More stories

  • in

    Evolutionary history and genetic connectivity across highly fragmented populations of an endangered daisy

    Aægisdóttir HH, Kuss P, Stöcklin J (2009) Isolated populations of a rare alpine plant show high genetic diversity and considerable population differentiation. Ann Bot 104:1313–1322
    Article  CAS  Google Scholar 

    Ahrens CW, James EA, Botanic R, Melbourne G, Ave B, Yarra S (2015) Range-wide genetic analysis reveals limited structure and suggests asexual patterns in the rare forb Senecio macrocarpus. Biol J Linn Soc 115:256–269
    Article  Google Scholar 

    Bouckaert R (2010) DensiTree: making sense of sets of phylogenetic trees. Bioinformatics 26:1372–137
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    Bouckaert R, Vaughan TG, Barido-Sottani J, Duchene S, Fourmet M, Gavryushkina A et al. (2019) BEAST 2.5: an advanced software platform for Bayesian evolutionary analysis. PLoS Comput Biol 15:1–28
    Article  CAS  Google Scholar 

    Bowler J (1982) Aridity in the late tertiary and quaternary of Australia. In: Barker W, Greenslade P (eds) Evolution of the flora and fauna of arid Australia. Peacock Publications, Adelaide, p 35–45
    Google Scholar 

    Breed MF, Harrison PA, Blyth C, Byrne M, Gaget V, Gellie NJC et al. (2019) The potential of genomics for restoring ecosystems and biodiversity. Nat Rev Genet 20:615–628
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    Brown AHD, Young AG (2000) Genetic diversity in tetraploid populations of the endangered daisy Rutidosis leptorrhynchoides and implications for its conservation. Heredity (Edinb) 85:122–129
    CAS  Article  Google Scholar 

    Bryant D, Bouckaert R, Felsenstein J, Rosenberg NA, Roychoudhury A (2012) Inferring species trees directly from biallelic genetic markers: bypassing gene trees in a full coalescent analysis. Mol Biol Evol 29:1917–1932
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    Bull M, Stolfo G (2014) Flora of Melbourne. A guide to the indigenous plants of the greater Melbourne area, 4th edn. Hyland House, Melbourne
    Google Scholar 

    Buza L, Young A, Thrall P (2000) Genetic erosion, inbreeding and reduced fitness in fragmented populations of the endangered tetraploid pea Swainsona recta. Biol Conserv 93:177–186
    Article  Google Scholar 

    Charlesworth D (2006) Balancing selection and its effects on sequences in nearby genome regions. PLoS Genet 2:379–384
    CAS  Article  Google Scholar 

    Chen C, Lu RS, Zhu SS, Tamaki I, Qiu YX (2017) Population structure and historical demography of Dipteronia dyeriana (Sapindaceae), an extremely narrow palaeoendemic plant from China: implications for conservation in a biodiversity hot spot. Heredity (Edinb) 119:95–106
    CAS  Article  Google Scholar 

    Clarke GM, O’Dwyer C (2000) Genetic variability and population structure of the endangered golden sun moth, Synemon plana. Biol Conserv 92:371–381
    Article  Google Scholar 

    Cole CT (2003) Genetic variation in rare and common plants. Annu Rev Ecol Evol Syst 34:213–237
    Article  Google Scholar 

    Coleman RA, Weeks AR, Hoffmann AA (2013) Balancing genetic uniqueness and genetic variation in determining conservation and translocation strategies: a comprehensive case study of threatened dwarf galaxias, Galaxiella pusilla (Mack) (Pisces: Galaxiidae). Mol Ecol 22:1820–1835
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    Courtice B, Hoebee SE, Sinclair S, Morgan JW (2020) Local population density affects pollinator visitation in the endangered grassland daisy Rutidosis leptorhynchoides (Asteraceae). Aust J Bot 67:638–648
    Article  Google Scholar 

    Crandall KA, Bininda-Emonds ORP, Mace GM, Wayne RK (2000) Considering evolutionary processes in conservation biology. TREE 15:290–295
    CAS  PubMed  PubMed Central  Google Scholar 

    Delph LF, Kelly JK (2014) On the importance of balancing selection in plants. N Phytol 201:45–56
    Article  Google Scholar 

    DeMauro MM (1993) Relationship of breeding system to rarity in the Lakeside Daisy (Hymenoxys acaulis var. glabra). Conserv Biol 7:542–550
    Article  Google Scholar 

    Department of the Environment (2020) Senecio macrocarpus in Species Profile and Threats Database, Department of the Environment, Canberra. Available from: http://www.environment.gov.au/sprat. Accessed 27 May 2020.

    Diekmann OE, Gouveia L, Perez JA, Gil-Rodriguez C, Serrão EA (2010) The possible origin of Zostera noltii in the Canary Islands and guidelines for restoration. Mar Biol 157:2109–2115
    Article  Google Scholar 

    Dorrough J, Ash JE (1999) Using past and present habitat to predict the current distribution and abundance of a rare cryptic lizard, Delma impar (Pygopodidae). Austral Ecol 24:614–624
    Article  Google Scholar 

    Drummond AJ, Rambaut A (2007) BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7:214
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    Ellstrand NC, Elam DR (1993) Population genetic consequences of small population size: implications for plant conservation. Annu Rev Ecol Syst 24:217–241

    Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620
    CAS  PubMed  PubMed Central  Google Scholar 

    Foll M, Gaggiotti OE (2006) Identifying the environmental factors that determine the genetic structure of populations. Genetics 174:875–891
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    Foll M, Gaggiotti O (2008) A genome-scan method to identify selected loci appropriate for both dominant and codominant markers: a Bayesian perspective. Genetics 180:977–993
    PubMed  PubMed Central  Article  Google Scholar 

    Frankham R (1996) Relationship between genetic variation and populations size in wildlife. Conserv Biol 10:1500–1508
    Article  Google Scholar 

    Frankham R (2005) Genetics and extinction. Biol Conserv 126:131–140

    Frankham R (2015) Genetic rescue of small inbred populations: meta-analysis reveals large and consistent benefits of gene flow. Mol Ecol 24:2610–2618
    PubMed  Article  PubMed Central  Google Scholar 

    Frankham R, Ballou JD, Eldridge MDB, Lacy RC, Ralls K, Dudash MR et al. (2011) Predicting the probability of outbreeding depression. Conserv Biol 25:465–475
    PubMed  Article  PubMed Central  Google Scholar 

    Frankham R, Ballou JD, Ralls K, Eldridge MDB, Dudash MR, Fenster CB, et al. (2017) Genetic management of fragmented animal and plant populations, 1st edn. Oxford University Press, Oxford

    Frankham R, Bradshaw CJA, Brook BW (2014) Genetics in conservation management: Revised recommendations for the 50/500 rules, Red List criteria and population viability analyses. Biol Conserv 170:56–63
    Article  Google Scholar 

    Frankham R, Lees K, Montgomery ME, England PR, Lowe EH, Briscoe DA (1999) Do population size bottlenecks reduce evolutionary potential? Anim Conserv 2:255–260
    Article  Google Scholar 

