More stories

  • in

    Continent-wide tree fecundity driven by indirect climate effects

    Elements of TA
    Identifying biogeographic trends within volatile data required several innovations in the MASTIF model20, building from multivariate state-space methods in previous applications41,52. Standard modeling options, such as generalized linear models and their derivatives, do not accommodate key features of the masting processes. First, multiple data types are not independent. Maturation status is binary with detection error, CCs are non-negative integers, also with detection error, and STs require a transport model (dispersal) linking traps to trees, and identification error in seed identification. Of course, a tree observed to bear seed, now or in the past, is known to be mature now. However, failure to observe seed does not mean that an individual is immature because there are detection errors and failed crop years41,64.
    Second, seed production is quasiperiodic within an individual (serial dependence), quasi-synchronous between individuals (“mast years”), [and] there is dependence on environmental variation, and massive variation within and between trees41,53,65. Autoregressive error structures (AR(p) for p lag terms) impose a rigid assumption of dependence that is not consistent with quasiperiodic variation that can drift between dominant cycles within the same individual over time43. It does not allow for individual differences in mast periodicity.
    Third, climate variables that affect fecundity operate both through interannual anomalies over time and as [a] geographic variation. The masting literature deals almost exclusively with the former, but our application must identify the latter: the potentially smooth variation of climate effects across regions must be extracted from the many individual time series, each dominated by local “noise.”
    Finally, model fitting is controlled by the size classes that dominate a given site and thus is insensitive to size classes that are poorly represented. Large trees are relatively rare in eastern forests, making it hard to identify potential declines in large, old individuals41,53. Conversely, the shade-intolerant species that dominate second-growth forests often lack the smaller size classes needed to estimate maturation and early stages where fecundity may be increasing rapidly.
    Several of the foregoing challenges are resolved in the MASTIF model by introducing latent states for individual maturation status and tree-year seed production. The dependent data types (maturation status, CCs, STs) become conditionally independent in the hierarchical MASTIF model (e.g., ref. 66). The serial dependence is handled as a conditional hidden Markov process for maturation that combines with CCs and STs by way of stochastic (latent) conditional fecundity. Maturation status and conditional fecundity must be estimated jointly, that is, not with separate models. The latent maturation/fecundity treatment avoids imposing a specific AR(p) structure. In the MASTIF model there is a posterior covariance in maturation/fecundity across all tree-year estimates that need not adhere to any specific assumption20. The dependence across individuals and years is automatic and available from the posterior distribution.
    Separating the spatial from temporal components of climate effects is possible here, not only because the entire network is analyzed together but also because predictors in the model include both climate norms for the individual sites and interannual anomalies across sites35,52. TA depends on both of these components.
    Extracting the trends from volatile data further benefits from random individual effects for each tree and the combination of climate anomalies and year effects over time. A substantial literature focuses on specific combinations of climate variables that best explain year-to-year fecundity variation, including combinations of temperature, moisture, and water balance during specific seasons over current and previous years19,25,41. Results vary for each study, presumably due to the differences in sites, species, size classes, duration, data type, and modeling assumptions. For TA, the goal is to accommodate the local interannual variation to optimize identification of trends in space and time. Thus, we include a small selection of important climate anomalies (spring minimum T of the current year, summer T of the current and previous year, and moisture D of the current and previous year). The climate anomalies considered here do not include every variable combination that could be important for all size classes of every species on every site. For this reason, we combine climate anomalies with year effects. Year effects in the model are fixed effects within an ecoregion and random between ecoregions (ecoregions are shown in Fig. 2 and listed in Supplementary Data 2). They are fixed within an ecoregion because they are not interpreted as exchangeable and drawn at random from a large population of possible years. They are random between ecoregions due to the uneven distribution of sites (Supplementary Data 1)20.
    To optimize inference on size effects, the sampling of coefficients in posterior simulation is implemented as a weighted regression. This means that the contribution of tree diameter to fecundity is inversely proportional to the abundance of that size class in the data. This approach has the effect of balancing the contributions of abundant and rare sizes. Identifying size effects further benefits from the introduction of opportunistic field sampling, which can target the large individuals that are typically absent from field study plots.
    MASTIF data network
    Data included in the analysis come from published and unpublished sources and offer one or both of the two data types, CCs and STs (Supplementary Data 1). Both data types inform tree-year fecundity; they are plotted by year in Fig. 6.
    Fig. 6: Distribution of observation trees by year in the North American region of the MASTIF network.

    Sites are listed by ecoregion in the Supplementary Data 2.

    Full size image

    CCs in the MASTIF network are obtained by one of three methods. Most common are counts with binoculars that are recorded with an estimate of the fraction of the crop that was observed. A second CC method makes use of seeds collected per ground surface area relative to the crown area. This method is used where conspecific crowns are isolated and wind dispersal is limited. The crop fraction is the ratio of ground area for traps relative to the projected crown area. Examples include HNHR67 and BCEF68.
    A third CC method is based on evidence for past cone production that is preserved on trees. This has been used for Abies balsamea at western Quebec sites69, Pinus ponderosa in the Rocky Mountains70, and for Pinus edulis at SW sites27.
    ST data include observations on individual trees that combine with seed counts from traps. Because individual studies can report different subcategories of seeds, and few conduct rigorous tests of viability, we had to combine them using the closest description to the concept of “viable”. For example, we do not include empty conifer seeds. A dispersion model provides estimates of seeds derived from each tree. ST and CC studies are listed in Supplementary Data 1. The likelihoods for CCs and STs are detailed in ref. 20. Individually and in combination, the two data types provide estimates, with full uncertainty, for fecundity across all tree-years.
    Fitted species had multiple years of observations from multiple sites, which included 211,146 trees and 2,566,594 tree-years from 123 species. Sites are shown in Fig. 2 of the main text by ecoregion, they are named in Fig. 1 and summarized in Supplementary Data 1. For TA the fits were applied to 7,723,671 trees on inventory plots. Mean estimates for the genus were used for inventory trees belonging to species for which there were not confident fits in the MASTIF model, which amounted to 7.2% of inventory trees. Detailed site information is available at the website MASTIF.
    Covariates
    Covariates in the model include as main effects tree diameter, tree canopy class (shading), and the climate variables in Fig. 1 of the main text and described in Table 1. A quadratic diameter term in the MASTIF model allows for changes in diameter response with size52. Shade classes follow the USDA Forest Inventory and Analysis (FIA)/National Ecological Observation Network (NEON) scheme that ranges from a fully exposed canopy that does not interact with canopies of other trees to fully shaded in the understory. Shading provides information on competition that has proved highly significant for fecundity in previous analyses41,52.
    Table 1 Predictors in the model, not all of which are important for all species.
    Full size table

    To distinguish between the effects of spatial variation versus interannual variability, spring T and moisture D are included in the model as site means and site anomalies35. Spring minimum T affect phenology and frost risk during flowering and early fruit initiation. Summer mean T (June–August) is included both as a linear and quadratic term. Mean summer T is linked to thermal energy availability during the growing season, with the quadratic term allowing for potential suppression due to extreme heat. Moisture D (cumulative monthly PET-P (potential evapotranspiration[-] minus precipitation) for January–August) is included as a site mean and an annual anomaly. Moisture D is important for carbon assimilation and fruit development during summer in the eastern continent and, additionally, from the preceding winter in the western continent. For species that develop over spring and summer, anomalies incorporate the current and previous year. We did not include longer lags in covariates. For species that disperse seed in spring (Ulmus spp. and some members of Acer), only the previous year was used. Temperature anomalies were included for spring, but not summer, simply to reduce the number of times that temperature variables enter the model, and these two variables tended to be correlated at many sites.
    Climate covariates were derived from gridded climate products and combined with local climate monitoring where it is available. Terraclimate71 provides monthly resolution, but it is spatially coarse. For both norms and trends, we used the period from 1990 to 2019 because global temperatures have been increasing consistently since the 1980s, and this span broadly overlaps with fecundity data (Fig. 6). CHELSA72 data are downscaled to a 1 km grid, but it does not extend to 2019. Our three-component climate scaling used regression to project CHELSA forward using Terraclimate, followed by downscaling to 1 km with CHELSA, with further downscaling to local climate data. Even where local climate data exist, they often do not span the full duration of field studies, making the link to gridded climate data important. Local climate data were especially important for mountainous sites in the Appalachians, Rockies, Sierra Nevada, and Cascades.
    Of the full list of variables, a subset was retained, depending on species (some have narrow geographic ranges) and deviance information criteria of the fitted model (Supplementary Data 2). Year effects in the model allow for the interannual variation that is not absorbed by anomalies20.
    Model fitting and TA
    As mentioned above, model fitting applied the hierarchical Bayes model of ref. 20 to the combination of time series and opportunistic observations summarized in Fig. 1. Posterior simulation was completed with Markov chain Monte Carlo based on direct sampling, Metropolis, and Hamiltonian Markov chain. Model fitting used 211,146 trees and 2,566,594 tree-years from 123 species (Supplementary Data 2). Only species with multiple observation years were included.
    The climate variable referenced as C in Eq. (1) of the main text is, in fact, a vector of climate variables described in the previous section, spring minimum T, summer mean T, and moisture D (Table 1). The anomalies and year effects in the fitted model contribute to the trends not explained by biogeographic variation as γ in Eq. (1). For main effects in the model, the partial derivatives are fitted coefficients, an example being the response to spring minimum temperature (partial f/partial {T}_{mathrm{sp}}={beta }_{{T}_{mathrm{sp}}}). For predictors involved in interactions, the partial derivatives are combinations of fitted coefficients and variables. For example, the response to moisture D, which interacts with tree size, is (partial [F], f/partial {D}={beta }_{{D}} + beta_{GD}G). The response to diameter G, which is quadratic and interacts with D, is (partial f/partial G={beta }_{G}+2{beta }_{{G}^{2}}G ,+{beta }_{GD}D).
    Trend decomposition applied the fitted model to every tree in forest inventories from the USDA FIA program, the Canada’s National Forest Inventory, the NEON, and our MASTIF collaboration. Each tree in these inventories has a species and diameter. For trees that lack a canopy class, regression was used to predict it from distances and tree diameters based on inventories that include both location and canopy class, including NEON, FIA, and the MASTIF network. Although inventories differ in the minimum diameter they record, few trees are reproductive at diameters below the lower diameter limits in these surveys, so the effect on fecundity estimates is negligible. For the indirect effects of climate coming through tree growth rates, the same covariates were fitted to growth as previously defined for fecundity, using the change in diameter observed over multiple inventories. A Tobit model was used to accommodate the fact that a second measurement can be smaller than an earlier measurement. The Tobit thus treats negative growth as censored at zero. TA to inventory plots used 7,717,677 trees. Because not all species in the inventory data are included in the MASTIF network, mean fecundity parameters for the genus were used for unfitted species. Species fitted in the MASTIF network accounted for >90% of trees in inventory plots (Supplementary Data 2).
    From the predictive distributions for every tree in the inventory data, we evaluated predictive mean trends aggregated to species and plot in Fig. 2b. We extracted specific terms that comprise the components in Fig. 4 and aggregated them too to the plot averages.
    General form for TA
    Equation 1 simplifies the model to highlight direct and indirect effects. Again, climate variables and tree size represent only a subset of the predictors in the model that are collected in a design vector ({{bf{x}}}_{t}=[{x}_{1,t},ldots ,{x}_{Q,t}]^{prime}), where the q = 1, …, Q predictors include shading from local competition, individual size, and climate and habitat variables (Table 1). On the proportionate scale, Eq. (1) can be written in terms of all predictors, including main effects and interactions, as

    $$frac{{mathrm{d}}f}{{mathrm{d}}t}=mathop{sum }limits_{q=1}^{Q}left(frac{partial f}{partial {x}_{q}}+sum _{q^{prime} in {I}_{q}}frac{partial f}{partial ({x}_{q}{x}_{q^{prime} })}{x}_{q^{prime} }right)frac{{mathrm{d}}{x}_{q}}{{mathrm{d}}t}+gamma$$
    (2)

    where Iq are variables that interact with xq. In this application, interactions include tree diameter with moisture deficit and diameter squared. Each term in the summation consists of a main effect of xq and interactions that are multiplied by the rate of change in variable xq. For the simple case of only two predictors, Eq. (2) is recognizable as Eq. (1) of the main text, where x1, x2 have been substituted for variables G and C. In our application, predictors include additional climate and shading (Table 1).
    Recognizing that environmental variables affect not only fecundity but also growth rate, we extract the size effect, that is, the xq that is G, and incorporate these indirect effects (through growth) by expanding g = dG/dt in Eq. (1) of the main text as

    $$g=mathop{sum }limits_{q=1}^{Q}left(frac{partial g}{partial {x}_{q}}+mathop{sum}limits _{q^{prime} in {I}_{q}}frac{partial g}{partial ({x}_{q}{x}_{q^{prime} })}{x}_{q^{prime} }right){x}_{q}+nu$$
    (3)

    where ν is the component of growth that is not accommodated by other terms. This expression allows us to evaluate the full effect of climate variables, including those coming indirectly through growth.
    Connecting fitted coefficients in MASTIF to TA
    This section connects the continuous, deterministic Eq. (1) to the MASTIF model20 with the interpretation of responses, direct effects, and full effects of Fig. 5. To summarize key elements of the fitted model20, consider a tree i at site j that grows to reproductive maturity and then produces seed depending on its size, local competitive environment, and climate. We wish to estimate the effects of its changing environment and condition on fecundity using a model that includes spatial variation in predictors that are tracked longitudinally over years t. Fecundity changes through maturation probability ρij(t), which increases as trees increase in size, and through conditional fecundity ψij(t), the annual seed production of a mature tree. Let zij(t) = 1 be the event that a randomly selected tree i is mature in year t. Then, ρij(t) is the corresponding probability that the tree is mature, E[zij(t)] = ρij(t)(ρ is not to be confused with the probability that a tree that is now immature will make the transition to the mature state in an interval dt = 1. That is a different quantity detailed in the Supplement to ref. 41). Fecundity has expected value Fij(t) = ρij(t)ψij(t). On a proportionate (log) scale,

    $${f}_{ij}(t)={mathrm{log}},{F}_{ij}(t)={mathrm{log}},{rho }_{ij}(t)+{mathrm{log}},{psi }_{it}(t)$$
    (4)

    The corresponding rate equation is

    $$frac{{mathrm{d}}f}{{mathrm{d}}t}=frac{{mathrm{d}},{mathrm{log}},rho }{{mathrm{d}}t}+frac{{mathrm{d}},{mathrm{log}},psi }{{mathrm{d}}t}$$
    (5)

    The discretized and stochasticized version of Eq. (1) is

    $$frac{{mathrm{d}}{F}_{ij}}{{mathrm{d}}t} = , frac{{F}_{ij,t+{mathrm{d}}t}-{F}_{ij,t}}{{mathrm{d}}t}+{epsilon }_{ij,t}\ = , {{Delta }}{F}_{ij,t}+{epsilon }_{ij,t}$$
    (6)

    where dt = 1 and ϵij,t is the integration error. When applied to a dynamic process model, this term further absorbs process error (see above), which is critical here to allow for conditional independence where observations are serially dependent. In simplest terms, ϵ is model miss-specification that allows for dependence in data.
    The MASTIF model that provides estimates for TA is detailed in ref. 20. Elements of central interest for TA are

    $${F}_{ij,t} = , {z}_{ij,t}{psi }_{ij,t}\ left[{z}_{ij,t}=1right] sim , {{Bernoulli}}left({rho }_{ij,t}right)\ {rho }_{ij,t} = , {{Phi }}({{boldsymbol{mu }}}_{ij,t})\ mathrm{log},{psi }_{ij,t} = ,{{bf{x}}}_{ij,t}^{prime}{boldsymbol{beta }}+{h}_{t}left(Tright)+{epsilon }_{ij,t}$$

    where μij,t = α0 + αGGij,t describes the increase in maturation probability with size, Φ(⋅) is the standard normal distribution function (a probit), ϵij,t ~ N(0, σ2), and ht(T) can include year effects, h(T) = κt, or lagged effects, (h(T)=mathop{sum }nolimits_{k = 1}^{p}{kappa }_{k}{psi }_{ij,t-k}), that contribute to γ in Eq. (1) of the main text. If year effects are used, then γ includes the trend in year effects. (The generative version of this model writes individual states at t conditional on t − 1 and is given in the Supplement to ref. 20.). If an AR(p) model is used, then γ = κ1 (provided data are not detrended). Random individual effects in the fitted model are marginalized for prediction of trees that were not fitted, meaning that σ2 is the sum of model residual and random-effects variance. Again, the length-Q design vector xij,t includes individual attributes (e.g., diameter Gij,t), local competitive environment, and climate (Table 1). There is a corresponding coefficient vector β.
    Moving to a difference equation (rate of change) for conditional log fecundity,

    $${{Delta }}{f}_{ij,t}={{Delta }}mathrm{log},{rho }_{ij,t}+{{Delta }}mathrm{log},{psi }_{ij,t}$$

    where

    $${{Delta }}mathrm{log},{psi }_{ij,t} =mathrm{log},{psi }_{ij,t+1}-mathrm{log},{psi }_{ij,t}\ ={{Delta }}{{bf{x}}}_{ij,t}^{prime}{boldsymbol{beta }}+{gamma }_{ij,t}+{nu }_{ij,t}\ {{Delta }}{{bf{x}}}_{ij,t} ={{bf{x}}}_{i,t}-{{bf{x}}}_{ij,t-1}\ {nu }_{ij,t} sim N(0,2{sigma }^{2})$$

    The variance in the last line is the variance of the difference Δϵij,t.
    Elements of basic theory in Eq. (1) of the main text are linked to data through the modeling framework as

    $${{Delta }}{f}_{ij,t}= +{beta }_{{T}_{sp}}{{Delta }}{T}_{sp,j}\ +left({beta }_{T}+2{beta }_{{T}^{2}}{T}_{j}right){{Delta }}{T}_{j}\ +left({beta }_{D}+{beta }_{GD}{G}_{ij,t}right){{Delta }}{D}_{j}\ +left({alpha }_{G}frac{phi ({{boldsymbol{mu }}}_{ij,t})}{{{Phi }}({{boldsymbol{mu }}}_{ij,t})}+{beta }_{G}+2{beta }_{{G}^{2}}{G}_{ij,t}+{beta }_{GD}{D}_{j}right){{Delta }}{G}_{ij}\ +{gamma }_{ij,t}+{nu }_{ij,t}$$
    (7)

    where ϕ(⋅) is the standard normal density function that comes from the rate of progress toward maturation. Again, the anomalies do not appear in this expression for trends because trends in the anomalies and year effects enter through γ.
    The first four lines in Eq. (7) are, respectively, the effects of trends in spring minimum temperatures ΔTsp,j, summer mean temperature ΔTj, moisture deficit ΔDj, and size ΔGij, where the latter comes from growth on inventory plots. The contribution of maturation to change in fecundity is the first term in the fourth line, αGϕ(μij,t)/Φ(μij,t). A map of this term in Fig. 7b shows the strong contribution to fecundity in the East due to the young (Fig. 7a) and/or small (Fig. 4b) trees there. The sum of these terms dominates the patterns in Fig. 3c.
    Fig. 7: Size and maturation effects on fecundity.

    a Stand age variable in FIA data and b positive effect of maturation for increasing fecundity in the eastern continent. In the West, maturation does not contribute to rising fecundity because large trees are predominantly [mature] larger.

