in the Centre for Developmental Neurobiology

    King’s College London (KCL)
    London, United Kingdom

    Nature Briefing
    An essential round-up of science news, opinion and analysis, delivered to your inbox every weekday.

    Email address

    Yes! Sign me up to receive the daily Nature Briefing email. I agree my information will be processed in accordance with the Nature and Springer Nature Limited Privacy Policy.

    Sign up More

  • in

    Intermediate ice scour disturbance is key to maintaining a peak in biodiversity within the shallows of the Western Antarctic Peninsula

    1.Dell, J. et al. Interaction diversity maintains resiliency in a frequently disturbed ecosystem. Front. Ecol. Evol. 7, 145 (2019).Article 

    Google Scholar 
    2.White, P. S. & Pickett, S. T. A. In The Ecology of Natural Disturbance and Patch Dynamics (eds S. T. A. Pickett & P. S. White) 3–13 (Academic Press, 1985).3.Newman, E. A. Disturbance ecology in the anthropocene. Front. Ecol. Evolut. https://doi.org/10.3389/fevo.2019.00147 (2019).Article 

    Google Scholar 
    4.Barnosky, A. D. et al. Approaching a state shift in Earth’s biosphere. Nature 486, 52–58 (2012).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    5.Yuan, Z., Jiao, F., Li, Y. & Kallenbach, R. L. Anthropogenic disturbances are key to maintaining the biodiversity of grasslands. Sci. Rep. 6, 22132 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    6.Hughes, A. R., Byrnes, J. E., Kimbro, D. L. & Stachowicz, J. J. Reciprocal relationships and potential feedbacks between biodiversity and disturbance. Ecol. Lett. 10, 849–864. https://doi.org/10.1111/j.1461-0248.2007.01075.x (2007).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    7.Connell, J. H. & Slatyer, R. O. Mechanisms of succession in natural communities and their role in community stability and organization. Am. Nat. 111, 1119–1144 (1977).Article 

    Google Scholar 
    8.Connell, J. H. Diversity in tropical rain forests and coral reefs. Science 199, 1302–1310 (1978).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.Fox, J. W. The intermediate disturbance hypothesis should be abandoned. Trends Ecol. Evol. 28, 86–92. https://doi.org/10.1016/j.tree.2012.08.014 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    10.Sheil, D. & Burslem, D. F. Disturbing hypotheses in tropical forests. Trends Ecol. Evol. 18, 18–26 (2003).Article 

    Google Scholar 
    11.Teixidó, N., Garrabou, J., Gutt, J. & Arntz, W. E. Recovery in Antarctic benthos after iceberg disturbance: Trends in benthic composition, abundance and growth forms. Mar. Ecol. Prog. Ser. 278, 1–16. https://doi.org/10.3354/meps278001 (2004).ADS 
    Article 

    Google Scholar 
    12.Teixidó, N., Garrabou, J., Gutt, J. & Arntz, W. Iceberg disturbance and successional spatial patterns: the case of the shelf Antarctic benthic communities. Ecosystems 10, 143–158 (2007).Article 

    Google Scholar 
    13.Johst, K., Gutt, J., Wissel, C. & Grimm, V. Diversity and disturbances in the Antarctic megabenthos: Feasible versus theoretical disturbance ranges. Ecosystems 9, 1145–1155 (2006).Article 

    Google Scholar 
    14.Mackey, R. L. & Currie, D. J. The diversity-disturbance relationship: Is it generally strong and peaked?. Ecology 82, 3479–3492. https://doi.org/10.1890/0012-9658(2001) (2001).Article 

    Google Scholar 
    15.Huston, M. A. Disturbance, productivity, and species diversity: Empiricism vs. logic in ecological theory. Ecology 95, 2382–2396. https://doi.org/10.1890/13-1397.1 (2014).Article 

    Google Scholar 
    16.Smale, D. A., Brown, K. M., Barnes, D. K., Fraser, K. P. & Clarke, A. Ice scour disturbance in Antarctic waters. Science 321, 371. https://doi.org/10.1126/science.1158647 (2008).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    17.Griffiths, H. J., Danis, B. & Clarke, A. Quantifying Antarctic marine biodiversity: The SCAR-MarBIN data portal. Deep Sea Res. Part II 58, 18–29. https://doi.org/10.1016/j.dsr2.2010.10.008 (2011).ADS 
    Article 