    Georges A, Gruber B, Pauly GB, White D, Adams M, Young MJ et al. (2018) Genomewide SNP markers breathe new life into phylogeography and species delimitation for the problematic short-necked turtles (Chelidae: Emydura) of eastern Australia. Mol Ecol 27:5195–5213
    PubMed  Article  PubMed Central  Google Scholar 

    Glémin S, Gaude T, Guillemin ML, Lourmas M, Olivieri I, Mignot A (2005) Balancing selection in the wild: testing population genetics theory of self-incompatibility in the rare species Brassica insularis. Genetics 171:279–289
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    Goudet J (2005) HIERFSTAT, a package for R to compute and test hierarchical F‐statistics. Mol Ecol Resour 5:184–186
    Article  Google Scholar 

    Gruber B, Unmack PJ, Berry OF, Georges A (2018) DARTR: an R package to facilitate analysis of SNP data generated from reduced representation genome sequencing. Mol Ecol Resour 18:691–699
    PubMed  Article  PubMed Central  Google Scholar 

    Jaccoud D, Peng K, Feinstein D, Kilian A (2001) Diversity arrays: a solid state technology for sequence information dependent genotyping. Nucl Acids Res 29:e25
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    Janes JK, Malenfant M, Andrew RL, Miller JM, Dupuis JR, Gorrell JC et al. (2017) The K = 2 conundrum. Mol Ecol 26:3594–3602
    PubMed  Article  PubMed Central  Google Scholar 

    Jones RN (1997) The biogeography of the grasses and lowland grasslands of south-eastern Australia. Adv Nat Conserv 2:11–18
    Google Scholar 

    Kamvar ZN, Brooks JC, Grünwald NJ (2015) Novel R tools for analysis of genome-wide population genetic data with emphasis on clonality. Front Genet 6:1–10
    CAS  Article  Google Scholar 

    Knapp EE, Rice KJ (1996) Genetic structure and gene flow in Elymus glaucus (blue wildrye): implications for native grassland restoration. Restor Ecol 4:1–10
    Article  Google Scholar 

    Kopelman NM, Mayzel J, Jakobsson M, Rosenberg NA, Ro AY (2015) CLUMPAK: a program for identifying clustering modes and packaging population structure inferences across K. Mol Ecol Resour 15:1179–1191
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    Kronenberger JA, Funk WC, Smith JW, Fitzpatrick SW, Angeloni LM, Broder ED et al. (2017) Testing the demographic effects of divergent immigrants on small populations of Trinidadian guppies. Anim Conserv 20:3–11
    Article  Google Scholar 

    Lande R, Shannon S (1996) The role of genetic variation in adaptation and population persistence in a changing environment. Evolution (NY) 50:434–437
    Article  Google Scholar 

    Liddell E, Cook CN, Sunnucks P (2020) Evaluating the use of risk assessment frameworks in the identification of population units for biodiversity conservation. Wildl Res 47:208–216
    Article  Google Scholar 

    Lippé C, Dumont P, Bernatchez L (2006) High genetic diversity and no inbreeding in the endangered copper redhorse, Moxostoma hubbsi (Catostomidae, Pisces): the positive sides of a long generation time. Mol Ecol 15:1769–1780
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    Lloyd MW, Burnett RK, Engelhardt KAM, Neel MC (2011) The structure of population genetic diversity in Vallisneria Americana in the Chesapeake Bay: implications for restoration. Conserv Genet 12:1269–1285
    Article  Google Scholar 

    Mable BK, Robertson AV, Dart S, Di Berardo C, Witham L (2005) Breakdown of self-incompatibility in the perennial Arabidopsis lyrata (Brassicaceae) and its genetic consequences. Evolution (NY) 59:1437–1448
    Article  Google Scholar 

    Markgraf V, McGlone M, Hope G (1995) Neogene paleoenvironmental and paleoclimatic change in southern temperate ecosystems—a southern perspective. Trends Ecol Evol 10:143–147
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    Melville J, Goebel S, Starr C, Keogh JS, Austin JJ (2007) Conservation genetics and species status of an endangered Australian dragon, Tympanocryptis pinguicolla (Reptilia: Agamidae). Conserv Genet 8:185–195
    Article  Google Scholar 

    Mijangos JL, Pacioni C, Spencer PBS, Craig MD (2015) Contribution of genetics to ecological restoration. Mol Ecol 22:22–37
    Article  Google Scholar 

    Morgan JW (1995) Ecological studies of the endangered Rutidosis leptorrhynchoides: I. Seed production, soil seed bank dynamics, population density and their effects on recruitment. Aust J Bot 43:1–11
    Article  Google Scholar 

    Moritz C (1999) Conservation units and translocations: Strategies for conserving evolutionary processes. Hereditas 130:217–228
    Article  Google Scholar 

    Murray BG, Young AG (2001) Widespread chromosome variation in the endangered grassland forb Rutidosis leptorrhynchoides F. Muell. (Asteraceae: Gnaphalieae). Ann Bot 87:83–90
    Article  Google Scholar 

    NSW Office of Environment and Heritage (2012) National Recovery Plan for Button Wrinklewort Rutidosis leptorrhynchoides. NSW Office of Environment and Heritage, Hurstville

    Nybom H, Bartish I (2000) Effects of life history traits and sampling strategies on genetic diversity estimates obtained with RAPD markers in plants. Perspect Plant Ecol Evol Syst 3:93–114
    Article  Google Scholar 

    Pacioni C, Hunt H, Allentoft ME, Vaughan TG, Wayne AF, Baynes A et al. (2015) Genetic diversity loss in a biodiversity hotspot: ancient DNA quantifies genetic decline and former connectivity in a critically endangered marsupial. Mol Ecol 24:5813–5828
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    Pavlova A, Selwood P, Harrisson KA, Murray N, Quin B, Menkhorst P et al. (2014) Integrating phylogeography and morphometrics to assess conservation merits and inform conservation strategies for an endangered subspecies of a common bird species. Biol Conserv 174:136–146
    Article  Google Scholar 

    Pickrell JK, Pritchard JK (2012) Inference of population splits and mixtures from genome-wide allele frequency data. PLoS Genet 8:1–17
    Article  CAS  Google Scholar 

    Pickup M, Field DL, Rowell DM, Young AG (2012) Predicting local adaptation in fragmented plant populations: Implications for restoration genetics. Evol Appl 5:913–924
    PubMed  PubMed Central  Article  Google Scholar 

    Pickup M, Field DL, Rowell DM, Young AG (2013) Source population characteristics affect heterosis following genetic rescue of fragmented plant populations. Proc R Soc B Biol Sci 280:20122058
    CAS  Article  Google Scholar 

    Pickup M, Young AG (2008) Population size, self-incompatibility and genetic rescue in diploid and tetraploid races of Rutidosis leptorrhynchoides (Asteraceae). Heredity (Edinb) 100:268–274
    CAS  Article  Google Scholar 

    Pimm SL, Jenkins CN, Abell R, Brooks TM, Gittleman JL, Joppa LN et al. (2015) The biodiversity of species and their rates of extinction, distribution, and protection. Science 344:1246752
    Article  CAS  Google Scholar 

    Potter S, Neaves LE, Lethbridge M, Eldridge MDB (2020) Understanding historical demographic processes to inform contemporary conservation of an arid zone specialist: the yellow-footed rock-wallaby. Genes (Basel) 11:1–24
    Article  CAS  Google Scholar 

    Powell JM (1969) The squatting occupation of Victoria 1834-60. Aust Geogr Stud 7:9–27
    Article  Google Scholar 

    Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    Pritchard JK, Wen W (2003) Documentation for STRUCTURE Software: Version 2.