    Full size image

    All terms in Eq. (7) have units of mean change in proportionate fecundity, and these are mapped in figures of the main text. We focus on proportionate fecundity because it reflects the full effect of climate as opposed to total fecundity, which would often be dominated by one or a few trees of a single species. However, from proportionate fecundity we can obtain change in fecundity as ΔFij,t = Fij,t × Δfij. Stand-level effects on fecundity change at site j can be obtained from individual change as

    $${{Delta }}{F}_{j}=mathop{sum }limits_{i=1}^{{n}_{j}}{{Delta }}{F}_{ij}=mathop{sum }limits_{i=1}^{{n}_{j}}{F}_{ij}{{Delta }}{f}_{ij,t}$$

    Again, maps in Fig. 5 show mean proportionate effects for all trees on an inventory plot.
    Reporting summary
    Further information on research design is available in the Nature Research Reporting Summary linked to this article. More

  • in

    Climate predicts geographic and temporal variation in mosquito-borne disease dynamics on two continents

    1.
    Ockendon, N. et al. Mechanisms underpinning climatic impacts on natural populations: altered species interactions are more important than direct effects. Glob. Chang Biol. 20, 2221–2229 (2014).
    ADS  PubMed  Article  PubMed Central  Google Scholar 
    2.
    Boggs, C. L. & Inouye, D. W. A single climate driver has direct and indirect effects on insect population dynamics. Ecol. Lett. 15, 502–508 (2012).
    PubMed  Article  PubMed Central  Google Scholar 

    3.
    Burkett, V. R. et al. Nonlinear dynamics in ecosystem response to climatic change: case studies and policy implications. Ecol. Complex. 2, 357–394 (2005).
    Article  Google Scholar 

    4.
    Molnár, P. K., Sckrabulis, J. P., Altman, K. A. & Raffel, T. R. Thermal performance curves and the metabolic theory of ecology—a practical guide to models and experiments for parasitologists. J. Parasitol. 103, 423–439 (2017).

    5.
    Hortion, J. et al. Acute flavivirus and alphavirus infections among children in two different areas of Kenya, 2015. Am. J. Trop. Med. Hyg. 100, 170–173 (2019).
    PubMed  Article  PubMed Central  Google Scholar 

    6.
    Stewart-Ibarra, A. M. & Lowe, R. Climate and non-climate drivers of dengue epidemics in Southern Coastal Ecuador. Am. J. Trop. Med. Hyg. 88, 971–981 (2013).
    PubMed  PubMed Central  Article  Google Scholar 

    7.
    Jury, M. R. Climate influence on dengue epidemics in Puerto Rico. Int. J. Environ. Health Res. 18, 323–334 (2008).
    PubMed  Article  PubMed Central  Google Scholar 

    8.
    Campbell, K. M. et al. Weather regulates location, timing, and intensity of dengue virus transmission between humans and mosquitoes. PLoS Negl. Trop. Dis. 9, e0003957 (2015).

    9.
    Adde, A. et al. Predicting dengue fever outbreaks in French Guiana using climate indicators. PLoS Negl. Trop. Dis. 10, e0004681 (2016).

    10.
    Dhimal, M. et al. Risk factors for the presence of chikungunya and dengue vectors (Aedes aegypti and Aedes albopictus), their altitudinal distribution and climatic determinants of their abundance in Central Nepal. PLoS Negl. Trop. Dis. 9, e0003545 (2015).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    11.
    Descloux, E. et al. Climate-based models for understanding and forecasting dengue epidemics. PLoS Negl. Trop. Dis. 6, e1470 (2012).

    12.
    Aswi, A., Cramb, S. M., Moraga, P. & Mengersen, K. Epidemiology and infection Bayesian spatial and spatio-temporal approaches to modelling dengue fever: a systematic review. Epidemiol. Infect. 147, https://doi.org/10.1017/S0950268818002807 (2018).

    13.
    Johansson, M. A. et al. An open challenge to advance probabilistic forecasting for dengue epidemics. Proc. Natl Acad. Sci. USA 116, 24268–24274 (2019).

    14.
    Michael, E. et al. Continental-scale, data-driven predictive assessment of eliminating the vector-borne disease, lymphatic filariasis, in sub-Saharan Africa by 2020. BMC Med. 15, 176 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    15.
    Smith, T. et al. Towards a comprehensive simulation model of malaria epidemiology and control. Parasitology 135, 1507–1516 (2008).

    16.
    Ryan, S. J., Carlson, C. J., Mordecai, E. A. & Johnson, L. R. Global expansion and redistribution of Aedes-borne virus transmission risk with climate change. PLoS Negl. Trop. Dis. 13, e0007213 (2019).

    17.
    Kraemer, M. U. et al. The global distribution of the arbovirus vectors Aedes aegypti and Ae. albopictus. eLife 4, e08347 (2015).

    18.
    Powell, J. R., Tabachnick, W. J., Powell, J. R. & Tabachnick, W. J. History of domestication and spread of Aedes aegypti—a review. Mem. Inst. Oswaldo Cruz. 108, 11–17 (2013).
    PubMed  PubMed Central  Article  Google Scholar 

    19.
    Mordecai, E. A. et al. Detecting the impact of temperature on transmission of Zika, dengue, and chikungunya using mechanistic models. PLoS Negl. Trop. Dis. 11, e0005568 (2017).

    20.
    Shocket, M. S., Ryan, S. J. & Mordecai, E. A. Temperature explains broad patterns of Ross River virus transmission. eLife 7, e37762 (2018).

    21.
    Paull, S. H. et al. Drought and immunity determine the intensity of West Nile virus epidemics and climate change impacts. Proc. R. Soc. B Biol. Sci. 284, 20162078 (2017).
    Article  Google Scholar 

    22.
    Costa EAP de, A., Santos EM de, M., Correia, J. C. & Albuquerque de, C. M. R. Impact of small variations in temperature and humidity on the reproductive activity and survival of Aedes aegypti (Diptera, Culicidae). Rev. Bras. Entomol. 54, 488–493 (2010).
    Article  Google Scholar 

    23.
    Gaaboub, I. A., El-Sawaf, S. K. & El-Latif, M. A. Effect of different relative humidities and temperatures on egg-production and longevity of adults of Anopheles (Myzomyia) pharoensis Theob.1. Z. f.ür. Angew. Entomol. 67, 88–94 (2009).
    Article  Google Scholar 

    24.
    Koenraadt, C. J. M. & Harrington, L. C. Flushing effect of rain on container-inhabiting mosquitoes Aedes aegypti and Culex pipiens (Diptera: Culicidae). J. Med. Entomol. 45, 28–35 (2009).
    Google Scholar 

    25.
    Paaijmans, K. P., Wandago, M. O., Githeko, A. K., Takken, W. & Vulule, J. Unexpected high losses of Anopheles gambiae larvae due to rainfall. PLoS ONE 2, e1146 (2007).

    26.
    Benedum, C. M., Seidahmed, O. M. E., Eltahir, E. A. B. & Markuzon, N. Statistical modeling of the effect of rainfall flushing on dengue transmission in Singapore. PLoS Negl. Trop. Dis. 12, e0006935 (2018).

    27.
    Stewart Ibarra, A. M. et al. Dengue vector dynamics (Aedes aegypti) influenced by climate and social factors in Ecuador: implications for targeted control. PLoS ONE 8, e78263 (2013).

    28.
    Pontes, R. J., Spielman, A., Oliveira-Lima, J. W., Hodgson, J. C. & Freeman, J. Vector densities that potentiate dengue outbreaks in a Brazilian city. Am. J. Trop. Med Hyg. 62, 378–383 (2000).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    29.
    Anyamba, A. et al. Climate teleconnections and recent patterns of human and animal disease outbreaks. PLoS Negl. Trop. Dis. 6, e1465 (2012).

    30.
    Huber, J. H., Childs, M. L., Caldwell, J. M. & Mordecai, E. A. Seasonal temperature variation influences climate suitability for dengue, chikungunya, and Zika transmission. PLoS Negl. Trop. Dis. 12, e0006451 (2018).

    31.
    Stewart-Ibarra, A. M. et al. Spatiotemporal clustering, climate periodicity, and social-ecological risk factors for dengue during an outbreak in Machala, Ecuador, in 2010. BMC Infect. Dis. 14, 610 (2014).
    PubMed  PubMed Central  Article  Google Scholar 

    32.
    Agha, S. B., Tchouassi, D. P., Turell, M. J., Bastos, A. D. S. & Sang, R. Entomological assessment of dengue virus transmission risk in three urban areas of Kenya. PLoS Negl. Trop. Dis. 13, e0007686 (2019).

    33.
    Agha, S. B., Tchouassi, D. P., Bastos, A. D. S. & Sang, R. Dengue and yellow fever virus vectors: seasonal abundance, diversity and resting preferences in three Kenyan cities. Parasit. Vectors 10, 628 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    34.
    Chretien, J.-P. et al. Drought-associated chikungunya emergence along coastal East Africa. Am. J. Trop. Med. Hyg. 76, 405–407 (2007).
    PubMed  PubMed Central  Article  Google Scholar 

    35.
    Vu, D. M. et al. Unrecognized dengue virus infections in children, Western Kenya, 2014–2015. Emerg. Infect. Dis. 23, 1915–1917 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    36.
    Gubler, D. J., Nalim, S., Saroso, J. S., Saipan, H. & Tan, R. Variation in susceptibility to oral infection with dengue viruses among geographic strains of Aedes Aegypti *. Am. J. Trop. Med. Hyg. 28, 1045–1052 (1979).
    CAS  PubMed  Article  Google Scholar 

    37.
    Xavier-Carvalho, C., Chester Cardoso, C., de Souza Kehdya, F., Guilherme Pacheco, A. & Ozório Moraesa, M. Host genetics and dengue fever. Infect. Genet. Evol. 56, 99–110 (2017).
    PubMed  Article  Google Scholar 

    38.
    Lourenço, J. & Recker, M. The 2012 Madeira Dengue Outbreak: epidemiological determinants and future epidemic potential. PLoS Negl. Trop. Dis. 8, e3083 (2014).

    39.
    Li, R. et al. Climate-driven variation in mosquito density predicts the spatiotemporal dynamics of dengue. Proc. Natl Acad. Sci. USA 119, 3624–3629 (2019).
    Article  CAS  Google Scholar 

    40.
    Wang, X., Tang, S. & Cheke, R. A. A stage structured mosquito model incorporating effects of precipitation and daily temperature fluctuations. J. Theor. Biol. 411, 27–36 (2016).
    PubMed  MATH  Article  PubMed Central  Google Scholar 

    41.
    Siraj, A. S. et al. Temperature modulates dengue virus epidemic growth rates through its effects on reproduction numbers and generation intervals. PLoS Negl. Trop. Dis. 11, e0005797 (2017).

    42.
    Oidtman, R. J. et al. Inter-annual variation in seasonal dengue epidemics driven by multiple interacting factors in Guangzhou, China. Nat. Commun. 10, 1–12 (2019).

    43.
    Pyper, B. J. & Peterman, R. M. Comparison of methods to account for autocorrelation in correlation analyses of fish data. Can. J. Fish. Aquat. Sci. 55, 2127–2140 (1998).
    Article  Google Scholar 

    44.
    Hurtado-Daz, M., Riojas-Rodrguez, H., Rothenberg, S., Gomez-Dantes, H. & Cifuentes, E. Impact of climate variability on the incidence of dengue in Mexico. Trop. Med. Int. Heal. 12, 1327–1337 (2007).

    45.
    Mordecai, E. A. et al. Thermal biology of mosquito‐borne disease. Ecol. Lett. 22, 1690–1708 (2019).

    46.
    Carrington, L. B., Armijos, M. V., Lambrechts, L., Barker, C. M. & Scott, T. W. Effects of fluctuating daily temperatures at critical thermal extremes on Aedes aegypti life-history traits. PLoS ONE 8, e58824 (2013).

    47.
    Ngugi, H. N. et al. Characterization and productivity profiles of Aedes aegypti (L.) breeding habitats across rural and urban landscapes in western and coastal Kenya. Parasit. Vectors 10, 331 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    48.
    Lowe, R. et al. Nonlinear and delayed impacts of climate on dengue risk in Barbados: a modelling study. PLoS Med. 15, e1002613 (2018).

    49.
    Laureano-Rosario, A. E., Garcia-Rejon, J. E., Gomez-Carro, S., Farfan-Ale, J. A. & Muller-Kargera, F. E. Modelling dengue fever risk in the State of Yucatan, Mexico using regional-scale satellite-derived sea surface temperature. Acta Trop. 172, 50–57 (2017).
    PubMed  Article  PubMed Central  Google Scholar 

    50.
    Li, C. et al. Modeling and projection of dengue fever cases in Guangzhou based on variation of weather factors. Sci. Total Environ. 605–606, 867–873 (2017).
    ADS  PubMed  Article  CAS  PubMed Central  Google Scholar 

    51.
    Li, C. F., Lim, T. W., Han, L. L. & Fang, R. Rainfall, abundance of Aedes aegypti and dengue infection in Selangor, Malaysia. Southeast Asian J. Trop. Med Public Health 16, 560–568 (1985).
    CAS  PubMed  PubMed Central  Google Scholar 

    52.
    Johansson, M. A., Dominici, F. & Glass, G. E. Local and global effects of climate on dengue transmission in Puerto Rico. PLoS Negl. Trop. Dis. 3, e382 (2009).

    53.
    Kenneson, A. et al. Social-ecological factors and preventive actions decrease the risk of dengue infection at the household-level: Results from a prospective dengue surveillance study in Machala, Ecuador. PLoS Negl. Trop. Dis. 11, e0006150 (2017).

    54.
    Reich, N. G. et al. Interactions between serotypes of dengue highlight epidemiological impact of cross-immunity. J. R. Soc. Interface 10, 20130414 (2013).
    PubMed  PubMed Central  Article  Google Scholar 

    55.
    Wen, J. et al. Dengue virus-reactive CD8+ T cells mediate cross-protection against subsequent Zika virus challenge. Nat. Commun. 8, 1459 (2017).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    56.
    Rodriguez-Barraquer, I., Salje, H. & Cummings, D. A. Opportunities for improved surveillance and control of dengue from age-specific case data. eLife 8, e45474 (2019).

    57.
    Stoddard, S. T. et al. House-to-house human movement drives dengue virus transmission. Proc. Natl Acad. Sci. USA 110, 994–999 (2013).
    ADS  CAS  PubMed  Article  Google Scholar 

    58.
    Wesolowski, A. et al. Impact of human mobility on the emergence of dengue epidemics in Pakistan. Proc. Natl Acad. Sci. USA 112, 11887–11892 (2015).
    ADS  CAS  PubMed  Article  Google Scholar 

    59.
    Vaidya, A., Bravo-Salgado, A. D. & Mikler, A. R.. Modeling climate-dependent population dynamics of mosquitoes to guide public health policies. in Proceedings of the 5th ACM Conference on Bioinformatics, Computational Biology, and Health Informatics Vol. 14 (eds Baldi, P. & Wang, W.) 380–389 (Newport Beach, CA, USA, 2014).

    60.
    Schmidt, C. A., Comeau, G., Monaghan, A. J., Williamson, D. J. & Ernst, K. C. Effects of desiccation stress on adult female longevity in Aedes aegypti and Ae. albopictus (Diptera: Culicidae): results of a systematic review and pooled survival analysis. Parasit. Vectors 11, 267 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    61.
    Vazquez-Prokopec, G. M., Galvin, W. A., Kelly, R. & Kitron, U. A new, cost-effective, battery-powered aspirator for adult mosquito collections. J. Med. Entomol. 46, 1256–1259 (2009).
    PubMed  PubMed Central  Article  Google Scholar 

    62.
    Waggoner, J. J. et al. Single-reaction multiplex reverse transcription PCR for detection of Zika, chikungunya, and dengue viruses. Emerg. Infect. Dis. 22, 1295–1297 (2016).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    63.
    Lanciotti, R. S., Calisher, C. H., Gubler, D. J., Chang, G. J. & Vorndam, A. V. Rapid detection and typing of dengue viruses from clinical samples by using reverse transcriptase-polymerase chain reaction. J. Clin. Microbiol. 30, 545–551 (1992).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    64.
    Grossi-Soyster, E. N. et al. Serological and spatial analysis of alphavirus and flavivirus prevalence and risk factors in a rural community in western Kenya. PLoS Negl. Trop. Dis. 11, e0005998 (2017).

    65.
    Palamara, G. M. et al. Inferring the temperature dependence of population parameters: the effects of experimental design and inference algorithm. Ecol. Evol. 4, 4736–4750 (2014).
    PubMed  PubMed Central  Article  Google Scholar 

    66.
    Team R. C. R.: A language and environment for statistical computing. R Found Stat. Comput. https://www.r-project.org (2018).

    67.
    Shocket, M. S. et al. Environmental drivers of vector-borne disease. in Population Biology of Vector-borne Diseases. (eds Drake, J. M., Bonsall, M. B. & Strand, M. R.) 85–118 (Oxford University Press, 2020).