    Google Scholar 
    18.Grange, L. J. & Smith, C. R. Megafaunal communities in rapidly warming fjords along the West Antarctic Peninsula: Hotspots of abundance and beta diversity. PLoS ONE 8, e77917 (2013).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    19.Gutt, J., Griffiths, H. J. & Jones, C. D. Circumpolar overview and spatial heterogeneity of Antarctic macrobenthic communities. Mar. Biodivers. 43, 481–487. https://doi.org/10.1007/s12526-013-0152-9 (2013).Article 

    Google Scholar 
    20.Potthoff, M., Johst, K. & Gutt, J. How to survive as a pioneer species in the Antarctic benthos: Minimum dispersal distance as a function of lifetime and disturbance. Polar Biol. 29, 543–551 (2006).Article 

    Google Scholar 
    21.Convey, P. et al. The spatial structure of Antarctic biodiversity. Ecol. Monogr. 84, 203–244 (2014).Article 

    Google Scholar 
    22.Peck, L. S., Brockington, S., Vanhove, S. & Beghyn, M. Community recovery following catastrophic iceberg impacts in a soft-sediment shallow-water site at Signy Island, Antarctica. Mar. Ecol Progr. Ser. 186, 1–8 (1999).ADS 
    Article 

    Google Scholar 
    23.Lee, H., Vanhove, S., Peck, L. & Vincx, M. Recolonisation of meiofauna after catastrophic iceberg scouring in shallow Antarctic sediments. Polar Biol. 24, 918–925. https://doi.org/10.1007/s003000100300 (2001).Article 

    Google Scholar 
    24.Armstrong, T. World Meteorological Organization. WMO sea-ice nomenclature. Terminology, codes and illustrated glossary. Edition 1970. Geneva, Secretariat of the World Meteorological Organization, 1970. [ix], 147 p. [including 175 photos]+ corrigenda slip. (WMO/OMM/BMO, No. 259, TP. 145.). J. Glaciol. 11, 148–149 (1972).25.Robinson, B. J., Barnes, D. K. & Morley, S. A. Disturbance, dispersal and marine assemblage structure: A case study from the nearshore Southern Ocean. Mar. Environ. Res. 160, 105025 (2020).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    26.Gutt, J., Starmans, A. & Dieckmann, G. Impact of iceberg scouring on polar benthic habitats. Mar. Ecol. Prog. Ser. 137, 311–316 (1996).ADS 
    Article 

    Google Scholar 
    27.Barnes, D. K. A. & Conlan, K. E. Disturbance, colonization and development of Antarctic benthic communities. Philos. Trans. R. Soc. Lond. B Biol. Sci. 362, 11–38. https://doi.org/10.1098/rstb.2006.1951 (2007).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    28.Smale, D. A. Ecological traits of benthic assemblages in shallow Antarctic waters: Does ice scour disturbance select for small, mobile, secondary consumers with high dispersal potential?. Polar Biol. 31, 1225–1231. https://doi.org/10.1007/s00300-008-0461-9 (2008).Article 

    Google Scholar 
    29.Barnes, D. K. A. The influence of ice on polar nearshore benthos. J. Mar. Biol. Assoc. U.K. 79, 401–407 (1999).Article 

    Google Scholar 
    30.Gutt, J. On the direct impact of ice on marine benthic communities, a review. Polar Biol. 24, 553–564 (2001).Article 

    Google Scholar 
    31.Barnes, D. K. A. & Tarling, G. A. Polar oceans in a changing climate. Curr. Biol. 27, R454–R460. https://doi.org/10.1016/j.cub.2017.01.045 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    32.Barnes, D. K. A., Fleming, A., Sands, C. J., Quartino, M. L. & Deregibus, D. Icebergs, sea ice, blue carbon and Antarctic climate feedbacks. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 376, 20170176. https://doi.org/10.1098/rsta.2017.0176 (2018).ADS 
    Article 