    Raj A, Stephens M, Pritchard JK (2014) fastSTRUCTURE: variational inference of population structure in large SNP data sets. Genetics 197:573–589
    PubMed  PubMed Central  Article  Google Scholar 

    Ralls K, Ballou JD, Dudash MR, Eldridge MDB, Fenster CB, Lacy RC et al. (2018) Call for a paradigm shift in the genetic management of fragmented populations. Conserv Lett 11:1–6
    Article  Google Scholar 

    Rambaut A, Drummond AJ, Xie D, Baele G, Suchard M (2018) Posterior summarisation in Bayesian phylogenetics using Tracer 1.7. Syst Biol 67:901–904
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    Rodger YS, Greenbaum G, Silver M, Bar-david S, Winters G (2018) Detecting hierarchical levels of connectivity in a population of Acacia tortilis at the northern edge of the species’ global distribution: combining classical population genetics and network analyses. PLoS ONE 13:1–16
    Article  CAS  Google Scholar 

    Rojas D, Lima AP, Momigliano P, Ivo P, Dudaniec RY, Sauer TC et al. (2020) The evolution of polymorphism in the warning coloration of the Amazonian poison frog Adelphobates galactonotus. Heredity 124:439–456

    Scarlett NH, Parsons RF (1990) Conservation biology of the southern Australian daisy Rutidosis leptorrhynchoides. In: Clark TW, Seebeck JH (eds) Management and conservation of small populations. Chicago Zoological Society, Chicago, p 195–205
    Google Scholar 

    Sinclair SJ (2010) National recovery plan for the large-fruit groundsel Senecio macrocarpus. Department of Sustainability and Environment, Melbourne

    Sjogren P, Wyoni PI (1994) Conservation genetics and detection of rare alleles in finite populations. Conserv Biol 8:267–270
    Article  Google Scholar 

    Spalink D, Mackay R, Sytsma KJ (2019) Phylogeography, population genetics and distribution modelling reveal vulnerability of Scirpus longii (Cyperaceae) and the Atlantic Coastal Plain Flora to climate change. Mol Ecol 28:2046–2061

    Team RC (2018) R: a language and environment for statistical computing

    Wagenius S, Lonsdorf E, Neuhauser C (2007) Patch aging and the S-Allee effect: breeding system effects on the demographic response of plants to habitat fragmentation. Am Nat 169:383–397
    PubMed  Article  PubMed Central  Google Scholar 

    Weaver JC (1996) Beyond the fatal shore: pastoral squatting and the occupation of Australia. Am Hist Rev 101:981–1007
    Article  Google Scholar 

    Weeks AR, Sgro CM, Young AG, Frankham R, Mitchell NJ, Miller KA et al. (2011) Assessing the benefits and risks of translocations in changing environments: A genetic perspective. Evol Appl 4:709–725
    PubMed  PubMed Central  Article  Google Scholar 

    Weeks AR, Stoklosa J, Hoffmann AA (2016) Conservation of genetic uniqueness of populations may increase extinction likelihood of endangered species: the case of Australian mammals. Front Zool 13:1–9
    Article  CAS  Google Scholar 

    Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution (NY) 38:1358–1370
    CAS  Google Scholar 

    Wells GP, Young AG (2002) Effects of seed dispersal on spatial genetic structure in populations of Rutidosis leptorrhychoides with different levels of correlated paternity. Genet Res 79:219–226

    Whiteley AR, Fitzpatrick SW, Funk WC, Tallmon DA (2015) Genetic rescue to the rescue. Trends Ecol Evol 30:42–49
    PubMed  Article  PubMed Central  Google Scholar 

    Young AG, Brown AHD, Murray BG, Thrall PH, Miller CH (2000) Genetic erosion, restricted mating and reduced viability in fragmented populations of the endangered grassland herb Rutidosis leptorrhynchoides. In: Young AG, Clarke G (eds) Genetics, demography and viability of fragmented populations, Cambridge University Press, London, p 335–359

    Young AG, Brown AHD, Zich FC (1999) Genetic structure of fragmented populations of the endangered Daisy Rutidosis leptorrhynchoides. Cons Biol 13:256–265

    Young AG, Miller C, Gregory E, Langston A (2000) Sporophytic self-incompatibility in diploid and tetraploid races of Rutidosis leptorrhynchoides (Asteraceae). Aust J Bot 48:667–672

    Young AG, Murray BG (2000) Genetic bottlenecks and dysgenic gene flow into re-established populations of the grassland daisy, Rutidosis leptorrhynchoides. Aust J Bot 48:409–416

    Young AG, Pickup M (2010) Low S-allele numbers limit mate availability, reduce seed set and skew fitness in small populations of a self-incompatible plant. J Appl Ecol 47:541–548
    Article  Google Scholar  More

  • in

    Epigenetic responses of hare barley (Hordeum murinum subsp. leporinum) to climate change: an experimental, trait-based approach

    Alsdurf J, Anderson C, Siemens DH (2016) Epigenetics of drought-induced trans-generational plasticity: consequences for range limit development. Ann Bot 8:plv146
    Google Scholar 

    Anderson JT, Willis JH, Mitchell-Olds T (2011) Evolutionary genetics of plant adaptation. Trends Genet 27:258–66
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    Aragón-Gastélum JL, Flores J, Yáñez-Espinosa L, Badano E, Ramírez-Tobías HM, Rodas-Ortíz JP et al. (2014) Induced climate change impairs photosynthetic performance in Echinocactus platyacanthus, an especially protected Mexican cactus species. Flora—Morphol Distrib Funct Ecol Plants 209:499–503
    Article  Google Scholar 

    Banerjee A, Roychoudhury A (2017) Epigenetic regulation during salinity and drought stress in plants: histone modifications and DNA methylation. Plant Gene 11:199–204
    CAS  Article  Google Scholar 

    Bartels A, Han Q, Nair P, Stacey L, Gaynier H, Mosley M et al. (2018) Dynamic DNA methylation in plant growth and development. Int J Mol Sci 19:2144
    PubMed Central  Article  CAS  Google Scholar 

    Benjamini Y, Hochberg Y (1995) Controlling the False Discovery Rate: a practical and powerful approach to multiple testing. J R Stat Soc 57:289–300
    Google Scholar 