    68.
    Colón-González, F. J., Bentham, G. & Lake, I. R. Climate variability and dengue fever in warm and humid Mexico. Am. J. Trop. Med. Hyg. 84, 757–763 (2011).
    PubMed  PubMed Central  Article  Google Scholar 

    69.
    Wang, C., Jiang, B., Fan, J., Wang, F. & Liu, Q. A study of the dengue epidemic and meteorological factors in Guangzhou, China, by using a zero-inflated Poisson regression model. Asia Pac. J. Public Heal. 26, 48–57 (2014).
    Article  Google Scholar 

    70.
    Minh An, D. T. & Rocklöv, J. Epidemiology of dengue fever in Hanoi from 2002 to 2010 and its meteorological determinants. Glob. Health Action. 7, 23074 (2014).
    PubMed  Article  PubMed Central  Google Scholar 

    71.
    Wu, P.-C., Guoa, H.-R., Lung, S.-C., Lin, C.-Y. & Su, H.-J. Weather as an effective predictor for occurrence of dengue fever in Taiwan. Acta Trop. 103, 50–57 (2007).
    PubMed  Article  PubMed Central  Google Scholar 

    72.
    Karim, M. N., Munshi, S. U., Anwar, N. & Alam, M. S. Climatic factors influencing dengue cases in Dhaka city: a model for dengue prediction. Indian J. Med. Res. 136, 32–39 (2012).
    PubMed  PubMed Central  Google Scholar 

    73.
    Nakhapakorn, K. & Tripathi, N. An information value based analysis of physical and climatic factors affecting dengue fever and dengue haemorrhagic fever incidence. Int. J. Health Geogr. 4, 13 (2005).
    PubMed  PubMed Central  Article  Google Scholar 

    74.
    Gharbi, M. et al. Time series analysis of dengue incidence in Guadeloupe, French West Indies: forecasting models using climate variables as predictors. BMC Infect. Dis. 11, 166 (2011).
    PubMed  PubMed Central  Article  Google Scholar 

    75.
    Sharmin, S., Glass, K., Viennet, E. & Harley, D. Interaction of mean temperature and daily fluctuation influences dengue incidence in Dhaka, Bangladesh. PLoS Negl. Trop. Dis. 9, e0003901 (2015).

    76.
    Sriprom, M., Chalvet-Monfray, K., Chaimane, T., Vongsawat, K. & Bicout, D. J. Monthly district level risk of dengue occurrences in Sakon Nakhon Province, Thailand. Sci. Total Environ. 408, 5521–5528 (2010).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    77.
    Martínez-Bello, D., López-Quílez, A. & Prieto, A. T. Spatiotemporal modeling of relative risk of dengue disease in Colombia. Stoch. Environ. Res. Risk Assess. 32, 1587–1601 (2018).
    Article  Google Scholar 

    78.
    Didan, K., Barreto Munoz, A., Solano, R. & Huete, A. MODIS vegetation index user’s guide (MOD13 Series) [Internet]. https://vip.arizona.edu/documents/MODIS/MODIS_VI_UsersGuide_June_2015_C6.pdf (2015).

    79.
    Sulla-Menashe, D. & Friedl, M. A. User guide to collection 6 MODIS land cover (MCD12Q1 and MCD12C1) product. https://icdc.cen.uni-hamburg.de/fileadmin/user_upload/icdc_Dokumente/MODIS/mcd12_user_guide_v6.pdf (2018). More

  • in

    Success of coastal wetlands restoration is driven by sediment availability

    1.
    Barbier, E. B. et al. The value of estuarine and coastal ecosystem services. Ecol. Monogr. 81, 169–193 (2011).
    Article  Google Scholar 
    2.
    Costanza, R. et al. Changes in the global value of ecosystem services.Glob. Environ. Chang. 26, 152–158 (2014).
    Article  Google Scholar 

    3.
    Airoldi, L. & Beck, M. W. Loss, status and trends for coastal marine habitats of Europe. Oceanogr. Mar. Biol. Annu. Rev. 45, 345–405 (2007).
    Google Scholar 

    4.
    Kainuma, Mami et al. Current status of mangroves worldwide. Middle East 624, 0–4 (2013).
    Google Scholar 

    5.
    Fagherazzi, S. et al. Sea level rise and the dynamics of the marsh-upland boundary. Front. Environ. Sci. 7, 25 (2019).
    Article  Google Scholar 

    6.
    Kirwan, M. L. & Gedan, K. B. Sea-level driven land conversion and the formation of ghost forests. Nat. Clim. Change 9, 450–457 (2019).
    Article  Google Scholar 

    7.
    Craft, C. et al. Forecasting the effects of accelerated sea‐level rise on tidal marsh ecosystem services. Front. Ecol. Environ. 7, 73–78 (2009).
    Article  Google Scholar 

    8.
    Nicholls, R. J. & Cazenave, A. Sea-level rise and its impact on coastal zones. Science 328, 1517–1520 (2010).
    CAS  Article  Google Scholar 

    9.
    Schuerch, M. et al. Modeling the influence of changing storm patterns on the ability of a salt marsh to keep pace with sea level rise. J. Geophys. Res. Earth Surf. 118, 84–96 (2013).
    Article  Google Scholar 

    10.
    Temmerman, S. et al. Ecosystem-based coastal defence in the face of global change. Nature 504, 79–83 (2013).
    CAS  Article  Google Scholar 

    11.
    Syvitski, J. P. et al. Impact of humans on the flux of terrestrial sediment to the global coastal ocean. Science 308, 376–380 (2005).
    CAS  Article  Google Scholar 

    12.
    Ezcurra, E. et al. A natural experiment reveals the impact of hydroelectric dams on the estuaries of tropical rivers.Sci. Adv. 5, eaau9875 (2019).
    CAS  Article  Google Scholar 

    13.
    Kirwan, M. L. et al. Overestimation of marsh vulnerability to sea level rise. Nat. Clim. Change 6, 253–260 (2016).
    Article  Google Scholar 

    14.
    Schuerch, M. et al. Future response of global coastal wetlands to sea-level rise. Nature 561, 231–234 (2018).
    CAS  Article  Google Scholar 

    15.
    Ma, Z. et al. Rethinking China’s new great wall. Science 346, 912–914 (2014).
    CAS  Article  Google Scholar 

    16.
    Gittman, R. K., Scyphers, S. B., Smith, C. S., Neylan, I. P. & Grabowski, J. H. Ecological consequences of shoreline hardening: a meta-analysis. BioScience 66, 763–773 (2016).
    Article  Google Scholar 

    17.
    Smith, C. S. et al. Hurricane damage along natural and hardened estuarine shorelines: Using homeowner experiences to promote nature-based coastal protection. Mar. Policy 81, 350–358 (2017).
    Article  Google Scholar 

    18.
    Shepard, C. C., Crain, C. M. & Beck, M. W. The protective role of coastal marshes: a systematic review and meta-analysis. PLoS ONE 6, e27374 (2011).
    CAS  Article  Google Scholar 

    19.
    Gedan, K. B., Kirwan, M. L., Wolanski, E., Barbier, E. B. & Silliman, B. R. The present and future role of coastal wetland vegetation in protecting shorelines: answering recent challenges to the paradigm. Clim. Change 106, 7–29 (2011).
    Article  Google Scholar 

    20.
    Leonardi, N., Ganju, N. K. & Fagherazzi, S. A linear relationship between wave power and erosion determines salt-marsh resilience to violent storms and hurricanes. Proc. Nat. Acad. Sci. USA 113, 64–68 (2016).
    CAS  Article  Google Scholar 

    21.
    Barbier, E. B. et al. Coastal ecosystem-based management with nonlinear ecological functions and values. Science 319, 321–323 (2008).
    CAS  Article  Google Scholar 

    22.
    Cohen-Shacham, E., Walters, G., Janzen, C. & Maginnis, S. Nature-based Solutions to Address Global Societal Challenges (IUCN, 2016).

    23.
    Fargione, J. E. et al. Natural climate solutions for the United States. Sci. Adv. 4, eaat1869 (2018).
    Article  Google Scholar 

    24.
    Seddon, N. et al. Global recognition of the importance of Nature-based Solutions to the impacts of climate change. Glob. Sustain. 3, 1–12 (2020).
    Article  Google Scholar 

    25.
    Bilkovic, D. M. et al. Living Shorelines: The Science and Management of Nature-Based Coastal Protection (CRC Press, 2017).

    26.
    Bayraktarov, E. et al. The cost and feasibility of marine coastal restoration. Ecol. Appl. 26, 1055–1074 (2016).
    Article  Google Scholar 

    27.
    Liu, Z., Cui, B. & He, Q. Shifting paradigms in coastal restoration: Six decades’ lessons from China. Sci. Total Environ. 566, 205–214 (2016).
    Article  CAS  Google Scholar 

    28.
    Turner, R. K., Burgess, D., Hadley, D., Coombes, E. & Jackson, N. A cost–benefit appraisal of coastal managed realignment policy.Glob. Environ. Chang. 17, 397–407 (2007).
    Article  Google Scholar 

    29.
    Donatelli, C., Ganju, N. K., Zhang, X., Fagherazzi, S. & Leonardi, N. Salt marsh loss affects tides and the sediment budget in shallow bays. J. Geophys. Res. Earth Surf. 123, 2647–2662 (2018).
    Article  Google Scholar 

    30.
    Benayas, J. M. R., Newton, A. C., Diaz, A. & Bullock, J. M. Enhancement of biodiversity and ecosystem services by ecological restoration: a meta-analysis. Science 325, 1121–1124 (2009).
    CAS  Article  Google Scholar 

    31.
    Friess, D. A. et al. Are all intertidal wetlands naturally created equal? Bottlenecks, thresholds and knowledge gaps to mangrove and saltmarsh ecosystems. Biol. Rev. 87, 346–366 (2012).
    Article  Google Scholar 

    32.
    Webb, E. L. et al. A global standard for monitoring coastal wetland vulnerability to accelerated sea-level rise. Nature Clim. Change 3, 458–465 (2013).
    Article  Google Scholar 

    33.
    Hu, Z. et al. Revegetation of a native species in a newly formed tidal marsh under varying hydrological conditions and planting densities in the Yangtze Estuary. Ecol. Eng. 83, 354–363 (2015).
    Article  Google Scholar 

    34.
    Phillips, D. H. et al. Impacts of mangrove density on surface sediment accretion, belowground biomass and biogeochemistry in Puttalam Lagoon, Sri Lanka. Wetlands 37, 471–483 (2017).
    Article  Google Scholar 

    35.
    Kirwan, M. L. et al. Limits on the adaptability of coastal marshes to rising sea level. Geophys. Res. Lett. 37, L23401 (2010).
    Article  Google Scholar 

    36.
    Turner, R. E., Baustian, J. J., Swenson, E. M. & Spicer, J. S. Wetland sedimentation from hurricanes Katrina and Rita. Science 314, 449–452 (2006).
    CAS  Article  Google Scholar 

    37.
    French, C. E., French, J. R., Clifford, N. J. & Watson, C. J. Sedimentation-erosion dynamics of abandoned reclamations: the role of waves and tides. Cont. Shelf Res. 20, 1711–1733 (2000).
    Article  Google Scholar 

    38.
    Cahoon, D. R. et al. High-precision measurements of wetland sediment elevation: II. The rod surface elevation table. J. Sediment. Res. 72, 734–739 (2002).
    CAS  Article  Google Scholar 

    39.
    Cahoon, D. R. A review of major storm impacts on coastal wetland elevations. Estuar. Coast. 29, 889–898 (2006).
    Article  Google Scholar 

    40.
    Howe, A. J., Rodriguez, J. F. & Saco, P. M. Surface evolution and carbon sequestration in disturbed and undisturbed wetland soils of the Hunter estuary, southeast Australia. Estuar. Coast. Shelf Sci. 84, 75–83 (2009).
    CAS  Article  Google Scholar 

    41.
    Krauss, K. W. et al. Created mangrove wetlands store belowground carbon and surface elevation change enables them to adjust to sea-level rise. Sci. Rep. 7, 1–11 (2017).
    Article  CAS  Google Scholar 

    42.
    Carey, J. C., Moran, S. B., Kelly, R. P., Kolker, A. S. & Fulweiler, R. W. The declining role of organic matter in New England salt marshes. Estuar. Coast 40, 626–639 (2017).
    CAS  Article  Google Scholar 

    43.
    Lovelock, C. E. et al. The vulnerability of Indo-Pacific mangrove forests to sea-level rise. Nature 526, 559–563 (2015).
    CAS  Article  Google Scholar 

    44.
    Anisfeld, S. C., Hill, T. D. & Cahoon, D. R. Elevation dynamics in a restored versus a submerging salt marsh in Long Island Sound. Estuar. Coast. Shelf Sci. 170, 145–154 (2016).
    Article  Google Scholar 

    45.
    Baustian, J. J., Mendelssohn, I. A. & Hester, M. W. Vegetation’s importance in regulating surface elevation in a coastal salt marsh facing elevated rates of sea level rise. Glob. Chang. Biol. 18, 3377–3382 (2012).
    Article  Google Scholar 

    46.
    Cahoon, D. R., French, J. R., Spencer, T., Reed, D. & Möller, I. Vertical accretion versus elevational adjustment in UK saltmarshes: an evaluation of alternative methodologies. Geol. Soc. Lond. Spec. Publ. 175, 223–238 (2000).
    Article  Google Scholar 

    47.
    Spencer, T. et al. Surface elevation change in natural and re-created intertidal habitats, eastern England, UK, with particular reference to Freiston Shore. Wetl. Ecol. Manag. 20, 9–33 (2012).
    Article  Google Scholar 

    48.
    Craft, C. et al. The pace of ecosystem development of constructed Spartina alterniflora marshes. Ecol. Appl. 13, 1417–1432 (2003).
    Article  Google Scholar 

    49.
    Duarte, C. M., Losada, I. J., Hendriks, I. E., Mazarrasa, I. & Marbà, N. The role of coastal plant communities for climate change mitigation and adaptation. Nat. Clim. Change 3, 961–968 (2013).
    CAS  Article  Google Scholar 

    50.
    Fagherazzi, S. et al. Numerical models of salt marsh evolution: Ecological, geomorphic, and climatic factors. Rev. Geophys. 50, RG1002 (2012).
    Article  Google Scholar 

    51.
    Smith, C. S., Puckett, B., Gittman, R. K. & Peterson, C. H. Living shorelines enhanced the resilience of saltmarshes to Hurricane Matthew. Ecol. Appl. 28, 871–877 (2018).
    Article  Google Scholar 

    52.
    Oosterlee, L. et al. Tidal marsh restoration design affects feedbacks between inundation and elevation change. Estuar. Coast. 41, 613–625 (2018).
    Article  Google Scholar 

    53.
    Ganju, N. K. Marshes are the new beaches: integrating sediment transport into restoration planning. Estuar. Coast. 42, 917–926 (2019).
    CAS  Article  Google Scholar 

    54.
    Ford, M. A., Cahoon, D. R. & Lynch, J. C. Restoring marsh elevation in a rapidly subsiding salt marsh by thin-layer deposition of dredged material. Ecol. Eng. 12, 189–205 (1999).
    Article  Google Scholar 

    55.
    Temmerman, S., Govers, G., Wartel, S. & Meire, P. Spatial and temporal factors controlling short‐term sedimentation in a salt and freshwater tidal marsh, Scheldt estuary, Belgium, SW Netherlands. Earth Surf. Processes Landforms 28, 739–755 (2003).
    Article  Google Scholar 

    56.
    Morris, J. T., Sundareshwar, P. V., Nietch, C. T., Kjerfve, B. & Cahoon, D. R. Responses of coastal wetlands to rising sea level. Ecology 83, 2869–2877 (2002).
    Article  Google Scholar 

    57.
    Mudd, S. M., D’Alpaos, A. & Morris, J. T. How does vegetation affect sedimentation on tidal marshes? Investigating particle capture and hydrodynamic controls on biologically mediated sedimentation. J. Geophys. Res. Earth Surf. 115, F03029 (2010).
    Google Scholar 

    58.
    Fricke, A. T., Nittrouer, C. A., Ogston, A. S. & Vo-Luong, H. P. Asymmetric progradation of a coastal mangrove forest controlled by combined fluvial and marine influence, Cù Lao Dung, Vietnam. Cont. Shelf Res. 147, 78–90 (2017).
    Article  Google Scholar 

    59.
    Möller, I., Spencer, T., French, J. R., Leggett, D. J. & Dixon, M. Wave transformation over salt marshes: a field and numerical modelling study from North Norfolk, England. Estuar. Coast. Shelf Sci. 49, 411–426 (1999).
    Article  Google Scholar 

    60.
    Jadhav, R. S., Chen, Q. & Smith, J. M. Spectral distribution of wave energy dissipation by salt marsh vegetation. Coast. Eng. 77, 99–107 (2013).
    Article  Google Scholar 

    61.
    Kirwan, M. L. & Guntenspergen, G. R. Influence of tidal range on the stability of coastal marshland. J. Geophys. Res. Earth Surf. 115, F02009 (2010).
    Article  Google Scholar 

    62.
    Ganju, N. K., Nidzieko, N. J. & Kirwan, M. L. Inferring tidal wetland stability from channel sediment fluxes: Observations and a conceptual model. J. Geophys. Res. Earth Surf. 118, 2045–2058 (2013).
    Article  Google Scholar 

    63.
    Zhang, X. et al. Determining the drivers of suspended sediment dynamics in tidal marsh-influenced estuaries using high-resolution ocean color remote sensing. Remote Sens. Environ. 240, 111682 (2020).
    Article  Google Scholar 

    64.
    Hopkinson, C. S., Morris, J. T., Fagherazzi, S., Wollheim, W. M. & Raymond, P. A. Lateral marsh edge erosion as a source of sediments for vertical marsh accretion. J. Geophys. Res. Biogeo. 123, 2444–2465 (2018).
    CAS  Article  Google Scholar 

    65.
    Castagno, K. A. et al. Intense storms increase the stability of tidal bays. Geophys. Res. Lett. 45, 5491–5500 (2018).
    Article  Google Scholar 

    66.
    Walling, D. E. The Impact of Global Change on Erosion and Sediment Transport by Rivers: Current Progress and Future Challenges (UNESCO, 2009).