    Google Scholar 
    33.Cook, A. J., Fox, A. J., Vaughan, D. G. & Ferrigno, J. G. Retreating glacier fronts on the Antarctic Peninsula over the past half-century. Science 308, 541–544. https://doi.org/10.1126/science.1104235 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    34.Cook, A. et al. Ocean forcing of glacier retreat in the western Antarctic Peninsula. Science 353, 283–286 (2016).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    35.Clarke, A. et al. Climate change and the marine ecosystem of the western Antarctic Peninsula. Philos. Trans. R. Soc. Lond. B Biol. Sci. 362, 149–166. https://doi.org/10.1098/rstb.2006.1958 (2007).Article 
    PubMed 

    Google Scholar 
    36.Turner, J. & Comiso, J. Solve Antarctica’s sea-ice puzzle. Nat. News 547, 275 (2017).CAS 
    Article 

    Google Scholar 
    37.Meredith, M. P. & King, J. C. Rapid climate change in the ocean west of the Antarctic Peninsula during the second half of the 20th century. Geophys. Res. Lett. https://doi.org/10.1029/2005GL024042 (2005).Article 

    Google Scholar 
    38.Barnes, D. K. A. & Souster, T. Reduced survival of Antarctic benthos linked to climate-induced iceberg scouring. Nat. Clim. Chang. 1, 365–368. https://doi.org/10.1038/nclimate1232 (2011).ADS 
    Article 

    Google Scholar 
    39.Parkinson, C. L. Global sea ice coverage from satellite data: Annual cycle and 35-yr trends. J. Clim. 27, 9377–9382. https://doi.org/10.1175/jcli-d-14-00605.1 (2014).ADS 
    Article 

    Google Scholar 
    40.Rogers, A. et al. Antarctic futures: An assessment of climate-driven changes in ecosystem structure, function, and service provisioning in the Southern Ocean. Ann. Rev. Mar. Sci. 12, 87–120 (2020).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    41.Morley, S. A. et al. Global drivers on Southern Ocean ecosystems: Changing physical environments and anthropogenic pressures in an Earth system. Front. Mar. Sci. 7, 1097 (2020).Article 

    Google Scholar 
    42.Barnes, D. K. et al. Blue carbon gains from glacial retreat along Antarctic fjords: What should we expect?. Glob. Change Biol. 26, 2750–2755 (2020).ADS 
    Article 

    Google Scholar 
    43.Barnes D. K. A. Blue carbon on polar and subpolar seabeds. In Carbon capture, utilization and sequestration (InTech, 2018). https://doi.org/10.5772/intechopen.78237.44.Bowler, D. et al. The geography of the Anthropocene differs between the land and the sea. bioRxiv https://doi.org/10.1101/432880 (2019).Article 

    Google Scholar 
    45.Arntz, W., Brey, T. & Gallardo, V. Antarctic zoobenthos. Oceanogr. Mar. Biol. 32, 241–304 (1994).
    Google Scholar 
    46.Clarke, A. Marine benthic populations in Antarctica: Patterns and processes. Antarct. Res. Ser. 70, 373–388 (1996).Article 

    Google Scholar 
    47.Fillinger, L., Janussen, D., Lundälv, T. & Richter, C. Rapid glass sponge expansion after climate-induced Antarctic ice shelf collapse. Curr. Biol. 23, 1330–1334 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    48.Clarke, A., Meredith, M. P., Wallace, M. I., Brandon, M. A. & Thomas, D. N. Seasonal and interannual variability in temperature, chlorophyll and macronutrients in northern Marguerite Bay, Antarctica. Deep Sea Res. Part II 55, 1988–2006. https://doi.org/10.1016/j.dsr2.2008.04.035 (2008).ADS 
    Article 

    Google Scholar 
    49.Barnes, D. K. A. Iceberg killing fields limit huge potential for benthic blue carbon in Antarctic shallows. Glob. Chang. Biol. 23, 2649–2659. https://doi.org/10.1111/gcb.13523 (2017).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    50.Pinkerton, M., Bradford-Grieve, J., Bowden, D. & Cummings, V. Benthos: Trophic modelling of the Ross Sea. Support. Docum. CCAMLR Sci. 17, 1–31 (2010).
    Google Scholar 
    51.Pielou, E. Shannon’s formula as a measurement of species diversity: It’s use and disuse. Am. Nat. 100, 463–465 (1966).Article 

    Google Scholar 
    52.Fisher, R. A., Corbet, A. S. & Williams, C. B. The relation between the number of species and the number of individuals in a random sample of an animal population. J. Anim. Ecol. 1, 42–58 (1943).Article 