    Bonasio R, Tu S, Reinberg D (2010) Molecular signals of epigenetic states. Science 330:612–6
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    Bongers FJ, Olmo M, Lopez-Iglesias B, Anten NPR, Villar R (2017) Drought responses, phenotypic plasticity and survival of Mediterranean species in two different microclimatic sites. Plant Biol 19:386–395
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    Bossdorf O, Richards CL, Pigliucci M (2008) Epigenetics for ecologists. Ecol Lett 11:106–115
    PubMed  PubMed Central  Google Scholar 

    Bossdorf O, Zhang Y (2011) A truly ecological epigenetics study. Mol Ecol 20:1572–1574
    PubMed  Article  PubMed Central  Google Scholar 

    Chapin FS, Autumn K, Pugnaire F (1993) Evolution of suites of traits in response to environmental stress. Am Nat 142:78–92
    Article  Google Scholar 

    Conrath U, Pieterse CMJ, Mauch-Mani B (2002) Priming in plant-pathogen interactions. Trends Plant Sci 7:210–6
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    Dabros A, Fyles JW (2010) Effects of open-top chambers and substrate type on biogeochemical processes at disturbed boreal forest sites in northwestern Quebec. Plant Soil 327:465–479
    CAS  Article  Google Scholar 

    Delgado-Baquerizo M, Maestre FT, Rodríguez JGP, Gallardo A (2013) Biological soil crusts promote N accumulation in response to dew events in dryland soils. Soil Biol Biochem 62:22–27
    CAS  Article  Google Scholar 

    Diez CM, Meca E, Tenaillon MI, Gaut BS (2014) Three groups of transposable elements with contrasting copy number dynamics and host responses in the maize (Zea mays ssp. mays) genome. PLoS Genet 10:e1004298
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15
    Google Scholar 

    Ewens WJ (2013) Genetic variation. In: Maloy S, Hughes K (eds) Brenner’s encyclopedia of genetics, pp 290–291

    Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes. Genetics 131:479–91
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    Fernández-Pascual E, Jiménez-Alfaro B, Caujapé-Castells J, Jaén-Molina R, Díaz TE (2013) A local dormancy cline is related to the seed maturation environment, population genetic composition and climate. Ann Bot 112:937–45
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    Forestan C, Aiese Cigliano R, Farinati S, Lunardon A, Sanseverino W, Varotto S (2016) Stress-induced and epigenetic-mediated maize transcriptome regulation study by means of transcriptome reannotation and differential expression analysis. Sci Rep 6:30446
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    Fotiou C, Damialis A, Krigas N, Vokou D (2007) Hordeum murinum pollen as a contributor to pollinosis: important or trivial aeroallergen? Allergy 62:180
    Google Scholar 

    Freschet GT, Violle C, Bourget MY, Scherer-Lorenzen M, Fort F (2018) Allocation, morphology, physiology, architecture: the multiple facets of plant above- and below-ground responses to resource stress. N Phytol 219:1338–52
    Article  Google Scholar 

    Garnier E, Shipley B, Roumet C, Laurent G (2001) A standardized protocol for the determination of specific leaf area and leaf dry matter content. Funct Ecol 15:688–95
    Article  Google Scholar 

    Gayacharan JA (2013) Epigenetic responses to drought stress in rice (Oryza sativa L.). Physiol Mol Biol Plants 19:379–87
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    Gómez JM (2004) Importance of microhabitat and acorn burial on Quercus ilex early recruitment: Non-additive effects on multiple demographic processes. Plant Ecol 172:287–297
    Article  Google Scholar 

    Gower JC (1971) A general coefficient of similarity and some of its properties. Biometrics 27:857–71
    Article  Google Scholar 

    Grigorova B, Vaseva I, Demirevska K, Feller U (2011) Combined drought and heat stress in wheat: changes in some heat shock proteins. Biol Plant 55:105–111
    CAS  Article  Google Scholar 

    Gu Z, Eils R, Schlesner M (2016) Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics 32:2847–9
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    Herrera CM, Bazaga P (2010) Epigenetic differentiation and relationship to adaptive genetic divergence in discrete populations of the violet Viola cazorlensis. N Phytol 187:867–76
    CAS  Article  Google Scholar 

    Herrera CM, Pozo MI, Bazaga P (2012) Jack of all nectars, master of most: DNA methylation and the epigenetic basis of niche width in a flower-living yeast. Mol Ecol 21:2602–16
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    Hulting AG, Haavisto JL (2013) Hare barley (Hordeum murinum ssp. leporinum) biology and management in cool season perennial grass pastures of Western Oregon. J Chem Inform Model 33:1689–99
    Google Scholar 

    Hussain F, Durrani MJ (2009) Seasonal availability, palatability and animal preferences of forage plants in Harboi arid range land, Kalat, Pakistan. Pak J Bot 41:539–554
    Google Scholar 

    Ibáñez I, Schupp EW (2001) Positive and negative interactions between environmental conditions affecting Cercocarpus ledifolius seedling survival. Oecologia 129:543–550
    PubMed  Article  PubMed Central  Google Scholar 

    Jakob SS, Meister A, Blattner FR (2004) The considerable genome size variation of Hordeum species (Poaceae) is linked to phylogeny, life form, ecology, and speciation rates. Mol Biol Evol 21:860–9
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    Jaskiewicz M, Conrath U, Peterhälnsel C (2011) Chromatin modification acts as a memory for systemic acquired resistance in the plant stress response. EMBO Rep 12:50–55
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    Jeremias G, Barbosa J, Marques SM, Asselman J, Gonçalves FJM, Pereira JL (2018) Synthesizing the role of epigenetics in the response and adaptation of species to climate change in freshwater ecosystems. Mol Ecol 27:2790–2806
    PubMed  Article  PubMed Central  Google Scholar 

    Jiang Y, Huang B (2000) Effects of drought or heat stress alone and in combination on Kentucky bluegrass. Crop Sci 40:1358–62
    Article  Google Scholar 

    Kaur A, Grewal A, Sharma P (2018) Comparative analysis of DNA methylation changes in two contrasting wheat genotypes under water deficit. Biol Plant 62:471–8
    CAS  Article  Google Scholar 

    Kronholm I, Bassett A, Baulcombe D, Collins S (2017) Epigenetic and genetic contributions to adaptation in Chlamydomonas. Mol Biol Evol 34:2285–2306
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    de la Riva EG, Tosto A, Pérez-Ramos IM, Navarro-Fernández CM, Olmo M, Anten NPR et al. (2016) A plant economics spectrum in Mediterranean forests along environmental gradients: is there coordination among leaf, stem and root traits? J Veg Sci 27:187–199
    Article  Google Scholar 

    Lamaoui M, Jemo M, Datla R, Bekkaoui F (2018) Heat and drought stresses in crops and approaches for their mitigation. Front Chem 6:26
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    Lampei C (2019) Multiple simultaneous treatments change plant response from adaptive parental effects to within-generation plasticity, in Arabidopsis thaliana. Oikos 128:368–379
    Article  Google Scholar 