    67.
    Yu, Y. et al. New discharge regime of the Huanghe (Yellow River): causes and implications. Cont. Shelf Res. 69, 62–72 (2013).
    Article  Google Scholar 

    68.
    Blum, M. D. & Roberts, H. H. Drowning of the Mississippi Delta due to insufficient sediment supply and global sea-level rise. Nat. Geosci. 2, 488–491 (2009).
    CAS  Article  Google Scholar 

    69.
    Donatelli, C., Kalra, T. S., Fagherazzi, S., Zhang, X. & Leonardi, N. Dynamics of marsh‐derived sediments in lagoon‐type estuaries. J. Geophys. Res. Earth Surf. 125, e2020JF005751 (2020).
    Article  Google Scholar 

    70.
    Peteet, D. M. et al. Sediment starvation destroys New York City marshes’ resistance to sea level rise. Proc. Nat. Acad. Sci. USA 115, 10281–10286 (2018).
    CAS  Article  Google Scholar 

    71.
    Reed, D. J. Understanding tidal marsh sedimentation in the Sacramento-San Joaquin Delta, California. J. Coastal Res. 36, 605–611 (2002).
    Article  Google Scholar 

    72.
    Cahoon, D. R., Lynch, J. C., Roman, C. T., Schmit, J. P. & Skidds, D. E. Evaluating the relationship among wetland vertical development, elevation capital, sea-level rise, and tidal marsh sustainability. Estuar. Coast. 42, 1–15 (2019).
    CAS  Article  Google Scholar 

    73.
    Kondolf, G. M., Rubin, Z. K. & Minear, J. T. Dams on the Mekong: Cumulative sediment starvation. Water Resour. Res. 50, 5158–5169 (2014).
    Article  Google Scholar 

    74.
    Reed, D. J. Patterns of sediment deposition in subsiding coastal salt marshes, Terrebonne Bay, Louisiana: the role of winter storms. Estuaries 12, 222–227 (1989).
    Article  Google Scholar 

    75.
    Ganju, N. K. et al. Spatially integrative metrics reveal hidden vulnerability of microtidal salt marshes. Nat. Commun. 8, 14156 (2017).
    CAS  Article  Google Scholar 

    76.
    Vörösmarty, C. J. et al. Anthropogenic sediment retention: major global impact from registered river impoundments. Glob. Planet. Change 39, 169–190 (2003).
    Article  Google Scholar 

    77.
    Borenstein, M., Hedges, L. V., Higgins, J. P. T. & Rothstein, H. R. Introduction to Meta-Analysis (John Wiley & Sons, Ltd., 2009). More

  • in

    Genome sequences of Tropheus moorii and Petrochromis trewavasae, two eco-morphologically divergent cichlid fishes endemic to Lake Tanganyika

    1.
    Van der Laan, R. & Fricke, R. Eschmeyer’s Catalog of Fishes Family Group Names. http://www.calacademy.org/scientists/catalog-of-fishes-family-group-names (2020).
    2.
    Greenwood, P. H. African cichlids and evolutionary theories. In Evolution of Fish Species Flock (eds Echelle, A. A. & Kornfield, I.) 141–154 (University of Maine at Orono Press, Orono, 1984).
    Google Scholar 

    3.
    Muschick, M., Indermaur, A. & Salzburger, W. Convergent evolution within an adaptive radiation of cichlid fishes. Curr. Biol. 22, 2362–2368 (2012).
    CAS  PubMed  Article  Google Scholar 

    4.
    Wagner, C. E., Harmon, L. J. & Seehausen, O. Ecological opportunity and sexual selection together predict adaptive radiation. Nature 487, 366–369 (2012).
    ADS  CAS  PubMed  Article  Google Scholar 

    5.
    Tiercelin, J.-J. & Mondeguer, A. The geology of the Tanganyika trough. In Lake Tanganyika and its Life (ed. Coulter, G. W.) 7–48 (Oxford University Press, Oxford, 1991).
    Google Scholar 

    6.
    Irisarri, I. et al. Phylogenomics uncovers early hybridization and adaptive loci shaping the radiation of Lake Tanganyika cichlid fishes. Nat. Commun. 9, 3159 (2018).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    7.
    Salzburger, W., Meyer, A., Baric, S., Verheyen, E. & Sturmbauer, C. Phylogeny of the Lake Tanganyika Cichlid species flock and its relationship to the Central and East African Haplochromine Cichlid Fish Faunas. Syst. Biol. 51, 113–135 (2002).
    PubMed  Article  Google Scholar 

    8.
    Salzburger, W., Mack, T., Verheyen, E. & Meyer, A. Out of Tanganyika: genesis, explosive speciation, key-innovations and phylogeography of the haplochromine cichlid fishes. BMC Evol. Biol. 5, 17 (2005).
    PubMed  PubMed Central  Article  Google Scholar 

    9.
    Koblmüller, S. et al. Age and spread of the haplochromine cichlid fishes in Africa. Mol. Phylogenet. Evol. 49, 153–169 (2008).
    PubMed  Article  CAS  Google Scholar 

    10.
    Sturmbauer, C., Salzburger, W., Duftner, N., Schelly, R. & Koblmüller, S. Evolutionary history of the Lake Tanganyika cichlid tribe Lamprologini (Teleostei: Perciformes) derived from mitochondrial and nuclear DNA data. Mol. Phylogenet. Evol. 57, 266–284 (2010).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    11.
    Sturmbauer, C., Levinton, J. S. & Christy, J. Molecular phylogeny analysis of fiddler crabs: test of the hypothesis of increasing behavioral complexity in evolution. Proc. Natl. Acad. Sci. U. S. A. 93, 10855–10857 (1996).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    12.
    Joyce, D. A. et al. An extant cichlid fish radiation emerged in an extinct Pleistocene lake. Nature 435, 90–95 (2005).
    ADS  CAS  PubMed  Article  Google Scholar 

    13.
    Katongo, C., Koblmüller, S., Duftner, N., Mumba, L. & Sturmbauer, C. Evolutionary history and biogeographic affinities of the serranochromine cichlids in Zambian rivers. Mol. Phylogenet. Evol. 45, 326–338 (2007).
    CAS  PubMed  Article  Google Scholar 

    14.
    Sturmbauer, C., Koblmüller, S., Sefc, K. M. & Duftner, N. Phylogeographic history of the genus Tropheus, a lineage of rock-dwelling cichlid fishes endemic to Lake Tanganyika. Hydrobiologia 542, 335–366 (2005).
    Article  Google Scholar 

    15.
    Meier, J. I. et al. Ancient hybridization fuels rapid cichlid fish adaptive radiations. Nat. Commun. 8, 14363 (2017).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    16.
    Svardal, H. et al. Ancestral hybridization facilitated species diversification in the Lake Malawi Cichlid fish adaptive radiation. Mol. Biol. Evol. 37, 1100–1113 (2020).
    PubMed  Article  Google Scholar 

    17.
    Kullander, S. O. & Roberts, T. R. Out of Tanganyika: endemic lake fishes inhabit rapids of the Lukuga River. Ichthyol. Explor. Freshw. 22, 355–376 (2011).
    Google Scholar 

    18.
    West-Eberhard, M.-J. Developmental Plasticity and Evolution (Oxford University Press, Oxford, 2003).
    Google Scholar 

    19.
    Rossiter, A. The Cichlid fish assemblages of Lake Tanganyika: ecology, behaviour and evolution of its species flocks. In Advances in Ecological Research (eds Begon, M. & Fitter, A. H.) 187–252 (Academic Press Ltd., London, 1995).
    Google Scholar 

    20.
    Malinsky, M. et al. Whole-genome sequences of Malawi cichlids reveal multiple radiations interconnected by gene flow. Nat. Ecol. Evol. 2, 1940–1955 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    21.
    Brawand, D. et al. The genomic substrate for adaptive radiation in African cichlid fish. Nature 513, 375–381 (2014).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    22.
    Liem, K. F. Evolutionary strategies and morphological innovations: Cichlid Pharyngeal Jaws. Syst Biol. 22, 425–441 (1973).
    Google Scholar 

    23.
    Carleton, K. L., Dalton, B. E., Escobar-Camacho, D. & Nandamuri, S. P. Proximate and ultimate causes of variable visual sensitivities: Insights from cichlid fish radiations. Genesis 54, 299–325 (2016).
    PubMed  PubMed Central  Article  Google Scholar 

    24.
    Maan, M. E. & Sefc, K. M. Colour variation in cichlid fish: Developmental mechanisms, selective pressures and evolutionary consequences. Semin. Cell. Dev. Biol. 24, 516–528 (2013).
    PubMed  PubMed Central  Article  Google Scholar 

    25.
    Salzburger, W. Understanding explosive diversification through cichlid fish genomics. Nat. Rev. Genet. 19, 705–717 (2018).
    CAS  PubMed  Article  Google Scholar 

    26.
    Malinsky, M. Andinoacara coeruleopunctatus Genome Browser Gateway. http://em-x1.gurdon.cam.ac.uk/cgi-bin/hgGateway?hgsid=6400&clade=vertebrate&org=A.+coeruleopunctatus&db=0 (2015).

    27.
    Conte, M. A. et al. Chromosome-scale assemblies reveal the structural evolution of African cichlid genomes. GigaScience 8, giz030 (2019).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    28.
    Thibaud-Nissen, F. et al. P8008 the NCBI eukaryotic genome annotation pipeline. J. Anim. Sci. 94, 184 (2016).
    Article  Google Scholar 

    29.
    Zerbino, D. R. et al. Ensembl 2018. Nucleic Acids Res. 46, D754–D761 (2018).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    30.
    Conte,M.A., Gammerdinger,W.J., Bartie,K.L., Penman,D.J. & Kocher,T.D. A high quality assembly of the Nile Tilapia (Oreochromis niloticus) genome reveals the structure of two sex determination regions. bioRxiv https://doi.org/10.1101/099564 (2017).

    31.
    Vij, S. et al. Chromosomal-level assembly of the Asian Seabass genome using long sequence reads and multi-layered scaffolding. PLoS Genet. 12, e1005954 (2016).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    32.
    Smit, A. F. A., Hubley, R. & Green, P. RepeatMasker Open-4.0. http://www.repeatmasker.org (2015).

    33.
    Robinson, J. T. et al. Integrative genomics viewer. Nat. Biotechnol. 29, 24–26 (2011).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    34.
    Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M. BUSCO: Assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31, 3210–3212 (2015).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    35.
    Parra, G., Bradnam, K. & Korf, I. CEGMA: A pipeline to accurately annotate core genes in eukaryotic genomes. Bioinformatics 23, 1061–1067 (2007).
    CAS  PubMed  Article  Google Scholar 

    36.
    Dohmen, E., Kremer, L. P. M., Bornberg-Bauer, E. & Kemena, C. DOGMA: Domain-based transcriptome and proteome quality assessment. Bioinformatics 32, 2577–2581 (2016).
    CAS  PubMed  Article  Google Scholar 

    37.
    Cingolani, P. et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff. Fly 6, 80–92 (2012).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    38.
    Hunt, M. et al. REAPR: a universal tool for genome assembly evaluation. Genome Biol. 14, R47 (2013).
    PubMed  PubMed Central  Article  Google Scholar 

    39.
    Asalone, K. C. et al. Regional sequence expansion or collapse in heterozygous genome assemblies. PLoS Comput. Biol. 16, e1008104 (2020).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    40.
    Conte, M. A. & Kocher, T. D. An improved genome reference for the African cichlid Metriaclima zebra. BMC Genomics 16, 724 (2015).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    41.
    Finn, R. D. et al. The Pfam protein families database. Nucleic Acids Res. 38, D211–D222 (2010).
    CAS  PubMed  Article  Google Scholar 

    42.
    McKenna, A. et al. The genome analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    43.
    Rausch, T. et al. DELLY: Structural variant discovery by integrated paired-end and split-read analysis. Bioinformatics 28, i333–i339 (2012).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    44.
    Liu, Y. et al. Comparison of multiple algorithms to reliably detect structural variants in pears. BMC Genomics 21, 61 (2020).
    PubMed  PubMed Central  Article  Google Scholar 

    45.
    Supernat, A., Vidarsson, O. V., Steen, V. M. & Stokowy, T. Comparison of three variant callers for human whole genome sequencing. Sci. Rep. 8, 17851 (2018).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    46.
    McCarthy, D. J. et al. Choice of transcripts and software has a large effect on variant annotation. Genome Med. 6, 26 (2014).
    PubMed  PubMed Central  Article  Google Scholar 

    47.
    Gunter, H. M., Schneider, R. F., Karner, I., Sturmbauer, C. & Meyer, A. Molecular investigation of genetic assimilation during the rapid adaptive radiations of East African cichlid fishes. Mol. Ecol. 26, 6634–6653 (2017).
    CAS  PubMed  Article  Google Scholar 

    48.
    Navon, D. et al. Hedgehog signaling is necessary and sufficient to mediate craniofacial plasticity in teleosts. Proc. Natl. Acad. Sci. U. S. A. 117, 19321–19327 (2020).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    49.
    Boyle, E. A., Li, Y. I. & Pritchard, J. K. An expanded view of complex traits: From polygenic to omnigenic. Cell 169, 1177–1186 (2017).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    50.
    Adhikari, K. et al. A genome-wide association scan implicates DCHS2, RUNX2, GLI3, PAX1 and EDAR in human facial variation. Nat. Commun. 7, 11616 (2016).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    51.
    Liu, F. et al. A genome-wide association study identifies five loci influencing facial morphology in Europeans. PLoS Genet. 8, e1002932 (2012).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    52.
    Claes, P. et al. Genome-wide mapping of global-to-local genetic effects on human facial shape. Nat. Genet. 50, 414–423 (2018).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    53.
    Lupo, G., Harris, W. A. & Lewis, K. E. Mechanisms of ventral patterning in the vertebrate nervous system. Nat. Rev. Neurosci. 7, 103–114 (2006).
    CAS  PubMed  Article  Google Scholar 

    54.
    Dworkin, S., Boglev, Y., Owens, H. & Goldie, S. J. The role of sonic hedgehog in craniofacial patterning, morphogenesis and cranial neural crest survival. J. Dev. Biol. 4, 24 (2016).
    PubMed Central  Article  PubMed  Google Scholar 

    55.
    Szabo-Rogers, H. L., Smithers, L. E., Yakob, W. & Liu, K. J. New directions in craniofacial morphogenesis. Dev. Biol. 341, 84–94 (2010).
    CAS  PubMed  Article  Google Scholar 

    56.
    Zhou, H., Kim, S., Ishii, S. & Boyer, T. G. Mediator modulates Gli3-dependent Sonic hedgehog signaling. Mol. Cell Biol. 26, 8667–8682 (2006).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    57.
    Vilhais-Neto, G. C. et al. Rere controls retinoic acid signalling and somite bilateral symmetry. Nature 463, 953–957 (2010).
    ADS  CAS  PubMed  Article  Google Scholar 

    58.
    Clouthier, D. E., Garcia, E. & Schilling, T. F. Regulation of facial morphogenesis by endothelin signaling: Insights from mice and fish. Am. J. Med. Genet. A 152A, 2962–2973 (2010).
    PubMed  PubMed Central  Article  Google Scholar 

    59.
    Fischer, C. et al. Complete mitochondrial DNA sequences of the Threadfin Cichlid (Petrochromis trewavasae) and the Blunthead Cichlid (Tropheus moorii) and patterns of mitochondrial genome evolution in cichlid fishes. PLoS ONE 8, e67048 (2013).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    60.
    Andrews, S. FastQC A Quality Control tool for High Throughput Sequence Data. http://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (2016).

    61.
    Marçais, G. & Kingsford, C. A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. Bioinformatics 27, 764–770 (2011).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    62.
    Davis, M. P. A., van Dongen, S., Abreu-Goodger, C., Bartonicek, N. & Enright, A. J. Kraken: A set of tools for quality control and analysis of high-throughput sequence data. Methods 63, 41–49 (2013).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    63.
    Wingett, S. W. & Andrews, S. FastQ Screen: A tool for multi-genome mapping and quality control. F1000Res. 7, 1338 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    64.
    Schmieder, R. & Edwards, R. Fast identification and removal of sequence contamination from genomic and metagenomic datasets. PLoS ONE 6, e17288 (2011).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    65.
    Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17, 10–12 (2011).
    Article  Google Scholar 

    66.
    Buffalo, V. Scythe. https://github.com/vsbuffalo/scythe (2014).

    67.
    CLCbio Assembly Cell. https://www.quiagenbioinformatics.com/products/clc-assembly-cell (2015).

    68.
    Bushnell, B., Rood, J. & Singer, E. BBMerge—Accurate paired shotgun read merging via overlap. PLoS ONE 12, e0185056 (2017).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    69.
    Xu, H. et al. FastUniq: A fast de novo duplicates removal tool for paired short reads. PLoS ONE 7, e52249 (2012).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    70.
    Leggett, R. M., Clavijo, B. J., Clissold, L., Clark, M. D. & Caccamo, M. NextClip: An analysis and read preparation tool for Nextera Long Mate Pair libraries. Bioinformatics 30, 566–568 (2014).
    CAS  PubMed  Article  Google Scholar 

    71.
    Barnett, D. W., Garrison, E. K., Quinlan, A. R., Strömberg, M. P. & Marth, G. T. BamTools: a C++ API and toolkit for analyzing and managing BAM files. Bioinformatics 27, 1691–1692 (2011).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    72.
    Li, H. et al. The sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    73.
    Broad Institute Picard Tools. https://github.com/broadinstitute/picard (2016).

    74.
    Hackl, T., Hedrich, R., Schultz, J. & Förster, F. proovread: large-scale high-accuracy PacBio correction through iterative short read consensus. Bioinformatics 30, 3004–3011 (2014).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    75.
    Zimin, A. V. et al. The MaSuRCA genome assembler. Bioinformatics 29, 2669–2677 (2013).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    76.
    Le, H. S., Schulz, M. H., McCauley, B. M., Hinman, V. F. & Bar-Joseph, Z. Probabilistic error correction for RNA sequencing. Nucleic Acids Res. 41, e109 (2013).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    77.
    Song, L. & Florea, L. Rcorrector: efficient and accurate error correction for Illumina RNA-seq reads. GigaScience 4, 48 (2015).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    78.
    Liu, Y., Schröder, J. & Schmidt, B. Musket: A multistage k-mer spectrum-based error corrector for Illumina sequence data. Bioinformatics 29, 308–315 (2013).
    CAS  PubMed  Article  Google Scholar 

    79.
    Liu,B. et al. Estimation of genomic characteristics by analyzing k-mer frequency in de novo genome projects. arXiv:1308.2012 (2013).