    Google Scholar 
    53.Everitt, B. & Skrondal, A. The Cambridge Dictionary of Statistics Vol. 106 (Cambridge University Press, Cambridge, 2002).MATH 

    Google Scholar 
    54.Smale, D. A., Barnes, D. K. A. & Fraser, K. P. P. The influence of ice scour on benthic communities at three contrasting sites at Adelaide Island, Antarctica. Aust. Ecol. 32, 878–888. https://doi.org/10.1111/j.1442-9993.2007.01776.x (2007).Article 

    Google Scholar 
    55.Peck, L. S., Convey, P. & Barnes, D. K. A. Environmental constraints on life histories in Antarctic ecosystems: Tempos, timings and predictability. Biol. Rev. 81, 75–109. https://doi.org/10.1017/s1464793105006871 (2006).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    56.Waller, C., Worland, M., Convey, P. & Barnes, D. Ecophysiological strategies of Antarctic intertidal invertebrates faced with freezing stress. Polar Biol. 29, 1077–1083 (2006).Article 

    Google Scholar 
    57.Barnes, D. K. A. Polar zoobenthos blue carbon storage increases with sea ice losses, because across-shelf growth gains from longer algal blooms outweigh ice scour mortality in the shallows. Glob. Chang Biol. 23, 5083–5091. https://doi.org/10.1111/gcb.13772 (2017).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    58.Smith, C. R., Mincks, S. & DeMaster, D. J. A synthesis of bentho-pelagic coupling on the Antarctic shelf: Food banks, ecosystem inertia and global climate change. Deep Sea Res. Part II 53, 875–894 (2006).ADS 
    Article 

    Google Scholar 
    59.Jansen, J. et al. Abundance and richness of key Antarctic seafloor fauna correlates with modelled food availability. Nat. Ecol. Evolut. 2, 71–80 (2018).Article 

    Google Scholar 
    60.Henley, S. F. et al. Changing biogeochemistry of the Southern Ocean and its ecosystem implications. Front. Mar. Sci. 7, 581 (2020).Article 

    Google Scholar 
    61.Marshall, G. J. et al. Causes of exceptional atmospheric circulation changes in the Southern Hemisphere. Geophys. Res. Lett. 31, 14 (2004).Article 

    Google Scholar 
    62.Ashton, G. V., Morley, S. A., Barnes, D. K., Clark, M. S. & Peck, L. S. Warming by 1 C drives species and assemblage level responses in Antarctica’s marine shallows. Curr. Biol. 27, 2698-2705e2693 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    63.Riesgo, A. et al. Some like it fat: Comparative ultrastructure of the embryo in two demosponges of the genus Mycale (order poecilosclerida) from Antarctica and the Caribbean. PLoS ONE 10, e0118805 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    64.Toszogyova, A. & Storch, D. Global diversity patterns are modulated by temporal fluctuations in primary productivity. Glob. Ecol. Biogeogr. 28, 1827–1838 (2019).Article 

    Google Scholar 
    65.Clark, G. F. et al. Light-driven tipping points in polar ecosystems. Glob. Change Biol. 19, 3749–3761 (2013).ADS 
    Article 

    Google Scholar 
    66.Brockington, S., Clarke, A. & Chapman, A. Seasonality of feeding and nutritional status during the austral winter in the Antarctic sea urchin Sterechinus neumayeri. Mar. Biol. 139, 127–138 (2001).Article 

    Google Scholar 
    67.Fratt, D. B. & Dearborn, J. Feeding biology of the Antarctic brittle star Ophionotus victoriae (Echinodermata: Ophiuroidea). Polar Biol. 3, 127–139 (1984).Article 

    Google Scholar 
    68.Sahade, R., Tatián, M. & Esnal, G. B. Reproductive ecology of the ascidian Cnemidocarpa verrucosa at Potter Cove, South Shetland Islands, Antarctica. Mar. Ecol. Progr. Ser. 272, 131–140 (2004).ADS 
    Article 

    Google Scholar 
    69.Dayton, P. K. et al. Recruitment, growth and mortality of an Antarctic hexactinellid sponge, Anoxycalyx joubini. PLoS ONE 8, e56939 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    70.Vacchi, M., Cattaneo-Vietti, R., Chiantore, M. & Dalù, M. Predator-prey relationship between the nototheniid fish Trematomus bernacchii and the Antarctic scallop Adamussium colbecki at Terra Nova Bay (Ross Sea). Antarct. Sci. 12, 64–68 (2000).ADS 
    Article 