    Latzel V, Allan E, Bortolini Silveira A, Colot V, Fischer M, Bossdorf O (2013) Epigenetic diversity increases the productivity and stability of plant populations. Nat Commun 4:2875
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    Laughlin DC, Leppert JJ, Moore MM, Sieg CH (2010) A multi-trait test of the leaf-height-seed plant strategy scheme with 133 species from a pine forest flora. Funct Ecol 24:493–501
    Article  Google Scholar 

    Li X, Zhu J, Hu F, Ge S, Ye M, Xiang H et al. (2012) Single-base resolution maps of cultivated and wild rice methylomes and regulatory roles of DNA methylation in plant gene expression. BMC Genom 2:300
    Article  CAS  Google Scholar 

    Lindner M, Maroschek M, Netherer S, Kremer A, Barbati A, Garcia-Gonzalo J et al. (2010) Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. Ecol Manag 259:698–709
    Article  Google Scholar 

    Lira-Medeiros CF, Parisod C, Fernandes RA, Mata CS, Cardoso MA, Ferreira PCG (2010) Epigenetic variation in mangrove plants occurring in contrasting natural environment. PLoS One 5:e10326
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    Liu J, Feng L, Li J, He Z (2015) Genetic and epigenetic control of plant heat responses. Front Plant Sci 6:267
    PubMed  PubMed Central  Google Scholar 

    Liu G, Xia Y, Liu T, Dai S, Hou X (2018) The DNA methylome and association of differentially methylated regions with differential gene expression during heat stress in Brassica rapa. Int J Mol Sci 19:1414
    PubMed Central  Article  CAS  Google Scholar 

    Liu Z, Xin M, Qin J, Peng H, Ni Z, Yao Y et al. (2015) Temporal transcriptome profiling reveals expression partitioning of homoeologous genes contributing to heat and drought acclimation in wheat (Triticum aestivum L.). BMC Plant Biol 15:1
    Article  CAS  Google Scholar 

    Maestre FT, Escolar C, de Guevara ML, Quero JL, Lázaro R, Delgado-Baquerizo M et al. (2013) Changes in biocrust cover drive carbon cycle responses to climate change in drylands. Glob Chang Biol 19:3835–3847
    PubMed  PubMed Central  Article  Google Scholar 

    Marion GM, Henry GHR, Freckman DW, Johnstone J, Jones G, Jones MH et al. (1997) Open-top designs for manipulating field temperature in high-latitude ecosystems. Glob Chang Biol 3:20–32
    Article  Google Scholar 

    Mariotte P, Vandenberghe C, Kardol P, Hagedorn F, Buttler A (2013) Subordinate plant species enhance community resistance against drought in semi‐natural grasslands (S Schwinning, Ed.). J Ecol 101:763–773
    Article  Google Scholar 

    Mastan SG, Rathore MS, Bhatt VD, Yadav P, Chikara J (2012) Assessment of changes in DNA methylation by methylation-sensitive amplification polymorphism in Jatropha curcas L. subjected to salinity stress. Gene 508:125–9
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    Matías L, Godoy O, Gómez-Aparicio L, Pérez-Ramos IM (2018) An experimental extreme drought reduces the likelihood of species to coexist despite increasing intransitivity in competitive networks. J Ecol 106:826–837
    Article  Google Scholar 

    Metzger DCH, Schulte PM (2017) Persistent and plastic effects of temperature on DNA methylation across the genome of threespine stickleback (Gasterosteus aculeatus). Proc R Soc B Biol Sci 284:20171667
    Article  CAS  Google Scholar 

    Mitchell P, Wardlaw T, Pinkard L (2015) Combined stresses in forests (R Mahalingam, Ed.). Springer International Publishing, Switzerland
    Google Scholar 

    Moles AT, Westoby M (2004) Seedling survival and seed size: a synthesis of the literature. J Ecol 92:372–383
    Article  Google Scholar 

    Moore LM, Lauenroth WK (2017) Differential effects of temperature and precipitation on early- vs. late-flowering species. Ecosphere 8:e01819
    Article  Google Scholar 

    Muller-Landau HC (2010) The tolerance-fecundity trade-off and the maintenance of diversity in seed size. Proc Natl Acad Sci USA 107:4242–4247
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    Münzbergová Z, Latzel V, Šurinová M, Hadincová V (2019) DNA methylation as a possible mechanism affecting ability of natural populations to adapt to changing climate. Oikos 128:124–34
    Article  CAS  Google Scholar 

    Nicotra AB, Atkin OK, Bonser SP, Davidson AM, Finnegan EJ, Mathesius U et al. (2010) Plant phenotypic plasticity in a changing climate. Trends Plant Sci 15:684–92
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    Ogaya R, Peñuelas J, Martínez-Vilalta J, Mangirón M (2003) Effect of drought on diameter increment of Quercus ilex, Phillyrea latifolia, and Arbutus unedo in a holm oak forest of NE Spain. Ecol Manag 180:175–184
    Article  Google Scholar 

    Olea L, San Miguel A (2006) The Spanish dehesa. A traditional Mediterranean silvopastoral system linking production and nature conservation. In: Sustainable grassland productivity: Proceedings of the 21st General Meeting of the European Grassland Federation

    Paun O, Bateman RM, Fay MF, Hedrén M, Civeyrel L, Chase MW (2010) Stable epigenetic effects impact adaptation in allopolyploid orchids (Dactylorhiza: Orchidaceae). Mol Biol Evol 27:2465–73
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    Pérez-Figueroa A (2013) msap: a tool for the statistical analysis of methylation-sensitive amplified polymorphism data. Mol Ecol Resour 13:522–527
    PubMed  Article  PubMed Central  Google Scholar 

    Pérez-Ramos IM, Cambrollé J, Hidalgo-Galvez MD, Matías L, Montero-Ramírez A, Santolaya S et al. (2020) Phenological responses to climate change in communities of plants species with contrasting functional strategies. Environ Exp Bot 170:103852
    Article  CAS  Google Scholar 

    Pérez-Ramos IM, Díaz-Delgado R, de la Riva EG, Villar R, Lloret F, Marañon T (2017) Climate variability and community stability in Mediterranean shrublands: the role of functional diversity and soil environment. J Ecol 105:1335–1346
    Article  Google Scholar 

    Pérez-Ramos IM, Matías L, Gómez-Aparicio L, Godoy Ó (2019) Functional traits and phenotypic plasticity modulate species coexistence across contrasting climatic conditions. Nat Commun 10:2555
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    Piikkia K, De Temmerman L, Högy P, Pleijel H (2008) The open-top chamber impact on vapour pressure deficit and its consequences for stomatal ozone uptake. Atmos Environ 42:6513–22
    Article  CAS  Google Scholar 

    Poorter H, Niinemets Ü, Poorter L, Wright IJ, Villar R (2009) Causes and consequences of variation in leaf mass per area (LMA): A meta-analysis. N Phytol 182:565–588
    Article  Google Scholar 

    R Core Team (2013) R: a language and environment for statistical computing. 55: 275–286.