    80.
    Denisov, G. et al. Consensus generation and variant detection by Celera Assembler. Bioinformatics 24, 1035–1040 (2008).
    CAS  PubMed  Article  Google Scholar 

    81.
    Kajitani, R. et al. Efficient de novo assembly of highly heterozygous genomes from whole-genome shotgun short reads. Genome Res. 24, 1384–1395 (2014).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    82.
    Pryszcz, L. P. & Gabaldón, T. Redundans: An assembly pipeline for highly heterozygous genomes. Nucleic Acids Res. 44, e113 (2016).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    83.
    Boetzer, M., Henkel, C. V., Jansen, H. J., Butler, D. & Pirovano, W. Scaffolding pre-assembled contigs using SSPACE. Bioinformatics 27, 578–579 (2011).
    CAS  PubMed  Article  Google Scholar 

    84.
    Luo, R. et al. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. GigaScience 1, 18 (2012).
    PubMed  PubMed Central  Article  Google Scholar 

    85.
    Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    86.
    Frith, M. C., Wan, R. & Horton, P. Incorporating sequence quality data into alignment improves DNA read mapping. Nucleic Acids Res. 38, e100 (2010).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    87.
    English, A. C. et al. Mind the Gap: Upgrading genomes with pacific biosciences RS long-read sequencing technology. PLoS ONE 7, e47768 (2012).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    88.
    Chaisson, M. J. & Tesler, G. Mapping single molecule sequencing reads using basic local alignment with successive refinement (BLASR): application and theory. BMC Bioinform. 13, 238 (2012).
    CAS  Article  Google Scholar 

    89.
    Wences, A. H. & Schatz, M. C. Metassembler: Merging and optimizing de novo genome assemblies. Genome Biol. 16, 207 (2015).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    90.
    Gurevich, A., Saveliev, V., Vyahhi, N. & Tesler, G. QUAST: Quality assessment tool for genome assemblies. Bioinformatics 29, 1072–1075 (2013).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    91.
    Kosugi, S., Hirakawa, H. & Tabata, S. GMcloser: closing gaps in assemblies accurately with a likelihood-based selection of contig or long-read alignments. Bioinformatics 31, 3733–3741 (2015).
    CAS  PubMed  Google Scholar 

    92.
    Kurtz, S. et al. Versatile and open software for comparing large genomes. Genome Biol. 5, R12 (2004).
    PubMed  PubMed Central  Article  Google Scholar 

    93.
    Camacho, C. et al. BLAST+: Architecture and applications. BMC Bioinformatics 10, 421 (2009).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    94.
    Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Meth. 9, 357–359 (2012).
    CAS  Article  Google Scholar 

    95.
    Paulino, D. et al. Sealer: A scalable gap-closing application for finishing draft genomes. BMC Bioinform. 16, 230 (2015).
    Article  Google Scholar 

    96.
    Simpson, J. T. et al. ABySS: A parallel assembler for short read sequence data. Genome Res. 19, 1117–1123 (2009).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    97.
    Ponstingl, H. & Ning, Z. SMALT. https://www.sanger.ac.uk/science/tools/smalt-0 (2018).

    98.
    Birney, E., Clamp, M. & Durbin, R. GeneWise and genomewise. Genome Res. 14, 988–995 (2004).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    99.
    Finn, R. D., Clements, J. & Eddy, S. R. HMMER web server: Interactive sequence similarity searching. Nucleic Acids Res. 39, W29–W37 (2011).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    100.
    Stanke, M. & Morgenstern, B. Augustus: A web server for gene prediction in eukaryotes that allows user-defined constraints. Nucleic Acids Res. 33, W465–W467 (2005).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    101.
    Grabherr, M. G. et al. Trinity: reconstructing a full-length transcriptome without a genome from RNA-Seq data. Nat. Biotechnol. 29, 644–652 (2011).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    102.
    Haas, B. J. et al. De novo transcript sequence reconstruction from RNA-Seq: reference generation and analysis with Trinity. Nat. Protoc. 8, 1494–1512 (2013).
    CAS  Article  Google Scholar 

    103.
    Haas, B. J. et al. Improving the Arabidopsis genome annotation using maximal transcript alignment assemblies. Nucleic Acids Res. 31, 5654–5666 (2003).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    104.
    Wu, T. D. & Watanabe, C. K. GMAP: A genomic mapping and alignment program for mRNA and EST sequences. Bioinformatics 21, 1859–1875 (2005).
    CAS  PubMed  Article  Google Scholar 

    105.
    Kent, W. J. BLAT—The BLAST-like alignment tool. Genome Res. 12, 656–664 (2002).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    106.
    Oracle Inc. MySQL. https://www.mysql.com (2016).

    107.
    Cantarel, B. L. et al. MAKER: An easy-to-use annotation pipeline designed for emerging model organism genomes. Genome Res. 18, 188–196 (2008).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    108.
    Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).
    CAS  Article  Google Scholar 

    109.
    Lomsadze, A., Ter-Hovhannisyan, V., Chernoff, Y. O. & Borodovsky, M. Gene identification in novel eukaryotic genomes by self-training algorithm. Nucleic Acids Res. 33, 6494–6506 (2005).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    110.
    Korf, I. Gene finding in novel genomes. BMC Bioinform. 5, 59 (2004).
    Article  Google Scholar 

    111.
    Schattner, P., Brooks, A. N. & Lowe, T. M. The tRNAscan-SE, snoscan and snoGPS web servers for the detection of tRNAs and snoRNAs. Nucleic Acids Res. 33, W686–W689 (2005).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    112.
    Palmer, J. M. Funannotate: a fungal genome annotation and comparative genomics pipeline. https://github.com/nextgenusfs/funannotate (2016).

    113.
    Hoff, K. J., Lange, S., Lomsadze, A., Borodovsky, M. & Stanke, M. BRAKER1: Unsupervised RNA-Seq-based genome annotation with GeneMark-ET and AUGUSTUS. Bioinformatics 32, 767–769 (2016).
    CAS  PubMed  Article  Google Scholar 

    114.
    Lomsadze, A., Burns, P. D. & Borodovsky, M. Integration of mapped RNA-Seq reads into automatic training of eukaryotic gene finding algorithm. Nucleic Acids Res. 42, e119 (2014).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    115.
    Pertea, M. et al. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat. Biotechnol. 33, 290–295 (2015).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    116.
    Trapnell, C. et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol. 28, 511–515 (2010).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    117.
    Haas, B. J. et al. Automated eukaryotic gene structure annotation using EVidenceModeler and the program to assemble spliced alignments. Genome Biol. 9, R7 (2008).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    118.
    Nawrocki, E. P., Kolbe, D. L. & Eddy, S. R. Infernal 1.0: inference of RNA alignments. Bioinformatics 25, 1335–1337 (2009).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    119.
    Griffiths-Jones, S., Bateman, A., Marshall, M., Khanna, A. & Eddy, S. R. Rfam: an RNA family database. Nucleic Acids Res. 31, 439–441 (2003).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    120.
    Wucher,V. et al. FEELnc: A tool for Long non-coding RNAs annotation and its application to the dog transcriptome. bioRxiv https://doi.org/10.1101/064436 (2016).

    121.
    Thiel, T., Michalek, W., Varshney, R. K. & Graner, A. Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.). Theor. Appl. Genet. 106, 411–422 (2003).
    CAS  PubMed  Article  Google Scholar 

    122.
    Rice, P., Longden, I. & Bleasby, A. EMBOSS: The European molecular biology open software suite. Trends. Genet. 16, 276–277 (2000).
    CAS  PubMed  Article  Google Scholar 

    123.
    Jurka, J. W. RepBase. https://www.girinst.org/server/RepBase (2016).

    124.
    Smit, A. F. A. & Hubley, R. RepeatModeler Open-1.0. http://www.repeatmasker.org (2014).

    125.
    Price, A. L., Jones, N. C. & Pevzner, P. A. D. novo identification of repeat families in large genomes. Bioinformatics 21, i351–i358 (2005).
    CAS  PubMed  Article  Google Scholar 

    126.
    Benson, G. Tandem repeats finder: A program to analyze DNA sequences. Nucleic Acids Res. 27, 573–580 (1999).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    127.
    Jones, P. et al. InterProScan 5: genome-scale protein function classification. Bioinformatics 30, 1236–1240 (2014).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    128.
    Huerta-Cepas, J. et al. eggNOG 4.5: a hierarchical orthology framework with improved functional annotations for eukaryotic, prokaryotic and viral sequences. Nucleic Acids Res. 44, D286–D293 (2016).
    CAS  PubMed  Article  Google Scholar 

    129.
    Rawlings, N. D., Barrett, A. J. & Finn, R. Twenty years of the MEROPS database of proteolytic enzymes, their substrates and inhibitors. Nucleic Acids Res. 44, D343–D350 (2016).
    CAS  PubMed  Article  Google Scholar 

    130.
    Yin, Y. et al. dbCAN: A web resource for automated carbohydrate-active enzyme annotation. Nucleic Acids Res. 40, W445–W451 (2012).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    131.
    Petersen, T. N., Brunak, S., von Heijne, G. & Nielsen, H. SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat. Methods 8, 785–786 (2011).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    132.
    Okonechnikov, K., Conesa, A. & García-Alcalde, F. Qualimap 2: advanced multi-sample quality control for high-throughput sequencing data. Bioinformatics 32, 292–294 (2016).
    CAS  PubMed  Google Scholar 

    133.
    Sterne-Weiler, T., Weatheritt, R. J., Best, A. J., Ha, K. C. H. & Blencowe, B. J. Efficient and accurate quantitative profiling of alternative splicing patterns of any complexity on a laptop. Mol. Cell 72, 187–200 (2018).
    CAS  PubMed  Article  Google Scholar 

    134.
    Alexa, A., Rahnenführer, J. & Lengauer, T. Improved scoring of functional groups from gene expression data by decorrelating GO graph structure. Bioinformatics 22, 1600–1607 (2006).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    135.
    Li, Y., Xiang, J. & Duan, C. Insulin-like growth factor-binding protein-3 plays an important role in regulating pharyngeal skeleton and inner ear formation and differentiation. J. Biol. Chem. 280, 3613–3620 (2005).
    CAS  PubMed  Article  Google Scholar 

    136.
    Lin, J. M. et al. Actions of fibroblast growth factor-8 in bone cells in vitro. Am. J. Physiol. Endocrinol. Metab. 297, E142–E150 (2009).
    CAS  PubMed  Article  Google Scholar 

    137.
    Nichols, J. T., Pan, L., Moens, C. B. & Kimmel, C. B. barx1 represses joints and promotes cartilage in the craniofacial skeleton. Development 140, 2765–2775 (2013).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    138.
    Bush, J. O., Lan, Y. & Jiang, R. The cleft lip and palate defects in Dancer mutant mice result from gain of function of the Tbx10 gene. Proc. Natl. Acad. Sci. U. S. A. 101, 7022–7027 (2004).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    139.
    Vieira, A. R. et al. Medical sequencing of candidate genes for nonsyndromic cleft lip and palate. PLoS Genet. 1, e64 (2005).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    140.
    Papaioannou, V. E. The T-box gene family: Emerging roles in development, stem cells and cancer. Development 141, 3819–3833 (2014).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    141.
    Kang, Y. J., Stevenson, A. K., Yau, P. M. & Kollmar, R. Sparc protein is required for normal growth of zebrafish otoliths. J. Assoc. Res. Otolaryngol. 9, 436–451 (2008).
    PubMed  PubMed Central  Article  Google Scholar 

    142.
    Rosset, E. M. & Bradshaw, A. D. SPARC/osteonectin in mineralized tissue. Matrix Biol. 52–54, 78–87 (2016).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    143.
    Zarelli, V. E. & Dawid, I. B. Inhibition of neural crest formation by Kctd15 involves regulation of transcription factor AP-2. Proc. Natl. Acad. Sci. U. S. A. 110, 2870–2875 (2013).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    144.
    Zhang, Z., Huynh, T. & Baldini, A. Mesodermal expression of Tbx1 is necessary and sufficient for pharyngeal arch and cardiac outflow tract development. Development 133, 3587–3595 (2006).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    145.
    Yutzey, K. E. DiGeorge syndrome, Tbx1, and retinoic acid signaling come full circle. Circ. Res. 106, 630–632 (2010).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    146.
    Ghassibe-Sabbagh, M. et al. FAF1, a gene that is disrupted in cleft palate and has conserved function in Zebrafish. Am. J. Hum. Genet. 88, 150–161 (2011).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    147.
    Wilm, T. P. & Solnica-Krezel, L. Essential roles of a zebrafish prdm1/blimp1 homolog in embryo patterning and organogenesis. Development 132, 393–404 (2005).
    CAS  PubMed  Article  Google Scholar 

    148.
    Wang, L., Rajan, H., Pitman, J. L., McKeown, M. & Tsai, C. C. Histone deacetylase-associating Atrophin proteins are nuclear receptor corepressors. Genes Dev. 20, 525–530 (2006).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    149.
    Plaster, N., Sonntag, C., Schilling, T. F. & Hammerschmidt, M. REREa/Atrophin-2 interacts with histone deacetylase and Fgf8 signaling to regulate multiple processes of zebrafish development. Dev. Dyn. 236, 1891–1904 (2007).
    CAS  PubMed  Article  Google Scholar 

    150.
    Jordan, V. K. et al. Genotype–phenotype correlations in individuals with pathogenic RERE variants. Hum. Mutat. 39, 666–675 (2018).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    151.
    Diepeveen, E. T., Kim, F. D. & Salzburger, W. Sequence analyses of the distal-less homeobox gene family in East African cichlid fishes reveal signatures of positive selection. BMC Evol. Biol. 13, 153 (2013).
    PubMed  PubMed Central  Article  Google Scholar 

    152.
    Stock, D. W. et al. The evolution of the vertebrate Dlx gene family. Proc. Natl. Acad. Sci. USA 93, 10858–10863 (1996).
    ADS  CAS  PubMed  Article  Google Scholar 

    153.
    Mark, M., Ghyselinck, N. B. & Chambon, P. Function of retinoic acid receptors during embryonic development. Nucl. Recept. Signal. 7, e002 (2009).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    154.
    Linville, A., Radtke, K., Waxman, J. S., Yelon, D. & Schilling, T. F. Combinatorial roles for zebrafish retinoic acid receptors in the hindbrain, limbs and pharyngeal arches. Dev. Biol. 325, 60–70 (2009).
    CAS  PubMed  Article  Google Scholar 

    155.
    Swartz, M. E., Sheehan-Rooney, K., Dixon, M. J. & Eberhart, J. K. Examination of a palatogenic gene program in Zebrafish. Dev. Dyn. 240, 2204–2220 (2011).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    156.
    Iwata, J. et al. Transforming growth factor-beta regulates basal transcriptional regulatory machinery to control cell proliferation and differentiation in cranial neural crest-derived osteoprogenitor cells. J. Biol. Chem. 285, 4975–4982 (2010).
    CAS  PubMed  Article  Google Scholar 

    157.
    Prochazkova, M., Prochazka, J., Marangoni, P. & Klein, O. D. Bones, Glands, Ears and More: The Multiple Roles of FGF10 in Craniofacial Development. Front Genet. 9, 542 (2018).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    158.
    Du, J. et al. Different expression patterns of Gli1-3 in mouse embryonic maxillofacial development. Acta Histochem. 114, 620–625 (2012).
    CAS  PubMed  Article  Google Scholar  More

  • in

    Geochemical alkalinity and acidity as preferential site-specific for three lineages liverwort of Aneura pinguis cryptic species A

    Differentiation within A. pinguis cryptic species A
    Genetic studies using combined DNA sequences from five chloroplasts (rbcL-a, matK, rpoC1, trnL-F, trnH-pabA) and 1 (ITS) nuclear genomes (4598 bp) showed some differentiation within the A. pinguis cryptic species A into three distinct groups (lineages) A1, A2 and A3 (Fig. 3). Most of investigated plants belonging to the lineage A1 originated from the Pieniny Mts. (PNN), however two samples A1 were collected at the Beskidy Mts. (BS) and one at the Tatry Mts. (T). All plants identified to A2 and A3 came from the Beskidy Mts. and the Tatry Mts., respectively. Maximum parsimony analyses of combined plastid loci and the nuclear ITS locus produced trees showing that the lineage A3 is genetically the most distinct, while A1 and A2 reveal more similarity. In the K2P mode, the percentage of variation in the sequences between lineages A1 and A2 equals to 0.20%, while for A1 and A3 it raised five times, i.e. 1.0%. The same occurred for the lineages A2 and A3, 1.0%.
    Figure 3

    Phylogram resulting from maximum likelihood (ML) analysis based on combined data of all sequences and showing genetic similarity and differentiation between lineages A1, A2 and A3 of A. pinguis cryptic species A. Bootstrap values are given at branches. A. maxima was used as an outgroup for tree rooting.

    Full size image

    Total and water soluble (active) alkaline elements
    The total content of alkaline elements (Table 2) shows that the content of calcium (Ca) prevails over magnesium (Mg), potassium (K) and sodium (Na) at any investigated site, i.e. Pieniny Mts. (PNN), Beskidy Mts. (BS) and Tatry Mts. (T). Soil samples collected under the lineage A1 covered the whole three geographical distributions, where the site BS exhibited the highest Ca concentrations (31 459.6 mg kg−1) followed by PNN (16 178.8 mg kg−1) and finally T with 7 398.7 mg kg−1. Interestingly, the lineage A2 occurred only at the site BS characterised by high Ca content (27 303.4 mg kg−1), whereas A3 at the Tatry Mts. (T) where the level 22 227.6 mg kg−1 was recorded. These data imply that the lineage A1 may have developed site-specific adaptation mechanisms to various concentrations of calcium. In the case of A2 and A3, the observed Ca concentrations amounted to 27,303.4 and 22,227.6 mg kg−1, respectively and should be described as high.
    Table 2 Total content of alkaline elements (Ca, Mg, K, Na) in the growth media of A. pinguis cryptic species A genetic lineage A1, A2, A3 at Pieniny, Beskidy and Tatry Mts.
    Full size table

    Variations in magnesium (Mg) concentrations for the lineage A1 followed another pattern differing from that observed in the case of calcium. Its contents varied accordingly: T  > BS  > PNN, with the highest levels recorded for A3 and A1 at the Tatry MTs. (T), respectively. It should be mentioned that both Ca and Mg are in most cases responsible (Ca much more) for geochemical reactions controlling the pH of the growth media. The role of potassium (K) as well as sodium (Na) is generally less pronounced in these reactions, but also their contents, which were very low appeared as the proof.
    The evaluation of site-specific occurrence of the lineages A1, A2 and A3 should not be performed on the basis of total content solely of alkaline elements, since this fraction is mostly informative on the current status of Ca, Mg, K and Na. Therefore, we have tested the soil samples for recovering the concentrations expressed as active fractions (Table 3) potentially involved in the growth process of these lineages. The levels (percentage share into the total content) of active Ca are significantly low and varied as follows: PNN (3.27%)  > T (0.89%)  > BS (0.73%) for A1, but raised to 1.34% (BS) in the case of A2. The lineage A3 has recorded a concentration of 0.71%, slightly comparable to A1, but at the same site (T).
    Table 3 Content of active forms of alkaline elements (Ca, Mg, K, Na) in the growth media of A. pinguis cryptic species A genetic lineage A1, A2, A3 at Pieniny, Beskidy and Tatry Mts.
    Full size table

    Should these Ca concentrations reflect any trend in site-specific behavior of Aneura pinguis cryptic species A. three lineages? Preliminary observations may be indicative of the calciphilous character of A1, specifically for the PNN site, followed by A2 in the case of BS. Lineages identified at the relatively lower share of active Ca, that is below 1.00% may fall into the acidophilous range. The percentage share of active Mg into its total concentrations followed similar distribution patterns like active Ca, with A1 recording 2.53% at the PNN site. Magnesium and calcium are divalent elements, which significantly control the alkalinity of soil environment.
    In the case of the current study, the occurrence of this lineage (i.e. A1) at this site is not a random process. By applying the same criteria like for active Ca, it appeared that A1, A2 and A3 at the Beskidy as well as Tatry Mts. met the rule of active Mg  T (0.87).
    Lineage A2 index: BS = 4.34.
    Lineage A3 index: T = 1.31.
    The respective pH values changed quite accordingly to the indices as shown below:
    Lineage A1 site pH: BS (8.05)  > PNN (7.50)  > T (6.45).
    Lineage A2 site pH: BS = 7.85.
    Lineage A3 site pH: T = 7.08.
    These ranges imply that genetic lineages A1 and A2 are by essence both calciphilous biotypes and may occur on sites rich in Ca, mostly alkaline as confirmed by the PNN and BS sites. On the other hand, some biotypes of the lineage A1 may be easily adapting also to low Ca concentrations, indicative of acidophilous features, as in the case of A3. Both (A1 and A3) occur at the Tatry MTs.
    A detailed distribution of indices as well as respective pH is illustrated by the Figs. 4, 5 and 6, specifically for the genetic lineages A1, A2 and A3, respectively. The mean index values for the PNN site is 3.24 which discriminates the data into two groups: 60%  3.24. In the case of BS, the mean value amounted to 2.70, but for only two sampling sites. Therefore, the mean values of the singular site specific index shows a clear pattern, which strengthens the preferential adaptation of A1 in prevalence to alkalinity as follows: PPN (3.24)  > BS (2.70)  > T (0.87).
    Figure 4

    Singular site specific index of active forms of alkaline elements (Ca, Mg, K, Na) and pH in the growth media of A. pinguis cryptic species A genetic lineage A1 at Pieniny, Beskidy and Tatry Mts.