    Google Scholar 
    71.Sheil, D. & Burslem, D. F. Defining and defending Connell’s intermediate disturbance hypothesis: a response to Fox. Trends Ecol. Evol. 28, 571–572. https://doi.org/10.1016/j.tree.2013.07.006 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Environmental stress leads to genome streamlining in a widely distributed species of soil bacteria

    A. Strain sampling and isolationBradyrhizobium is a commonly occurring genus in soil [21]. Closely related Bradyrhizobium diazoefficiens (previously Bradyrhizobium japonicum) strains were isolated from soil, as previously described [20, 22]. In brief, Bradyrhizobium isolates that formed symbiotic associations with a foundational legume species in the censused region, Acacia acuminata, were isolated from soil sampled along a large region spanning ~300,000 km2 in South West Australia, a globally significant biodiversity hotspot [23]. In total 60 soil samples were collected from twenty sites (3 soil samples per site; Supplementary Fig. S1) and 380 isolates were sequenced (19 isolates per site, 5 or 6 isolates per soil sample, each isolate re-plated from a single colony at least 2 times). Host A. acuminata legume plants were inoculated with field soil in controlled chamber conditions and isolates were cultured on Mannitol Yeast agar plates from root nodules (see [20, 22] for details). A total of 374 strains were included in this study after removing 5 contaminated samples and one sample that was a different Bradyrhizobium species; non- Bradyrhizobium diazoefficiens sample removal was determined from 16S rRNA sequences extracted from draft genome assemblies (Method C) using RNAmmer [24].B. Environmental variation among sampled sitesIn this study, I focus on environmental factors (temperature, rainfall, soil pH and salinity) previously identified to impact either rhizobia growth performance, functional fitness or persistence in soil [25,26,27,28] and where a directionality of rhizobial stress response could be attributed with respect to environmental variation present in the sampled region (i.e. stress occurs at high temperatures, low rainfall, high acidity and high salinity). Each environmental factor was standardised to a mean of 0 and a standard deviation of 1, and pH and rainfall scales were reversed to standardise stress responses directions so that low stress is at low values and high stress is at high values for all factors (Supplementary Fig. S2). Additionally, salinity was transformed using a log transformation (log(x + 0.01) to account for some zeroes) prior to standardisation.C. Isolate sequencing and pangenome annotationIllumina short reads (150 bp paired-end) were obtained and draft genome assemblies were generated using Unicycler from a previous study [29]. Resulting assemblies were of good assembly quality (99.2% of all strains had >95.0% genome completeness score according to BUSCO [30]; Table S1; assembled using reads that contained nominal 0.016 ± 0.00524% non-prokaryotic DNA content across all 374 isolates, according to Kraken classification [31]). Protein coding regions (CDS regions) were identified using Prokka [32] and assembled into a draft pangenome using ROARY [33], which produced a matrix of counts of orthologous gene clusters (i.e. here cluster refers to a set of protein-coding sequences containing all orthologous variants from all the different strains, grouped together and designated as a single putative gene). Gene clusters that occurred in 99% of strains were designated as ‘core genes’ and used to calculate the ‘efficiency of selection’ [34, 35] (measured as dN/dS, Method G.2) and population divergence measured as Fixation Index ‘Fst’, Method H) across each environmental stress factor. The identified gene clusters were then annotated using eggNOG-mapper V2 [36] and the strain by gene cluster matrix was reaggregated using the Seed ortholog ID returned by eggNOG-mapper as the protein identity. Out of the total 2,744,533 CDS regions identified in the full sample of 374 strains, eggNOG-mapper was able to assign 2,612,345 of them to 91,230 unique Seed orthologs. These 91,230 protein coding genes constituted the final protein dataset for subsequent analyses.D. Calculation and statistical analysis of gene richness and pangenome diversity along the stress gradientGene richness was calculated as the total number of unique seed orthologues for each strain (i.e. genome). Any singleton genes that occurred in only a single strain, as well as ‘core’ genes that occurred in every strain (for symmetry, and because these are equally uninformative with respect to variation between strains) were removed, leaving 74,089 genes in this analysis. Gene richness (being count data) was modelled on a negative binomial distribution (glmer.nb function) as a function of each of the four environmental stressors as predictors using the lme4 package in R [37], also accounting for hierarchical structure in the data by including site and soil sample as random effects.To rule out potentially spurious effects of assembly quality (i.e. missed gene annotations due to incomplete draft genomes) on key findings, I confirmed no significant