    Reyna-López GE, Simpson J, Ruiz-Herrera J (1997) Differences in DNA methylation patterns are detectable during the dimorphic transition of fungi by amplification of restriction polymorphisms. Mol Gen Genet 253:703–710
    PubMed  Article  PubMed Central  Google Scholar 

    Richards CL, Verhoeven KJF, Bossdorf O (2012) Evolutionary significance of epigenetic variation. In: Plant Genome Diversity Volume 1: Plant Genomes, their Residents, and their Evolutionary Dynamics, pp 257–274

    Rizhsky L (2004) When defense pathways collide. the response of Arabidopsis to a combination of drought and heat stress. Plant Physiol 134:1683–96
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    Rodríguez-Calcerrada J, Letts MG, Rolo V, Roset S, Rambal S (2013) Multiyear impacts of partial throughfall exclusion on Buxus sempervirens in a Mediterranean forest. Syst 22:202–213
    Google Scholar 

    Seifan M, Tielbörger K, Kadmon R (2010) Direct and indirect interactions among plants explain counterintuitive positive drought effects on an eastern Mediterranean shrub species. Oikos 119:1601–9
    Article  Google Scholar 

    Sharifi-Rigi P, Saeidi H, Rahiminejad MR (2014) Genetic diversity and geographic distribution of variation of Hordeum murinum as revealed by retroelement insertional polymorphisms in Iran. Biology 69:469–77
    Google Scholar 

    Shen X, De Jonge J, Forsberg SKG, Pettersson ME, Sheng Z, Hennig L et al. (2014) Natural CMT2 variation is associated with genome-wide methylation changes and temperature seasonality. PLoS Genet 10:e1004842
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    Suzuki MM, Bird A (2008) DNA methylation landscapes: Provocative insights from epigenomics. Nat Rev Genet 9:465–76
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    Tan MP (2010) Analysis of DNA methylation of maize in response to osmotic and salt stress based on methylation-sensitive amplified polymorphism. Plant Physiol Biochem 48:21–6
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    Tani E, Polidoros AN, Nianiou-Obeidat I, Tsaftaris AS (2005) DNA methylation patterns are differently affected by planting density in maize inbreeds and their hybrids. Maydica 50:19–23
    Google Scholar 

    Valencia E, Méndez M, Saavedra N, Maestre FT (2016) Plant size and leaf area influence phenological and reproductive responses to warming in semiarid Mediterranean species. Perspect Plant Ecol Evol Syst 21:31–40
    PubMed  PubMed Central  Article  Google Scholar 

    Verhoeven KJF, Jansen JJ, van Dijk PJ, Biere A (2010) Stress-induced DNA methylation changes and their heritability in asexual dandelions. N Phytol 185:1108–18
    CAS  Article  Google Scholar 

    Vos P, Hogers R, Bleeker M, Reijans M, Van De Lee T, Hornes M et al. (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–14
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    Wang WS, Pan YJ, Zhao XQ, Dwivedi D, Zhu LH, Ali J et al. (2011) rought-induced site-specific DNA methylation and its association with drought tolerance in rice (Oryza sativa) L.). J Exp Bot 62:1951–60
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    Watson RGA, Baldanzi S, Pérez-Figueroa A, Gouws G, Porri F (2018) Morphological and epigenetic variation in mussels from contrasting environments. Mar Biol 165:50
    Article  CAS  Google Scholar 

    Westoby M (1998) A Leaf-Height-Seed (LHS) plant ecology strategy scheme. Plant Soil 199:213–227
    CAS  Article  Google Scholar 

    Whittington HR, Tilman D, Wragg PD, Powers JS, Browning DM (2015) Phenological responses of prairie plants vary among species and year in a three-year experimental warming study. Ecosphere 6:1–15
    Article  Google Scholar 

    Wolkovich EM, Cleland EE (2014) Phenological niches and the future of invaded ecosystems with climate change. AoB Plants 6:plu013
    PubMed  PubMed Central  Article  Google Scholar 

    Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F et al. (2004) The worldwide leaf economics spectrum. Nature 428:821–7
    CAS  Article  Google Scholar 

    Zhang Y-Y, Parepa M, Fischer M, Bossdorf O (2016) Epigenetics of colonizing species? A study of japanese knotweed in central Europe. In: Barrett SC., Colautti RI, Dlugosch KM, Rieseberg LH (eds) Invasion genetics: the baker and Stebbins legacy, John Wiley & Sons, Ltd, pp 328–340

    Zhang X, Yazaki J, Sundaresan A, Cokus S, Chan SWL, Chen H et al. (2006) Genome-wide high-resolution mapping and functional analysis of DNA methylation in arabidopsis. Cell 126:1189–201
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    Zhu JK (2016) Abiotic stress signaling and responses in plants. Cell 167:313–24
    CAS  PubMed  PubMed Central  Article  Google Scholar  More

  • in

    System design for inferring colony-level pollination activity through miniature bee-mounted sensors