    Full size image

    Figure 5

    Singular site specific index of active forms of alkaline elements (Ca, Mg, K, Na) and pH in the growth media of A. pinguis cryptic species A genetic lineage A2 at Beskidy Mts.

    Full size image

    Figure 6

    Singular site specific index of active forms of alkaline elements (Ca, Mg, K, Na) and pH in the growth media of A. pinguis cryptic species A genetic lineage A3 at Tatry Mts.

    Full size image

    The genetic lineage A2 outlines a great variability in terms of the site specific index, which was slightly high (4.62) only for the sampling site BS 3–28. It should be mentioned that the mean value at this site raised up to 4.34, hence being 56% lower than the highest and next 49% higher than the lowest index. Curiously, the respective pH values did not vary significantly (7.83–7.89), which implies that A2 is decidedly calciphilous.
    Indices reported in the Fig. 6 fluctuated widely from 0.66 to 2.38 with a mean of 1.31. Only two values were higher but the remaining, i.e. about 67% placed below. Such high share reveals that the genetic lineage A3 is basically acidophilus. This is decidedly outlined by significantly low values of indices as a consequence of low concentrations of active Ca. More

  • in

    Improved model simulation of soil carbon cycling by representing the microbially derived organic carbon pool

    1.
    Hiederer R, Köchy M. Global soil organic carbon estimates and the harmonized world soil database. EUR. 2011;79:25225.
    Google Scholar 
    2.
    Scharlemann JPW, Tanner EVJ, Hiederer R, Kapos V. Global soil carbon: understanding and managing the largest terrestrial carbon pool. Carbon Manag. 2014;5:81–91.
    CAS  Article  Google Scholar 

    3.
    Wieder WR, Bonan GB, Allison SD. Global soil carbon projections are improved by modelling microbial processes. Nat Clim Chang. 2013;3:909–12.
    CAS  Article  Google Scholar 

    4.
    Schimel JP, Weintraub MN. The implications of exoenzyme activity on microbial carbon and nitrogen limitation in soil: a theoretical model. Soil Biol Biochem. 2003;35:549–63.
    CAS  Article  Google Scholar 

    5.
    Huang Y, Guenet B, Ciais P, Janssens IA, Soong JL, Wang Y, et al. ORCHIMIC (v1.0), a microbe-mediated model for soil organic matter decomposition. Geosci Model Dev. 2018;11:2111–38.
    CAS  Article  Google Scholar 

    6.
    Georgiou K, Abramoff RZ, Harte J, Riley WJ, Torn MS. Microbial community-level regulation explains soil carbon responses to long-term litter manipulations. Nat Commun. 2017;8:1223.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    7.
    Kelleher BP, Simpson AJ. Humic substances in soils: are they really chemically distinct? Environ Sci Technol. 2006;40:4605–11.
    CAS  PubMed  Article  Google Scholar 

    8.
    Wang C, Wang X, Pei G, Xia Z, Peng B, Sun L, et al. Stabilization of microbial residues in soil organic matter after two years of decomposition. Soil Biol Biochem. 2020;141:107687.
    CAS  Article  Google Scholar 

    9.
    Cotrufo MF, Wallenstein M, Boot C, Denef K, Paul E. The microbial efficiency-matrix stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter? Glob Change Biol. 2013;19:988–95.
    Article  Google Scholar 

    10.
    Zhu X, Jackson RD, DeLucia EH, Tiedje JM, Liang C. The soil microbial carbon pump: from conceptual insights to empirical assessments. Glob Change Biol. 2020;26:6032–9.
    Article  Google Scholar 

    11.
    Miltner A, Bombach P, Schmidt-Brücken B, Kästner M. SOM genesis: microbial biomass as a significant source. Biogeochemistry. 2012;111:41–55.
    CAS  Article  Google Scholar 

    12.
    Torn MS, Trumbore SE, Chadwick OA, Vitousek PM, Hendricks DM. Mineral control of soil organic carbon storage and turnover. Nature. 1997;389:170–3.
    CAS  Article  Google Scholar 

    13.
    Dwivedi D, Riley WJ, Torn MS, Spycher N, Maggi F, Tang JY. Mineral properties, microbes, transport, and plant-input profiles control vertical distribution and age of soil carbon stocks. Soil Biol Biochem. 2017;107:244–59.
    CAS  Article  Google Scholar 

    14.
    Mikutta R, Kleber M, Torn MS, Jahn R. Stabilization of soil organic matter: association with minerals or chemical recalcitrance? Biogeochemistry. 2006;77:25–56.
    CAS  Article  Google Scholar 

    15.
    Liang C, Balser TC. Microbial production of recalcitrant organic matter in global soils: Implications for productivity and climate policy. Nat Rev Microbiol. 2011;9:75–75.
    CAS  PubMed  Article  Google Scholar 

    16.
    Khan KS, Mack R, Castillo X, Kaiser M, Joergensen RG. Microbial biomass, fungal and bacterial residues, and their relationships to the soil organic matter C/N/P/S ratios. Geoderma. 2016;271:115–23.
    CAS  Article  Google Scholar 

    17.
    Liang C, Amelung W, Lehmann J, Kästner M. Quantitative assessment of microbial necromass contribution to soil organic matter. Glob Chang Biol. 2019;25:3578–90.
    PubMed  Article  Google Scholar 

    18.
    Kögel-Knabner I. The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter: fourteen years on. Soil Biol Biochem. 2017;105:A3–8.
    Article  CAS  Google Scholar 

    19.
    Todd-Brown KEO, Randerson JT, Post WM, Hoffman FM, Tarnocai C, Schuur EAG, et al. Causes of variation in soil carbon simulations from CMIP5 Earth System Models and comparison with observations. Biogeosciences. 2013;10:1717–36.
    Article  Google Scholar 

    20.
    Parton WJ, Schimel DS, Cole CV, Ojima DS. Analysis of factors controlling soil organic matter levels in great plains grasslands. Soil Sci Soc Am J. 1987;51:1173–9.
    CAS  Article  Google Scholar 

    21.
    Wang G, Post WM, Mayes MA. Development of microbial‐enzyme‐mediated decomposition model parameters through steady‐state and dynamic analyses. Ecol Appl. 2013;23:255–72.
    PubMed  Article  Google Scholar 

    22.
    Wang G, Mayes MA, Gu L, Schadt CW. Representation of dormant and active microbial dynamics for ecosystem modeling. PLoS ONE. 2014;9:e89252.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    23.
    Wang G, Jagadamma S, Mayes MA, Schadt CW, Steinweg JM, Gu L, et al. Microbial dormancy improves development and experimental validation of ecosystem model. ISME J. 2015;9:226–37.
    CAS  PubMed  Article  Google Scholar 

    24.
    German D, Marcelo K, Stone M, Allison S. The Michaelis–Menten kinetics of soil extracellular enzymes in response to temperature: a cross-latitudinal study. Glob Change Biol. 2012;18:1468–79.
    Article  Google Scholar 

    25.
    Allison SD, Wallenstein MD, Bradford MA. Soil-carbon response to warming dependent on microbial physiology. Nat Geosci. 2010;3:336–40.
    CAS  Article  Google Scholar 

    26.
    Li J, Wang G, Allison SD, Mayes MA, Luo Y. Soil carbon sensitivity to temperature and carbon use efficiency compared across microbial-ecosystem models of varying complexity. Biogeochemistry. 2014;119:67–84.
    Article  Google Scholar 

    27.
    Wieder WR, Grandy AS, Kallenbach CM, Bonan GB. Integrating microbial physiology and physio-chemical principles in soils with the MIcrobial-MIneral Carbon Stabilization (MIMICS) model. Biogeosciences. 2014;11:3899–917.
    Article  CAS  Google Scholar 

    28.
    Tang J, Riley WJ. Weaker soil carbon–climate feedbacks resulting from microbial and abiotic interactions. Nat Clim Chang. 2015;5:56–60.
    CAS  Article  Google Scholar 

    29.
    Sulman BN, Moore JA, Abramoff R, Averill C, Kivlin S, Georgiou K, et al. Multiple models and experiments underscore large uncertainty in soil carbon dynamics. Biogeochemistry. 2018;141:109–23.
    CAS  Article  Google Scholar 

    30.
    Sulman BN, Phillips RP, Oishi AC, Shevliakova E, Pacala SW. Microbe-driven turnover offsets mineral-mediated storage of soil carbon under elevated CO2. Nat Clim Change. 2014;4:1099–102.
    CAS  Article  Google Scholar 

    31.
    Lawrence C, Neff J, Schimel J. Does adding microbial mechanisms of decomposition improve soil organic matter models? A comparison of four models using data from a pulsed rewetting experiment. Soil Biol Biochem. 2009;41:1923–34.
    CAS  Article  Google Scholar 

    32.
    Wang X, Wang C, Cotrufo MF, Sun L, Jiang P, Liu Z, et al. Elevated temperature increases the accumulation of microbial necromass nitrogen in soil via increasing microbial turnover. Glob Change Biol. 2020;26:5277–89.
    Article  Google Scholar 

    33.
    Throckmorton HM, Bird JA, Dane L, Firestone MK, Horwath WR. The source of microbial C has little impact on soil organic matter stabilisation in forest ecosystems. Ecol Lett. 2012;15:1257–65.
    PubMed  Article  Google Scholar 

    34.
    Kindler R, Miltner A, Richnow H-H, Kästner M. Fate of gram-negative bacterial biomass in soil—mineralization and contribution to SOM. Soil Biol Biochem. 2006;38:2860–70.
    CAS  Article  Google Scholar 

    35.
    Schweigert M, Herrmann S, Miltner A, Fester T, Kästner M. Fate of ectomycorrhizal fungal biomass in a soil bioreactor system and its contribution to soil organic matter formation. Soil Biol Biochem. 2015;88:120–7.
    CAS  Article  Google Scholar 

    36.
    Derrien D, Amelung W. Computing the mean residence time of soil carbon fractions using stable isotopes: impacts of the model framework. Eur J Soil Sci. 2011;62:237–52.
    Article  Google Scholar 

    37.
    Dormand JR, Prince PJ. A family of embedded Runge-Kutta formulae. J Comput Appl Math. 1980;6:19–26.
    Article  Google Scholar 

    38.
    Shampine LF, Reichelt MW. The MATLAB ODE suite. Siam J Sci Comput. 1997;18:1–22.
    Article  Google Scholar 

    39.
    Coleman TF, Li Y. On the convergence of reflective newton methods for large-scale nonlinear minimization subject to bounds. Math Program. 1994;67:189–224.
    Article  Google Scholar 

    40.
    Coleman TF, Li Y. An interior trust region approach for nonlinear minimization subject to bounds. SIAM J Optim. 1996;6:418–45.
    Article  Google Scholar 

    41.
    Moré JJ. The Levenberg–Marquardt algorithm: implementation and theory. In: Watson GA (ed). Numerical Analysis. Springer: Berlin, Heidelberg, 1978, p. 105–16.

    42.
    Leave-one-out cross-validation. In: Sammut C, Webb GI, editors. Encyclopedia of machine learning. Boston, MA: Springer USA; 2010. p. 600–1.

    43.
    Wang C, Qu L, Yang L, Liu D, Morrissey E, Miao R, et al. Large-scale importance of microbial carbon use efficiency and necromass to soil organic carbon. Glob Chang Biol. 2021.

    44.
    Farrell M, Prendergast-Miller M, Jones DL, Hill PW, Condron LM. Soil microbial organic nitrogen uptake is regulated by carbon availability. Soil Biol Biochem. 2014;77:261–7.
    CAS  Article  Google Scholar 

    45.
    Hagerty SB, Allison SD, Schimel JP. Evaluating soil microbial carbon use efficiency explicitly as a function of cellular processes: implications for measurements and models. Biogeochemistry. 2018;140:269–83.
    CAS  Article  Google Scholar 

    46.
    Qiao Y, Wang J, Liang G, Du Z, Zhou J, Zhu C, et al. Global variation of soil microbial carbon-use efficiency in relation to growth temperature and substrate supply. Sci Rep. 2019;9:5621.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    47.
    Krinner G, Viovy N, de Noblet-Ducoudré N, Ogée J, Polcher J, Friedlingstein P, et al. A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system. Glob Biogeochem Cycles. 2005;19:GB1015.
    Article  CAS  Google Scholar 

    48.
    Wang G, Post WM, Mayes MA, Frerichs JT, Sindhu J. Parameter estimation for models of ligninolytic and cellulolytic enzyme kinetics. Soil Biol Biochem. 2012;48:28–38.
    Article  CAS  Google Scholar 

    49.
    Davidson EA, Janssens IA. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature. 2006;440:165–73.
    CAS  PubMed  Article  Google Scholar 

    50.
    Fick SE, Hijmans RJ. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int J Climatol. 2017;37:4302–15.
    Article  Google Scholar 

    51.
    Guevara M, Taufer M, Vargas R. Gap-free global annual soil moisture: 15 km grids for 1991–2018. Earth Syst Sci Data. 2020;2020:1–65.
    Google Scholar 

    52.
    Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, et al. The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc. 1996;77:437–72.
    Article  Google Scholar 

    53.
    Batjes NH. Harmonized soil property values for broad-scale modelling (WISE30sec) with estimates of global soil carbon stocks. Geoderma. 2016;269:61–8.
    CAS  Article  Google Scholar 

    54.
    Hengl T, Mendes de Jesus J, Heuvelink GBM, Ruiperez Gonzalez M, Kilibarda M, Blagotić A, et al. SoilGrids250m: global gridded soil information based on machine learning. PLoS ONE. 2017;12:e0169748.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    55.
    Olson DM, Dinerstein E. The Global 200: a representation approach to conserving the earth’s most biologically valuable ecoregions. Conserv Biol. 1998;12:502–15.
    Article  Google Scholar 

    56.
    Kögel-Knabner I. The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter. Soil Biol Biochem. 2002;34:139–62.
    Article  Google Scholar 

    57.
    Fernandez CW, Koide RT. Initial melanin and nitrogen concentrations control the decomposition of ectomycorrhizal fungal litter. Soil Biol Biochem. 2014;77:150–7.
    CAS  Article  Google Scholar 

    58.
    Hemkemeyer M, Dohrmann AB, Christensen BT, Tebbe CC. Bacterial preferences for specific soil particle size fractions revealed by community analyses. Front Microbiol. 2018;9:149.
    PubMed  PubMed Central  Article  Google Scholar 

    59.
    Mills A. Keeping in touch: microbial life on soil particle surfaces. Adv Agron. 2003;78:1–43.
    Article  Google Scholar 

    60.
    Kindler R, Miltner A, Thullner M, Richnow H-H, Kästner M. Fate of bacterial biomass derived fatty acids in soil and their contribution to soil organic matter. Org Geochem. 2009;40:29–37.
    CAS  Article  Google Scholar 

    61.
    Huang Y, Liang C, Duan X, Chen H, Li D. Variation of microbial residue contribution to soil organic carbon sequestration following land use change in a subtropical karst region. Geoderma. 2019;353:340–6.
    CAS  Article  Google Scholar 

    62.
    Ahrens B, Braakhekke MC, Guggenberger G, Schrumpf M, Reichstein M. Contribution of sorption, DOC transport and microbial interactions to the 14C age of a soil organic carbon profile: insights from a calibrated process model. Soil Biol Biochem. 2015;88:390–402.
    CAS  Article  Google Scholar 

    63.
    Nguyen RT, Harvey HR. Preservation via macromolecular associations during Botryococcus braunii decay: proteins in the Pula Kerogen. Org Geochem. 2003;34:1391–403.
    CAS  Article  Google Scholar 

    64.
    Kallenbach CM, Frey SD, Grandy AS. Direct evidence for microbial-derived soil organic matter formation and its ecophysiological controls. Nat Commun. 2016;7:13630.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    65.
    Puget P, Angers DA, Chenu C. Nature of carbohydrates associated with water-stable aggregates of two cultivated soils. Soil Biol Biochem. 1998;31:55–63.
    Article  Google Scholar 

    66.
    Schmidt MWI, Torn MS, Abiven S, Dittmar T, Guggenberger G, Janssens IA, et al. Persistence of soil organic matter as an ecosystem property. Nature. 2011;478:49–56.
    CAS  PubMed  Article  Google Scholar 

    67.
    Spence A, Simpson AJ, McNally DJ, Moran BW, McCaul MV, Hart K, et al. The degradation characteristics of microbial biomass in soil. Geochim Cosmochim Acta. 2011;75:2571–81.
    CAS  Article  Google Scholar 

    68.
    Drigo B, Anderson IC, Kannangara GSK, Cairney JWG, Johnson D. Rapid incorporation of carbon from ectomycorrhizal mycelial necromass into soil fungal communities. Soil Biol Biochem. 2012;49:4–10.
    CAS  Article  Google Scholar 

    69.
    Wang G, Chen S. A review on parameterization and uncertainty in modeling greenhouse gas emissions from soil. Geoderma. 2012;170:206–16.
    CAS  Article  Google Scholar 