association between gene richness and genome completeness (r = 0.042, p = 0.4224, Fig. S3).Finally, pangenome diversity was calculated as the total number of unique genes that occurred in each soil sample (since multiple strains were isolated from a single soil sample). Pangenome diversity was modelled the same as gene richness, except here soil sample was not included as a random effect.E. Calculation of network and duplication traits for each geneI used the seed orthologue identifier from eggNOG-mapper annotations to query matching genes within StringDB ([38]; https://string-db.org/), which collects information on protein-protein interactions. Out of 91,230 query seed orthologues, 73,126 (~80%) returned a match in STRING. For matching seed orthologue hits, a network was created by connecting any proteins that were annotated as having pairwise interactions in the STRING database using the igraph package in R [39]. Two vertex-based network metrics were calculated for each gene: betweenness centrality, which measures a genes tendency to connect other genes in the gene network, and mean cosine similarity, which is a measure of how much a gene’s links to other genes are similar to other genes.Betweenness centrality was calculated using igraph (functional betweenness). For mean cosine similarity, a pairwise cosine similarity was first calculated between all genes. To do this, the igraph network object was converted into a (naturally sparse yet large) adjacency matrix and the cosSparse function in qlcMatrix in R [40] was used to calculate cosine similarity between all pairs of genes. To obtain an overall cosine similarity trait value for each gene, the average pairwise cosine similarity to all other genes in the network was calculated.Finally, gene duplication level was calculated for each gene as one additional measure of ‘redundancy’, by calculating the average number of gene duplicates found within the same strain. Duplicates were identified as CDS regions with the same Seed orthologue ID.F. Gene distribution modelsTo determine how gene traits predict accessory genome distributions patterns along the stress gradients, I first calculated a model-based metric (hereafter and more specifically a standardised coefficient, ‘z-score’) of the relative tendency of each gene to be found in different soil samples across the four stress gradients (heat, salinity, acidity, and aridity). This was achieved by modelling each gene’s presence or absence in a strain as a function of the four stress gradients, with site and soil sample as a random effect, using a binomial model in lme4 (the structure of the model being the same as the gene richness model, only the response is different). To reduce computational overhead, these models were only run for the set of genes that were used in the gene richness analysis (e.g. after removing singletons and core genes), and which had matching network traits calculated (e.g. they occurred in the STRING database; n = 64,867 genes). Distribution models were run in tandem for each gene using the manyany function in the R package mvabund [41]. Standardised coefficients, or z-scores (coefficient/standard error) indicating the change in the probability of occurrence for each gene across each of the stress gradients were extracted. More negative coefficients correspond to genes that are more likely to be absent in high stress (and vice versa for positive coefficients).To determine how network and duplication traits influence the distribution of genes across the stress gradient, I performed a subsequent linear regression model where the gene’s z-scores was the response and gene traits as predictors. The environmental stress type (i.e. acidity, aridity, heat and salinity) was included as a categorical predictor, and the interaction between stress category and gene function traits were used to infer the influence of gene function traits on gene distributions in a given stress type (see Supplementary Methods S1 for z-score transformation).G. Quantifying molecular signals of natural selection on accessory and core genesTo examine molecular signatures of selection in accessory and core genes, I calculated dN/dS for a subsample of the total pool (n=74,089 genes), which estimates the efficiency of selection [34, 35]. Two major questions relevant to dN/dS that are addressed here require a different gene subsampling approach:(1) Do variable environmental stress responses lead to different dN/dS patterns among accessory genes?Here, I subsampled accessory genes (total accessory gene pool across 374 strains, 74,089) to generate and compare dN/dS among 3 categorical groups, each representing a different level of stress response based on their z-scores (accessory genes that either strongly increase, decrease or have no change in occurrence as stress increases; n = 1000 genes/category; see Supplementary Methods S2 for subsample stratification details).For each gene, sequences were aligned using codon-aware alignment tool, MACSE v2 [42]. dN/dS was estimated by codon within each gene using Genomegamap’s Bayesian model-based approach [43], which is a phylogeny-free method optimised for within bacterial species dN/dS calculation (see Supplementary Methods S3 for dN/dS calculation/summarisation; S9 for xml configuration). The proportion of codons with dN/dS that were credibly less than 1 (purifying selection) and those credibly greater than 1 (positive selection) were analysed, with respect to the genes’ occurrence response to stress. Specifically, I modelled the proportion of codons with dN/dS  1 was overall too low to analyse in this way, so the binary outcome (a gene with any codons with dN/dS  > 1 or not) was modelled using a binomial response model with the response categories as predictors (see Supplementary Methods S4 for details of both models).