    Miniature flight recorders
    Honey bees regularly carry a payload of 55–65 mg6, but a mounted flight recorder should consume only a small fraction of this allowable weight to avoid significantly affecting bee behavior. The dimensions of the recorder must also be small, as the available mounting area on the bee thorax is limited. We propose a flight recorder consisting of a (2times 2times 0.3,text {mm}^3) ASIC mounted on a (3times 3times 0.4,text {mm}^3) printed circuit board, which is similar in size to 3 mm diameter, 1.5 mm tall conventional bee tags (“Queen number set,” Betterbee) and is on par with previous studies using honey bee tagging methods30. The ASIC provides most core functionality including signal detection, memory, power harvesting, and communications circuitry, and the PCB provides a magnetic backscatter coil for near-field wireless communication. The combined weight of our chip-PCB assembly is expected to be at most 10 mg, which is a small fraction of the honey bee payload (Fig. 1c). Based on previous studies, we expect this may slightly reduce foraging trip time but not significantly impact flight characteristics, which is the focus of our system31. Furthermore, future iterations of our flight recorder will have smaller size and weight, minimizing the overall impact on honey bees. Power will be harvested from sunlight, which can provide intensity greater than 1 mW/mm(^2). On-chip photovoltaics can offer power conversion efficiency on the order of 5%, supplying 50 μW of electrical power for the chip. This power budget, while low, is sufficient for the chip, since solar angle measurement and storage of data in memory are not energy-intensive operations and need only occur a few times per second. Furthermore, wireless communication for data upload is only used when the recorder is at the base station, thus allowing the base station to fully power the near-field wireless link. Additionally, IC technology is generally robust to the environmental factors likely to be encountered by honey bees. For instance, the variations in humidity level and temperature experienced by honey bees are not expected to affect chip operation. Our proposed design is a fully power-autonomous, environmentally-robust, miniature flight recorder well-suited to the task of recording honey bee activity.
    The orientation of a bee during flight can be described by the yaw ((gamma)), which represents the absolute heading relative to the sun, and the angle-of-incidence (AOI) ((psi)), which represents the overhead angle between the sun and the sensor (Fig. 1b). To record flights, the chip uses ASPs to measure the AOI of sunlight and stores these measurements in on-chip memory. ASPs achieve AOI-sensitivity via a pair of diffraction gratings stacked over a photodiode (Fig. 1b), wherein the first grating induces a diffraction pattern that shifts laterally across the second grating as AOI is swept, thus passing a periodically-varying intensity of light to the photodiode. The stored AOI measurements can be downloaded to a base station upon return to the hive, and from these data the heading throughout the flight can be extracted. Assuming a constant speed of 6.5 m/s32, we can use the sequence of recorded headings to reconstruct the honey bee’s trajectory in post-processing.
    The data taken by the flight recorder will be subject to measurement errors, and these errors will manifest in the reconstructed trajectory. Here, we identify and explore methods to mitigate the primary sources of error. We posit that errors will stem primarily from finite heading measurement resolution, finite sampling rate, and random fluctuations in sampling rate (jitter). Each of these error sources can be suppressed through careful chip design, but improvements in these performance variables can only be made at the expense of larger chip area. For instance, the heading measurement resolution will increase if more ASPs are used to measure AOI, but each pixel consumes significant silicon area and contributes additional data that must be stored in memory. Increasing the sampling rate and decreasing sampling rate jitter requires that more measurements be stored if flight time is unchanged, thus increasing the chip area required for memory. The size of the chip is thus inversely related to the severity of the expected measurement error, and trade-offs between chip size and achievable precision should be examined. A smaller sensor is feasible if trajectory reconstruction performance requirements are relaxed; more stringent requirements will necessitate a larger chip that will increase the burden on the bee. If the relationship between final uncertainty in the reconstructed position of the bee and the core sensor specifications is understood, then chip-level performance goals can be formed based on trajectory-level precision requirements.
    To determine required heading resolution, sampling rate, and sampling rate jitter, we first describe the procedure to reconstruct trajectories. We define the timestep estimate (hat{Delta t}) as the inverse of the sampling rate, and for known flight speed v the sequence of measured heading estimates ({hat{gamma }_0, hat{gamma }_1, …, hat{gamma }_{n-1}}) can be mapped to position estimate (hat{mathbf {p}}_n = [hat{x}_n, , hat{y}_n]^T) as a function of discrete time index n via the motion model

    $$begin{aligned} hat{mathbf {p}}_n = sum _{i=0}^{n-1} v, mathbf {h}(hat{gamma }_i) hat{Delta t} end{aligned}$$
    (1)

    where h is a unit vector pointing along the heading of the bee. Each sensor estimate of heading and timestep will be subject to errors, and by modeling these errors as additive white noise, we can evaluate a confidence region for each position estimate (hat{mathbf {p}}_n) (Fig. 2a,b). Each analog heading measurement (hat{gamma }_i) must be digitized for storage on-chip and will therefore suffer from quantization error, a form of rounding. We denote this error (epsilon _{gamma ,i}) and model it as a uniform random variable with variance (sigma ^2_gamma) on the interval (pm frac{Delta gamma }{2}), where (Delta gamma) is the heading bin width. Furthermore, the timestep estimate (hat{Delta t}) will be subject to random clock jitter that can be modeled as a Gaussian random variable (epsilon _{Delta t,i}) with variance (sigma ^2_{Delta t}). In this model, we posit for simplicity that the random error in timing scales linearly in proportion to oscillator frequency, thus maintaining a fixed ratio of (sigma _{Delta t}/hat{Delta t}). These measurement errors contribute random error to position estimate ({hat{mathbf {p}}}_n), and thus each position estimate should be viewed as a random variable (mathbf {p}_n). The confidence region surrounding ({hat{mathbf {p}}}_n) depends on the covariance matrix of ({mathbf {p}_n}), and we evaluate these terms by first using the small-angle approximation to linearize the motion model with respect to (epsilon _{gamma ,i}):

    $$begin{aligned} mathbf {p}_n = sum _{i=0}^{n-1} v , mathbf {h}(hat{gamma }_i + epsilon _{gamma ,i}) (hat{Delta t}+epsilon _{Delta t, i}) &approx sum _{i=0}^{n-1} v , left( mathbf {h}(hat{gamma }_i) + mathbf {h}^perp (hat{gamma }_i)epsilon _{gamma ,i}right) (hat{Delta t}+epsilon _{Delta t, i}) = sum _{i=0}^{n-1} v , mathbf {h}(hat{gamma }_i)(hat{Delta t}+epsilon _{Delta t,i}) + sum _{i=0}^{n-1} v , mathbf {h}^perp (hat{gamma }_i)epsilon _{gamma ,i} (hat{Delta t} + epsilon _{Delta t, i}) end{aligned}$$
    (2)

    Figure 2

    (a) Sensor measurement errors produce confidence regions surrounding each estimated position shown in an example circular trajectory. (b) Zoomed-in view of confidence region at end of flight, with principle components shown. (c) The two directed standard deviations grow throughout the duration of the trajectory, and are bounded above and below by the directed standard deviations computed from the case of the straight-line trajectory. (d–f) Both directional standard deviations characterizing the final error region will depend on all three of the core sensor specs ({Delta gamma , hat{Delta t}, sigma _{Delta t}}), and the max confidence region dimension will grow if these specs are relaxed. Plots were created in MATLAB33.

    Full size image

    This approximation is valid if (epsilon _{gamma ,i}) is kept small, which can be guaranteed by keeping heading bin width (Delta gamma) small. The covariance matrix of (mathbf {p}_n) is then given by

    $$begin{aligned} mathrm {Cov}(mathbf {p}_n, mathbf {p}_n) = varvec{ Sigma }_n approx sum _{i=0}^{n-1} R(hat{{gamma }}_{i}) begin{bmatrix} v^2sigma ^2_{Delta t} &{} 0 \ 0 &{} v^2sigma ^2_{gamma }(sigma _{Delta t}^2 + (hat{Delta t})^2) end{bmatrix} {R^T({hat{gamma }}_i)} end{aligned}$$
    (3)

    where R is the standard 2 × 2 rotation matrix (Appendix: Derivation of Trajectory Precision Equation). By the Central Limit Theorem, after a sufficient number of timesteps (mathbf {p}_n) will become Gaussian distributed. Thus, the confidence region will be an ellipse with major and minor axes spanned by the eigenvectors ({mathbf {v}_1, mathbf {v}_2}) of ({varvec{Sigma }}_n). The covariances of the confidence region along each of these axes are given by the eigenvalues ({lambda _1, lambda _2}) of (varvec{Sigma }_n), and directed standard deviations can then be defined as ({sigma _1,sigma _2}). A 99% confidence region for position estimate ({mathbf {hat{p}}}_{n}) is given by an ellipse with major and minor axes lengths ({3sigma _1mathbf {v}_1, 3sigma _2mathbf {v}_2}). We therefore conclude that (3sigma _1) and (3sigma _2) are critical values defining achievable trajectory reconstruction precision.
    These (3sigma)-bounds can be computed for any measured sequence of headings, but general upper and lower bounds for (3sigma _1) and (3sigma _2) across all possible trajectories can be derived from the (3sigma _1) and (3sigma _2) given by the case in which the bee flies in a straight line. In the straight-line case, the eigenvalues of (varvec{Sigma }_n) are given by n times the diagonal entries of the diagonal matrix in Eq. (3). The directed (3sigma)-bounds are then

    $$begin{aligned} 3sigma _{1,n}^*= & {} 3sqrt{n} v sigma _{Delta t} end{aligned}$$
    (4)

    $$begin{aligned} 3sigma _{2,n}^*= & {} 3sqrt{n} v sigma _{gamma }sqrt{sigma _{Delta t}^2 + (hat{Delta t})^2} end{aligned}$$
    (5)