    70.
    Blagodatskaya Е, Blagodatsky S, Khomyakov N, Myachina O, Kuzyakov Y. Temperature sensitivity and enzymatic mechanisms of soil organic matter decomposition along an altitudinal gradient on Mount Kilimanjaro. Sci Rep. 2016;6:22240.
    CAS  Article  Google Scholar 

    71.
    German DP, Weintraub MN, Grandy AS, Lauber CL, Rinkes ZL, Allison SD. Optimization of hydrolytic and oxidative enzyme methods for ecosystem studies. Soil Biol Biochem. 2011;43:1387–97.
    CAS  Article  Google Scholar 

    72.
    Wu J, Xiao H. Measuring the gross turnover time of soil microbial biomass C under incubation. Acta Pedol Sin. 2004;41:401–7.
    CAS  Google Scholar 

    73.
    Cheng W. Rhizosphere priming effect: Its functional relationships with microbial turnover, evapotranspiration, and C–N budgets. Soil Biol Biochem. 2009;41:1795–801.
    CAS  Article  Google Scholar 

    74.
    Luo Z, Tang Z, Guo X, Jiang J, Sun OJ. Non-monotonic and distinct temperature responses of respiration of soil microbial functional groups. Soil Biol Biochem. 2020;148:107902.
    CAS  Article  Google Scholar 

    75.
    de Graaff M-A, Classen AT, Castro HF, Schadt CW. Labile soil carbon inputs mediate the soil microbial community composition and plant residue decomposition rates. New Phytol. 2010;188:1055–64.
    PubMed  Article  CAS  Google Scholar 

    76.
    Paul EA. The nature and dynamics of soil organic matter: plant inputs, microbial transformations, and organic matter stabilization. Soil Biol Biochem. 2016;98:109–26.
    CAS  Article  Google Scholar 

    77.
    Crowther TW, Sokol NW, Oldfield EE, Maynard DS, Thomas SM, Bradford MA. Environmental stress response limits microbial necromass contributions to soil organic carbon. Soil Biol Biochem. 2015;85:153–61.
    CAS  Article  Google Scholar 

    78.
    Ding X, Chen S, Zhang B, He H, Filley TR, Horwath WR. Warming yields distinct accumulation patterns of microbial residues in dry and wet alpine grasslands on the Qinghai-Tibetan Plateau. Biol Fertil Soils. 2020;56:881–92.
    CAS  Article  Google Scholar 

    79.
    Mao D, Luo L, Wang Z, Zhang C, Ren C. Variations in net primary productivity and its relationships with warming climate in the permafrost zone of the Tibetan Plateau. J Geogr Sci. 2015;25:967–77.
    Article  Google Scholar 

    80.
    Wu J, Feng Y, Zhang X, Wurst S, Tietjen B, Tarolli P, et al. Grazing exclusion by fencing non-linearly restored the degraded alpine grasslands on the Tibetan Plateau. Sci Rep. 2017;7:15202.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    81.
    Li J, Wang G, Mayes MA, Allison SD, Frey SD, Shi Z, et al. Reduced carbon use efficiency and increased microbial turnover with soil warming. Glob Change Biol. 2019;25:900–10.
    Article  Google Scholar 

    82.
    Chen G, Ma S, Tian D, Xiao W, Jiang L, Xing A, et al. Patterns and determinants of soil microbial residues from tropical to boreal forests. Soil Biol Biochem. 2020;151:108059.
    CAS  Article  Google Scholar 

    83.
    Wang YP, Chen BC, Wieder WR, Leite M, Medlyn BE, Rasmussen M, et al. Oscillatory behavior of two nonlinear microbial models of soil carbon decomposition. Biogeosciences. 2014;11:1817–31.
    CAS  Article  Google Scholar 

    84.
    Soares M, Rousk J. Microbial growth and carbon use efficiency in soil: links to fungal-bacterial dominance, SOC-quality and stoichiometry. Soil Biol Biochem. 2019;131:195–205.
    CAS  Article  Google Scholar 

    85.
    Liang C, Cheng G, Wixon DL, Balser TC. An Absorbing Markov Chain approach to understanding the microbial role in soil carbon stabilization. Biogeochemistry. 2011;106:303–9.
    Article  Google Scholar 

    86.
    Fan Z, Liang C. Significance of microbial asynchronous anabolism to soil carbon dynamics driven by litter inputs. Sci Rep. 2015;5:9575.
    CAS  PubMed  PubMed Central  Article  Google Scholar  More

  • in

    Climate warming enhances microbial network complexity and stability

    1.
    Montoya, J. M., Pimm, S. L. & Solé, R. V. Ecological networks and their fragility. Nature 442, 259–264 (2006).
    CAS  Article  Google Scholar 
    2.
    Faust, K. & Raes, J. Microbial interactions: from networks to models. Nat. Rev. Microbiol. 10, 538–550 (2012).
    CAS  Article  Google Scholar 

    3.
    Pržulj, N. & Malod-Dognin, N. Network analytics in the age of big data. Science 353, 123–124 (2016).
    Article  Google Scholar 

    4.
    Berry, D. & Widder, S. Deciphering microbial interactions and detecting keystone species with co-occurrence networks. Front. Microbiol. 5, 219 (2014).
    Article  Google Scholar 

    5.
    Okuyama, T. & Holland, J. N. Network structural properties mediate the stability of mutualistic communities. Ecol. Lett. 11, 208–216 (2008).
    Article  Google Scholar 

    6.
    Landi, P., Minoarivelo, H. O., Brännström, Å., Hui, C. & Dieckmann, U. Complexity and stability of ecological networks: a review of the theory. Popul. Ecol. 60, 319–345 (2018).
    Article  Google Scholar 

    7.
    Hillebrand, H. et al. Decomposing multiple dimensions of stability in global change experiments. Ecol. Lett. 21, 21–30 (2018).
    Article  Google Scholar 

    8.
    Toju, H. et al. Species-rich networks and eco-evolutionary synthesis at the metacommunity level. Nat. Ecol. Evol. 1, 0024 (2017).
    Article  Google Scholar 

    9.
    Montesinos-Navarro, A., Hiraldo, F., Tella, J. L. & Blanco, G. Network structure embracing mutualism–antagonism continuums increases community robustness. Nat. Ecol. Evol. 1, 1661–1669 (2017).
    Article  Google Scholar 

    10.
    Ullah, H., Nagelkerken, I., Goldenberg, S. U. & Fordham, D. A. Climate change could drive marine food web collapse through altered trophic flows and cyanobacterial proliferation. PLoS Biol. 16, e2003446 (2018).
    Article  CAS  Google Scholar 

    11.
    Dunne, J. A., Williams, R. J. & Martinez, N. D. Food-web structure and network theory: the role of connectance and size. Proc. Natl Acad. Sci. USA 99, 12917–12922 (2002).
    CAS  Article  Google Scholar 

    12.
    Thébault, E. & Fontaine, C. Stability of ecological communities and the architecture of mutualistic and trophic networks. Science 329, 853–856 (2010).
    Article  CAS  Google Scholar 

    13.
    García-Palacios, P., Gross, N., Gaitán, J. & Maestre, F. T. Climate mediates the biodiversity–ecosystem stability relationship globally. Proc. Natl Acad. Sci. USA 115, 8400–8405 (2018).
    Article  CAS  Google Scholar 

    14.
    IPCC Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2013).

    15.
    Xue, K. et al. Tundra soil carbon is vulnerable to rapid microbial decomposition under climate warming. Nat. Clim. Change 6, 595–600 (2016).
    CAS  Article  Google Scholar 

    16.
    Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M. & West, G. B. Toward a metabolic theory of ecology. Ecology 85, 1771–1789 (2004).
    Article  Google Scholar 

    17.
    Guo, X. et al. Climate warming leads to divergent succession of grassland microbial communities. Nat. Clim. Change 8, 813–818 (2018).
    Article  Google Scholar 

    18.
    Xu, X., Sherry, R. A., Niu, S., Li, D. & Luo, Y. Net primary productivity and rain-use efficiency as affected by warming, altered precipitation, and clipping in a mixed-grass prairie. Glob. Change Biol. 19, 2753–2764 (2013).
    Article  Google Scholar 

    19.
    Guo, X. et al. Climate warming accelerates temporal scaling of grassland soil microbial biodiversity. Nat. Ecol. Evol. 3, 612–619 (2019).
    Article  Google Scholar 

    20.
    Zhou, J. et al. Functional molecular ecological networks. mBio 1, e00169–10 (2010).
    Google Scholar 

    21.
    Barabási, A.-L. & Oltvai, Z. N. Network biology: understanding the cell’s functional organization. Nat. Rev. Genet. 5, 101–113 (2004).
    Article  CAS  Google Scholar 

    22.
    D’Amen, M., Mod, H. K., Gotelli, N. J. & Guisan, A. Disentangling biotic interactions, environmental filters, and dispersal limitation as drivers of species co-occurrence. Ecography 41, 1233–1244 (2018).
    Article  Google Scholar 

    23.
    Barner, A. K., Coblentz, K. E., Hacker, S. D. & Menge, B. A. Fundamental contradictions among observational and experimental estimates of non-trophic species interactions. Ecology 99, 557–566 (2018).
    Article  Google Scholar 

    24.
    Goberna, M. et al. Incorporating phylogenetic metrics to microbial co-occurrence networks based on amplicon sequences to discern community assembly processes. Mol. Ecol. Resour. 19, 1552–1564 (2019).
    Article  Google Scholar 

    25.
    Carr, A., Diener, C., Baliga, N. S. & Gibbons, S. M. Use and abuse of correlation analyses in microbial ecology. ISME J. 13, 2647–2655 (2019).
    Article  Google Scholar 

    26.
    Morton, J. T. et al. Establishing microbial composition measurement standards with reference frames. Nat. Commun. 10, 2719 (2019).
    Article  CAS  Google Scholar 

    27.
    Fuhrman, J. A. Microbial community structure and its functional implications. Nature 459, 193–199 (2009).
    CAS  Article  Google Scholar 

    28.
    Herren, C. M. & McMahon, K. D. Cohesion: a method for quantifying the connectivity of microbial communities. ISME J. 11, 2426–2438 (2017).
    Article  Google Scholar 

    29.
    Zhou, J., Deng, Y., Luo, F., He, Z. & Yang, Y. Phylogenetic molecular ecological network of soil microbial communities in response to elevated CO2. mBio 2, e00122–11 (2011).
    Article  Google Scholar 

    30.
    Banerjee, S., Schlaeppi, K. & van der Heijden, M. G. A. Keystone taxa as drivers of microbiome structure and functioning. Nat. Rev. Microbiol. 16, 567–576 (2018).
    CAS  Article  Google Scholar 

    31.
    Zelikova, T. J. et al. Long-term exposure to elevated CO2 enhances plant community stability by suppressing dominant plant species in a mixed-grass prairie. Proc. Natl Acad. Sci. USA 111, 15456–15461 (2014).
    CAS  Article  Google Scholar 

    32.
    Douglas, G. M. et al. PICRUSt2 for prediction of metagenome functions. Nat. Biotechnol. 38, 685–688 (2020).
    CAS  Article  Google Scholar 

    33.
    MacArthur, R. Fluctuations of animal populations and a measure of community stability. Ecology 36, 533–536 (1955).
    Article  Google Scholar 

    34.
    May, R. M. Stability and Complexity in Model Ecosystems (Princeton Univ. Press, 2019).

    35.
    Guo, X. et al. Gene-informed decomposition model predicts lower soil carbon loss due to persistent microbial adaptation to warming. Nat. Commun. 11, 4897 (2020).
    CAS  Article  Google Scholar 

    36.
    Melillo, J. M. et al. Long-term pattern and magnitude of soil carbon feedback to the climate system in a warming world. Science 358, 101–105 (2017).
    CAS  Article  Google Scholar 

    37.
    Zhou, J. et al. Microbial mediation of carbon-cycle feedbacks to climate warming. Nat. Clim. Change 2, 106–110 (2012).
    CAS  Article  Google Scholar 

    38.
    Galiana, N. et al. The spatial scaling of species interaction networks. Nat. Ecol. Evol. 2, 782–790 (2018).
    Article  Google Scholar 

    39.
    Bastolla, U. et al. The architecture of mutualistic networks minimizes competition and increases biodiversity. Nature 458, 1018–1020 (2009).
    CAS  Article  Google Scholar 

    40.
    Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012).
    CAS  Article  Google Scholar 

    41.
    Li, D., Zhou, X., Wu, L., Zhou, J. & Luo, Y. Contrasting responses of heterotrophic and autotrophic respiration to experimental warming in a winter annual-dominated prairie. Glob. Change Biol. 19, 3553–3564 (2013).
    Google Scholar 

    42.
    Treves, D. S., Xia, B., Zhou, J. & Tiedje, J. M. A two-species test of the hypothesis that spatial isolation influences microbial diversity in soil. Microb. Ecol. 45, 20–28 (2003).
    CAS  Article  Google Scholar 

    43.
    Zhou, J., Xia, B., Huang, H., Palumbo, A. V. & Tiedje, J. M. Microbial diversity and heterogeneity in sandy subsurface soils. Appl. Environ. Microbiol. 70, 1723–1734 (2004).
    CAS  Article  Google Scholar 

    44.
    Zhou, J. et al. Spatial and resource factors influencing high microbial diversity in soil. Appl. Environ. Microbiol. 68, 326–334 (2002).
    CAS  Article  Google Scholar 

    45.
    O’Brien, S. L. et al. Spatial scale drives patterns in soil bacterial diversity. Environ. Microbiol. 18, 2039–2051 (2016).
    Article  Google Scholar 

    46.
    Penton, C. R., Gupta, V. V. S. R., Yu, J. & Tiedje, J. M. Size matters: assessing optimum soil sample size for fungal and bacterial community structure analyses using high throughput sequencing of rRNA gene amplicons. Front. Microbiol. 7, 824 (2016).
    Google Scholar 

    47.
    Zhou, J., Bruns, M. A. & Tiedje, J. M. DNA recovery from soils of diverse composition. Appl. Environ. Microbiol. 62, 316–322 (1996).
    CAS  Article  Google Scholar 

    48.
    Hurt, R. A. et al. Simultaneous recovery of RNA and DNA from soils and sediments. Appl. Environ. Microbiol. 67, 4495–4503 (2001).
    CAS  Article  Google Scholar 

    49.
    Peiffer, J. A. et al. Diversity and heritability of the maize rhizosphere microbiome under field conditions. Proc. Natl Acad. Sci. USA 110, 6548–6553 (2013).
    CAS  Article  Google Scholar 

    50.
    Wu, L. et al. Phasing amplicon sequencing on Illumina Miseq for robust environmental microbial community analysis. BMC Microbiol. 15, 125 (2015).
    Article  CAS  Google Scholar 

    51.
    Wen, C. et al. Evaluation of the reproducibility of amplicon sequencing with Illumina MiSeq platform. PLoS ONE 12, e0176716 (2017).
    Article  CAS  Google Scholar 

    52.
    Zhou, J. et al. High-throughput metagenomic technologies for complex microbial community analysis: open and closed formats. mBio 6, e02288–14 (2015).
    CAS  Article  Google Scholar 

    53.
    Zhou, J. et al. Reproducibility and quantitation of amplicon sequencing-based detection. ISME J. 5, 1303–1313 (2011).
    CAS  Article  Google Scholar 

    54.
    Luo, F. et al. Constructing gene co-expression networks and predicting functions of unknown genes by random matrix theory. BMC Bioinformatics 8, 299 (2007).
    Article  CAS  Google Scholar 

    55.
    Luo, F., Zhong, J., Yang, Y., Scheuermann, R. H. & Zhou, J. Application of random matrix theory to biological networks. Phys. Lett. A 357, 420–423 (2006).
    CAS  Article  Google Scholar 

    56.
    Deng, Y. et al. Molecular ecological network analyses. BMC Bioinformatics 13, 113 (2012).
    Article  Google Scholar 

    57.
    Shi, S. et al. The interconnected rhizosphere: high network complexity dominates rhizosphere assemblages. Ecol. Lett. 19, 926–936 (2016).
    Article  Google Scholar 

    58.
    Mehta, M. L. Random Matrices 2nd edn (Elsevier, 2004).

    59.
    Plerou, V., Gopikrishnan, P., Rosenow, B., Amaral, L. A. N. & Stanley, H. E. Universal and non-universal properties of cross-correlations in financial time series. Phys. Rev. Lett. 83, 1471–1474 (1999).
    CAS  Article  Google Scholar 

    60.
    Aitchison, J. The statistical analysis of compositional data. J. R. Stat. Soc. B 44, 139–160 (1982).
    Google Scholar 

    61.
    Gloor, G. B., Macklaim, J. M., Pawlowsky-Glahn, V. & Egozcue, J. J. Microbiome datasets are compositional: and this is not optional. Front. Microbiol. 8, 2224 (2017).
    Article  Google Scholar 

    62.
    Pawlowsky-Glahn, V. & Egozcue, J. J. Compositional data and their analysis: an introduction. Geol. Soc. Spec. Publ. 264, 1–10 (2006).
    CAS  Article  Google Scholar 

    63.
    Friedman, J. & Alm, E. J. Inferring correlation networks from genomic survey data. PLoS Comput. Biol. 8, e1002687 (2012).
    CAS  Article  Google Scholar 

    64.
    Watts, S. C., Ritchie, S. C., Inouye, M. & Holt, K. E. FastSpar: rapid and scalable correlation estimation for compositional data. Bioinformatics 35, 1064–1066 (2019).
    CAS  Article  Google Scholar 

    65.
    Weiss, S. et al. Correlation detection strategies in microbial data sets vary widely in sensitivity and precision. ISME J. 10, 1669–1681 (2016).
    CAS  Article  Google Scholar 

    66.
    R: a language and environment for statistical computing (R Foundation for Statistical Computing, 2019).

    67.
    Goslee, S. C. & Urban, D. L. The ecodist package for dissimilarity-based analysis of ecological data. J. Stat. Softw. 22, 1–19 (2007).
    Article  Google Scholar 

    68.
    Oksanen, J. et al. vegan: Community Ecology Package. Version 2.5-6 (2019).

    69.
    Lima-Mendez, G. et al. Determinants of community structure in the global plankton interactome. Science 348, 1262073 (2015).
    Article  CAS  Google Scholar 

    70.
    Yuan, M.M. et al. Mengting-Maggie-Yuan/warming-network-complexity-stability: warming-network-complexity-stability-v1.0. Version 1.0 (Zenodo, 2021); https://doi.org/10.5281/zenodo.4383469

    71.
    He, Z. et al. GeoChip 3.0 as a high-throughput tool for analyzing microbial community composition, structure and functional activity. ISME J. 4, 1167–1179 (2010).
    CAS  Article  Google Scholar 