(2) Does dN/dS among microbial populations vary across environmental stress?Here, I compared the average change in dN/dS in core genes present across all environments at the population level (i.e. all isolates from one soil sample), which is used here to measure the change in the efficiency of selection across each stress gradient. Core genes were used since they occur in all soil samples, allowing a consistent set and sample size of genes to be used in the population-level dN/dS calculation. This contrasts with the previous section, which quantifies gene-level dN/dS on extant accessory genes that intrinsically have variable presence or absence across soil samples. For computational feasibility, 500 core genes were subsampled (total core 1015 genes) and, for each gene, individual strain variants were collated into a single fasta file based on soil sample membership, such that dN/dS could be calculated separately for each gene within each soil sample (i.e. 60 soil samples × 500 genes = 30,000 fasta files). Each fasta file was then aligned in MACSE and dN/dS calculated using the same methodology for accessory genes (Supplementary Method S3). This enabled the average dN/dS in a sample to be associated with soil-sample level environmental stress variables. Specifically, I modelled the mean proportion of codons with dN/dS  1 due to overall rarity of positive selection (average proportion of genes where at least 1 codon with dN/dS  > 1 was ~0.006). This low level of positive selection is expected for core genes which tend to be under strong selective constraint.H. Calculation and analysis of Fixation index (Fst) along stress gradientsUsing the core genome alignment (all SNPs among 1015 core genes) generated previously with ROARY, I computed pairwise environmentally-stratified Fst. Each soil sample (n = 60) was first placed into one of 5 bins based on their distances in total environmental stress space (using all four stress gradients), with the overall goal of generating roughly evenly sized bins such that the environmental similarity of stress was greater within bins than between (see Supplementary Methods S6 and Fig. S4 for clustering algorithm details). Next, fasta alignments were converted to binary SNPs using the adegenet package. Pairwise Fst between all strains (originating from a particular soil sample) within a single bin was calculated using StAMPP in R [44]. For each strain pair, the average of the two stress gradient values was assigned.The relationship between pairwise Fst and the average stress value was evaluated using a linear regression model with each of the four stress values as predictors. Since the analysis uses pairwise data (thus violating standard independence assumptions), the significance of the relationship was determined using a permutation test (see Supplementary Methods S7 for details).I. Chromosomal structure analysis of gene loss patternsTo gain insight into structural variation and test for regional hotspots in gene loss along the chromosome, I mapped each gene’s stress response (i.e. probability of loss or gain indicated by each genes z-score) onto a completed Bradyrhizobium genome (strain ‘36_1’ from the same set of 374 strains (Genbank CP067102.1; [45]). Putative CDS positions on the complete genome were determined using Prokka and annotated with SEED orthologue ID’s using eggNOG-mapper. Matching accessory genes derived from the full set of 374 incomplete draft genomes (n = 74,089) were mapped to positions on the complete genome (6274 matches). The magnitude of gene loss or gain (as measured by their standardised z-scores for each environment from the gene distribution models; see Method F) was then modelled across the genome using a one-dimensional spatial smoothing model. This model was implemented in R INLA [46] (www.r-inla.org), and models a response in a one-dimensional space using a Matern covariance-based random effect. The method uses an integrated nested Laplace approximation to a Bayesian posterior distribution, with a cyclical coordinate system to accommodate circular genomes. The model accounts for spatial non-independence among sites and produces a continuous posterior distribution of average z-score predictions along the entire genome, which was then used to visualise potential ‘hotspots’ of gene loss or gain. The modelling procedure was repeated, instead with gene network traits, such that model predictions of similarity and betweenness could be visualised on the reference chromosome. More