    72.
    He, Z. et al. GeoChip: a comprehensive microarray for investigating biogeochemical, ecological and environmental processes. ISME J. 1, 67–77 (2007).
    CAS  Article  Google Scholar 

    73.
    Ning, D., Deng, Y., Tiedje, J. M. & Zhou, J. A general framework for quantitatively assessing ecological stochasticity. Proc. Natl Acad. Sci. USA 116, 16892–16898 (2019).
    CAS  Article  Google Scholar 

    74.
    Zhou, J. & Ning, D. Stochastic community assembly: does it matter in microbial ecology? Microbiol. Mol. Biol. Rev. 81, e00002–e00017 (2017).
    Article  Google Scholar 

    75.
    Csárdi, G. & Nepusz, T. The igraph software package for complex network research. InterJ. Complex Syst. 1695, 1–9 (2006).
    Google Scholar 

    76.
    Maslov, S. & Sneppen, K. Specificity and stability in topology of protein networks. Science 296, 910–913 (2002).
    CAS  Article  Google Scholar 

    77.
    Almeida‐Neto, M., Guimarães, P., Guimarães, P. R., Loyola, R. D. & Ulrich, W. A consistent metric for nestedness analysis in ecological systems: reconciling concept and measurement. Oikos 117, 1227–1239 (2008).
    Article  Google Scholar 

    78.
    Guimerà, R. & Nunes Amaral, L. A. Functional cartography of complex metabolic networks. Nature 433, 895–900 (2005).
    Article  CAS  Google Scholar 

    79.
    Olesen, J. M., Bascompte, J., Dupont, Y. L. & Jordano, P. The modularity of pollination networks. Proc. Natl Acad. Sci. USA 104, 19891–19896 (2007).
    CAS  Article  Google Scholar 

    80.
    Banerjee, S., Schlaeppi, K. & van der Heijden, M. G. A. Reply to ‘can we predict microbial keystones?’. Nat. Rev. Microbiol. 17, 194 (2019).
    CAS  Article  Google Scholar 

    81.
    Röttjers, L. & Faust, K. Can we predict keystones? Nat. Rev. Microbiol. 17, 193 (2019).
    Article  CAS  Google Scholar 

    82.
    Langfelder, P. & Horvath, S. Eigengene networks for studying the relationships between co-expression modules. BMC Syst. Biol. 1, 54 (2007).
    Article  CAS  Google Scholar 

    83.
    Hautier, Y. et al. Eutrophication weakens stabilizing effects of diversity in natural grasslands. Nature 508, 521–525 (2014).
    CAS  Article  Google Scholar 

    84.
    Hui, C., McGeoch, M. A., Harrison, A. E. S. & Bronstein, E. J. L. Zeta diversity as a concept and metric that unifies incidence-based biodiversity patterns. Am. Nat. 184, 684–694 (2014).
    Article  Google Scholar 

    85.
    Shi, Z. et al. Functional gene array-based ultrasensitive and quantitative detection of microbial populations in complex communities. mSystems 4, e00296–19 (2019).
    Google Scholar 

    86.
    Sun, S., Jones, R. B. & Fodor, A. A. Inference-based accuracy of metagenome prediction tools varies across sample types and functional categories. Microbiome 8, 46 (2020).
    Article  Google Scholar  More

  • in

    Climate change alters temporal dynamics of alpine soil microbial functioning and biogeochemical cycling via earlier snowmelt

    1.
    Bardgett RD, Van Der Putten WH. Belowground biodiversity and ecosystem functioning. Nature. 2014;515:505–11.
    CAS  PubMed  Article  Google Scholar 
    2.
    Fierer N. Embracing the unknown: disentangling the complexities of the soil microbiome. Nat Rev Microbiol. 2017;15:579–90.
    CAS  PubMed  Article  Google Scholar 

    3.
    De Vries FT, Shade A. Controls on soil microbial community stability under climate change. Front Microbiol. 2013;4:1–16.
    Article  Google Scholar 

    4.
    Allison SD, Martiny JBH. Resistance, resilience, and redundancy in microbial communities. Proc Natl Acad Sci. 2008;105:11512–9.
    CAS  PubMed  Article  Google Scholar 

    5.
    Leifeld J, Zimmermann M, Fuhrer J, Conen F. Storage and turnover of carbon in grassland soils along an elevation gradient in the Swiss Alps. Glob Chang Biol. 2009;15:668–79.
    Article  Google Scholar 

    6.
    Schirpke U, Leitinger G, Tasser E, Schermer M, Steinbacher M, Tappeiner U. Multiple ecosystem services of a changing Alpine landscape: past, present and future. Int J Biodivers Sci Ecosyst Serv Manag. 2013;9:123–35.
    PubMed  Article  Google Scholar 

    7.
    Beniston M. Is snow in the Alps receding or disappearing? Wiley Interdiscip Rev Clim Chang. 2012;3:349–58.
    Article  Google Scholar 

    8.
    Beniston M, Keller F, Koffi B, Goyette S. Estimates of snow accumulation and volume in the Swiss Alps under changing climatic conditions. Theor Appl Climatol. 2003;76:125–40.
    Article  Google Scholar 

    9.
    Monson RK, Burns SP, Williams MW, Delany AC, Weintraub M, Lipson DA. The contribution of beneath-snow soil respiration to total ecosystem respiration in a high-elevation, subalpine forest. Glob Biogeochem Cycles. 2006;20:1–13.
    Article  CAS  Google Scholar 

    10.
    Zhang Y, Wang S, Barr AG, Black TA. Impact of snow cover on soil temperature and its simulation in a boreal aspen forest. Cold Reg Sci Technol. 2008;52:355–70.
    Article  Google Scholar 

    11.
    Campbell JL, Ollinger SV, Flerchinger GN, Wicklein H, Hayhoe K, Bailey AS. Past and projected future changes in snowpack and soil frost at the Hubbard Brook Experimental Forest, New Hampshire, USA. Hydrol Process. 2010;24:2465–80.
    Google Scholar 

    12.
    Pederson GT, Gray ST, Woodhouse CA, Betancourt JL, Fagre DB, Littell JS, et al. The unusual nature of recent snowpack declines in the North American Cordillera. Science. 2011;333:332–5.
    CAS  PubMed  Article  Google Scholar 

    13.
    Gavazov K, Ingrisch J, Hasibeder R, Mills RTE, Buttler A, Gleixner G, et al. Winter ecology of a subalpine grassland: effects of snow removal on soil respiration, microbial structure and function. Sci Total Environ. 2017;590–591:316–324.
    PubMed  Article  CAS  Google Scholar 

    14.
    Buckeridge KM, Banerjee S, Siciliano SD, Grogan P. The seasonal pattern of soil microbial community structure in mesic low arctic tundra. Soil Biol Biochem. 2013;65:338–47.
    CAS  Article  Google Scholar 

    15.
    Puissant J, Cécillon L, Mills RTE, Robroek BJM, Gavazov K, De Danieli S, et al. Seasonal influence of climate manipulation on microbial community structure and function in mountain soils. Soil Biol Biochem. 2015;80:296–305.
    CAS  Article  Google Scholar 

    16.
    Bardgett RD, Bowman WD, Kaufmann R, Schmidt SK. A temporal approach to linking aboveground and belowground ecology. Trends Ecol Evol. 2005;20:634–41.
    PubMed  Article  Google Scholar 

    17.
    Schmidt SK, Costello EK, Nemergut DR, Cleveland CC, Reed SC, Weintraub MN, et al. Biogeochemical consequences of rapid microbial turnover and seasonal succession in soil. Ecology. 2007;88:1379–85.
    CAS  PubMed  Article  Google Scholar 

    18.
    Schadt CW, Martin AP, Lipson DA, Schmidt SK. Seasonal dynamics of previously unknown fungal lineages in Tundra soils. Science. 2003;301:1359–61.
    CAS  PubMed  Article  Google Scholar 

    19.
    Jefferies RL, Walker NA, Edwards KA, Dainty J. Is the decline of soil microbial biomass in late winter coupled to changes in the physical state of cold soils? Soil Biol Biochem. 2010;42:129–35.
    CAS  Article  Google Scholar 

    20.
    Buckeridge KM, Grogan P. Deepened snow increases late thaw biogeochemical pulses in mesic low arctic tundra. Biogeochemistry. 2010;101:105–21.
    Article  Google Scholar 

    21.
    Schimel J, Balser TC, Wallenstein M. Microbial stress-response physiology and its implications for ecosystem function. Ecology. 2007;88:1386–94.
    PubMed  Article  Google Scholar 

    22.
    Buckeridge KM, Grogan P. Deepened snow alters soil microbial nutrient limitations in arctic birch hummock tundra. Appl Soil Ecol. 2008;39:210–22.
    Article  Google Scholar 

    23.
    Väisänen M, Gavazov K, Krab EJ, Dorrepaal E. The legacy effects of winter climate on microbial functioning after snowmelt in a subarctic Tundra. Micro Ecol. 2019;77:186–90.
    Article  Google Scholar 

    24.
    Darrouzet-Nardi A, Steltzer H, Sullivan PF, Segal A, Koltz AM, Livensperger C, et al. Limited effects of early snowmelt on plants, decomposers, and soil nutrients in Arctic Tundra soils. Ecol Evol. 2019;9:1820–44.
    PubMed  PubMed Central  Article  Google Scholar 

    25.
    Ernakovich JG, Hopping KA, Berdanier AB, Simpson RT, Kachergis EJ, Steltzer H, et al. Predicted responses of arctic and alpine ecosystems to altered seasonality under climate change. Glob Chang Biol. 2014;20:3256–69.
    PubMed  Article  Google Scholar 

    26.
    Li W, Wu J, Bai E, Jin C, Wang A, Yuan F, et al. Response of terrestrial carbon dynamics to snow cover change: a meta-analysis of experimental manipulation (II). Soil Biol Biochem. 2016;103:388–93.
    CAS  Article  Google Scholar 

    27.
    Neuwinger I Bodenökologische. Untersuchungen im Gebiet Obergurgler Zirbenwald—Hohe Mut. In: Patzelt G (Hrsg.. (ed). MaB-Projekt Obergurgl. 1987. Universitätsverlag Wagner, Innsbruck, Austria, pp 173-90.

    28.
    Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959;37:911–917.
    CAS  Article  Google Scholar 

    29.
    Bardgett RD, Hobbs PJ, Frostegard A. Changes in soil fungal:bacterial biomass ratios following reductions in the intensity of management of an upland grassland. Biol Fertil Soils. 1996;22:261–4.
    Article  Google Scholar 

    30.
    Andersson AF, Lindberg M, Jakobsson H, Bäckhed F, Nyrén P, Engstrand L. Comparative analysis of human gut microbiota by barcoded pyrosequencing. PLoS ONE. 2008;3:e2836.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    31.
    Arenz BE, Schlatter DC, Bradeen JM, Kinkel LL. Blocking primers reduce co-amplification of plant DNA when studying bacterial endophyte communities. J Microbiol Methods. 2015;117:1–3.
    CAS  PubMed  Article  Google Scholar 

    32.
    Ihrmark K, Bödeker ITM, Cruz-Martinez K, Friberg H, Kubartova A, Schenck J, et al. New primers to amplify the fungal ITS2 region—evaluation by 454-sequencing of artificial and natural communities. FEMS Microbiol Ecol. 2012;82:666–77.
    CAS  PubMed  Article  Google Scholar 

    33.
    White TJ, Bruns T, Lee S, Taylor J. PCR protocols. 1990. Academic Press.

    34.
    Kozich JJ, Westcott SL, Baxter NT, Highlander SK, Schloss PD. Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the miseq illumina sequencing platform. Appl Environ Microbiol. 2013;79:5112–20.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    35.
    Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–3.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    36.
    R Core Team. R: a language and environment for statistical computing. 2019. R Foundation for Statistical Computing.

    37.
    DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, et al. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol. 2006;72:5069–72.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    38.
    Kõljalg U, Larsson KH, Abarenkov K, Nilsson RH, Alexander IJ, Eberhardt U, et al. UNITE: A database providing web-based methods for the molecular identification of ectomycorrhizal fungi. N. Phytol. 2005;166:1063–8.
    Article  CAS  Google Scholar 

    39.
    McMurdie PJ, Holmes S. Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE. 2013;8:e61217.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    40.
    Illumina. bcl2fastq and bcl2fastq2 Conversion software. 2020. https://support.illumina.com/sequencing/sequencing

    41.
    Sáenz JS, Marques TV, Barone RSC, Cyrino JEP, Kublik S, Nesme J, et al. Oral administration of antibiotics increased the potential mobility of bacterial resistance genes in the gut of the fish Piaractus mesopotamicus. Microbiome. 2019;7:1–14.
    Article  Google Scholar 

    42.
    Schubert M, Lindgreen S, Orlando L. AdapterRemoval v2: rapid adapter trimming, identification, and read merging. BMC Res Notes. 2016;9:1–7.
    Article  Google Scholar 

    43.
    Schmieder R, Edwards R. Fast identification and removal of sequence contamination from genomic and metagenomic datasets. PLoS ONE. 2011;6:e17288.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    44.
    Menzel P, Ng KL, Krogh A. Fast and sensitive taxonomic classification for metagenomics with Kaiju. Nat Commun. 2016;7:11257.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    45.
    Tu Q, Lin L, Cheng L, Deng Y, He Z. NCycDB: a curated integrative database for fast and accurate metagenomic profiling of nitrogen cycling genes. Bioinformatics. 2019;35:1040–8.
    CAS  PubMed  Article  Google Scholar 

    46.
    First Y, Job P. GNU parallel: the command-line power tool | USENIX. 3: 42–47.

    47.
    Jackson CR, Tyler HL, Millar JJ. Determination of microbial extracellular enzyme activity in waters, soils, and sediments using high throughput microplate assays. J Vis Exp. 2013;80:e50399.
    Google Scholar 

    48.
    De Long JR, Semchenko M, Pritchard WJ, Cordero I, Fry EL, Jackson BG, et al. Drought soil legacy overrides maternal effects on plant growth. Funct Ecol. 2019;33:1400–10.
    PubMed  PubMed Central  Article  Google Scholar 

    49.
    Kandeler E, Gerber H. Short-term assay of soil urease activity using colorimetric determination of ammonium article in biology and fertility of soils. Biol Fertil Soils. 1988;6:68–72.
    CAS  Article  Google Scholar 

    50.
    Jones DL, Willett VB. Experimental evaluation of methods to quantify dissolved organic nitrogen (DON) and dissolved organic carbon (DOC) in soil. Soil Biol Biochem. 2006;38:991–9.
    CAS  Article  Google Scholar 

    51.
    Ross DJ. Influence of sieve mesh size on estimates of microbial carbon and nitrogen by fumigation-extraction procedures in soils under pasture. Soil Biol Biochem. 1992;24:343–50.
    Article  Google Scholar 

    52.
    De Boer W, Folman LB, Summerbell RC, Boddy L. Living in a fungal world: Impact of fungi on soil bacterial niche development. FEMS Microbiol Rev. 2005;29:795–811.
    PubMed  Article  CAS  Google Scholar 

    53.
    Moorhead DDL, Sinsabaugh RRL. A theoretical model of litter decay and microbial interaction. Ecol Monogr. 2006;76:151–74.
    Article  Google Scholar 

    54.
    Zhou Y, Pope PB, Li S, Wen B, Tan F, Cheng S, et al. Omics-based interpretation of synergism in a soil-derived cellulose-degrading microbial community. Sci Rep. 2014;4:1–6.
    Google Scholar 

    55.
    Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS. Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev. 2002;66:506–77.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    56.
    Bhatnagar JM, Peay KG, Treseder KK. Litter chemistry influences decomposition through activity of specific microbial functional guilds. Ecol Monogr. 2018;88:429–44.
    Article  Google Scholar 

    57.
    Sinsabaugh RL, Lauber CL, Weintraub MN, Ahmed B, Allison SD, Crenshaw C, et al. Stoichiometry of soil enzyme activity at global scale. Ecol Lett. 2008;11:1252–64.
    PubMed  Article  Google Scholar 

    58.
    Fierer N, Lauber CL, Ramirez KS, Zaneveld J, Bradford MA, Knight R. Comparative metagenomic, phylogenetic and physiological analyses of soil microbial communities across nitrogen gradients. ISME J. 2012;6:1007–17.
    CAS  PubMed  Article  Google Scholar 

    59.
    Broadbent AAD, Orwin KH, Peltzer DA, Dickie IA, Mason NWH, Ostle NJ, et al. Invasive N-fixer impacts on litter decomposition driven by changes to soil properties not litter quality. Ecosystems. 2017;20:1–13.
    Article  CAS  Google Scholar 

    60.
    Prosser JI, Nicol GW. Archaeal and bacterial ammonia-oxidisers in soil: the quest for niche specialisation and differentiation. Trends Microbiol. 2012;20:523–31.
    CAS  PubMed  Article  Google Scholar 

    61.
    Verhamme DT, Prosser JI, Nicol GW. Ammonia concentration determines differential growth of ammonia-oxidising archaea and bacteria in soil microcosms. ISME J. 2011;5:1067–71.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    62.
    Brooks PD, Williams MW, Schmidt SK. Inorganic nitrogen and microbial biomass dynamics before and during spring snowmelt. Biogeochemistry. 1998;43:1–15.
    Article  Google Scholar 

    63.
    Jaeger CH, Monson RK, Fisk MC, Schmidt SK. Seasonal partitioning of nitrogen by plants and soil microorganisms in an alpine ecosystem. Ecology. 1999;80:1883–91.
    Article  Google Scholar 

    64.
    Ashton IW, Miller AE, Bowman WD, Suding KN. Niche complementarity due to plasticity in resource use: plant partitioning of chemical N forms. Ecology. 2010;91:3252–60.
    PubMed  Article  Google Scholar 

    65.
    Bilbrough CJ, Welker JM, Bowman WD. Early spring nitrogen uptake by snow-covered plants: a comparison of Arctic and alpine plant function under the snowpack. Arct, Antarct Alp Res. 2000;32:404–11.
    Article  Google Scholar 

    66.
    Michelsen A, Schmidt IK, Jonasson S, Quarmby C, Sleep D. Leaf 15N abundance of subarctic plants provides field evidence that ericoid, ectomycorrhizal and non-and arbuscular mycorrhizal species access different sources of soil nitrogen. Oecologia. 1996;105:53–63.
    PubMed  Article  Google Scholar 

    67.
    Wookey PA, Aerts R, Bardgett RD, Baptist F, Bråthen K, Cornelissen JHC, et al. Ecosystem feedbacks and cascade processes: understanding their role in the responses of Arctic and alpine ecosystems to environmental change. Glob Chang Biol. 2009;15:1153–72.
    Article  Google Scholar  More