    For some values of ({sigma _{gamma }, hat{Delta t}, sigma _{Delta t}}), (3sigma _{1,n}^*) will be larger than (3sigma _{2,n}^*); for others, the converse will be true. These equations provide simple bounds on achievable reconstruction precision that are valid for any trajectory and can be computed from sensor characteristics. Since heading error (epsilon _{gamma _i}) is uniformly distributed, heading variance (sigma ^2_gamma) is defined by heading bin width (Delta gamma), and thus the reconstruction precision is defined by a core suite of sensor specifications: ({Delta gamma , hat{Delta t}, sigma _{Delta t}}). An illustration of the trajectory reconstruction process, along with confidence regions, is shown in Fig. 2, as well as the relationship between reconstruction precision and each of the core chip specs.
    For a maximum specified chip sensing area, trajectory precision should be optimized through balanced allocation of area to solar AOI detection and to memory (Fig. 3). We evaluate the optimal area allocation by defining the standard deviation upper bound (3sigma ^*_{max} = max (3sigma _{1,f}^*, 3sigma _{2,f}^*)), where (3sigma _{1,f}^*) and (3sigma _{2,f}^*) are the directed (3sigma)-values computed from a straight-line trajectory that is long enough to completely fill the memory. If more area is spent on pixels for AOI detection, heading resolution can be increased, thus causing (sigma _gamma) to be reduced and correspondingly lowering (3sigma ^*_{2,f}). Conversely, if more area is spent on memory, measurements can be taken more frequently, and timestep and clock jitter can be reduced, thus reducing (hat{Delta t}) and (sigma _{Delta t}). This will cause (3sigma ^*_{1,f}) to decrease, but may cause an increase in (3sigma ^*_{2,f}) since less area is now available for heading sensors. As shown in Fig. 3, the upper bound (3sigma ^*_{max}) minimizes when the two counteracting variables (3sigma ^*_{1,f}) and (3sigma ^*_{2,f}) are equal, and this intersection point prescribes the optimal allocation of sensor area. Our proposed flight recorder features a 4 (mathrm {mm}^2) chip, which can offer sensing area of approximately 3 (mathrm {mm}^2). When this area is allocated optimally, the heading resolution is (2^circ) and timestep is approximately 240 ms at timestep jitter of (3sigma _{Delta t}/Delta t = 0.03). With these specifications, the maximum recordable trajectory length is approximately 4 km, with (3sigma) uncertainty of (pm 2.4) m.
    Figure 3

    (a) Area usage is optimized where (3sigma ^*_{1,f}) and (3sigma ^*_{2,f}) cross, as this design point co-minimizes the two directional standard deviations characterizing trajectory precision. (b) This design point specifies the heading resolution and number of data words in memory that minimize trajectory uncertainty given a fixed sensor area constraint. Plots were created in MATLAB33.

    Full size image

    Sensor calibration and noise modeling
    We next examined the output from existing ASP array sensors in order to create a model for future flight recorders. These particular sensors have 96 pixels, or 24 sets of 4 oriented in 90° angles. Specifically, we designed a calibration apparatus that consists of a platform holding the ASP array driven by a custom microcontroller PCB and an arm with a light emitting diode (LED) to imitate the sun. The platform rotates to mimic a change in yaw, while the arm rotates to mimic different AOI solar light at different times of the day (Fig. 4a). Using this apparatus, we measured light input in 0.9° increments across the entire hemisphere and record the ASP array response (Fig. 4a inset) for a total resolution of 40,000 measurements in a single sweep with 200 AOI angles and 200 yaw angles. Measurements sampled by the microcontroller were transmitted to a desktop computer for logging and processing via a custom MATLAB33 script. Each ASP array response consists of a 48-bit sequence. To interpret the output, we created a lookup table from the unique 48-bit sequence that is stored for each yaw-AOI angle pair. Future data was then compared to these stored sequences in parallel using an XOR operation and the pair with the least difference in bit values was returned.
    Figure 4

    (a) Calibration apparatus with inset example of a measured ASP quadrature response. (b) ASP array repeatability over a single sensor (left) and multiple sensors (right). The magenta lines denote the expected operating region. (c) Expected system operating region (45°–75°) shown in magenta given the peak foraging hours (10 a.m.–4 p.m.) shown in grey and the AOI solar light during the Summer in Ithaca, NY. Plots in (a-inset), (b) and (c) were created in MATLAB33.

    Full size image

    We characterized sensor repeatability by repeating a sweep three times with a single ASP array and, similarly, characterized precision by comparing sweeps from two additional ASP arrays. A sample curve from the calibration sweep seen in the inset in Fig. 4a shows the characteristic angle dependence. The sensor exhibits poor response uniqueness when the sun approaches zenith and when it nears the horizon; upwards of 100(^circ) error in yaw near 90(^circ) AOI (zenith) and up to 180(^circ) error in yaw at 0°–25° AOI (horizon) (Fig. 4b). The former occurs because the position of a light source directly overhead is ambiguous to the sensor across yaw and consequently, indeterminate. We find that the sensor simply does not operate well in the latter region where light is arriving nearly parallel to the surface of the chip. Furthermore, as is expected, the difference in response is generally greater when comparing different sensors. The horizontal dark bars in the right graph in Fig. 4b are examples of this increased error. We expect our system to operate under favorable foraging conditions. Based on previously published data, we estimate this operating region to be May through September at an example location of the authors’ hometown of Ithaca, New York, USA, with the most active foraging hours being from 10 a.m. to 4 p.m.34. During this time, the AOI spans (45^circ) to (75^circ) (Fig. 4c). Within this region, we see a significantly reduced same-chip error in yaw with a mean and standard deviation of (1.52^circ pm 1.23^circ). We compensate for the remaining error within the operating region as discussed in the following sections.
    In order to realistically simulate sensor output, we create a lookup table with an error model for each individual AOI value. Similar to our theoretical model, we fit a normal distribution to error in the yaw angle measured at each AOI. We use this error model to inform reconstruction of recorded bee paths as described in the following sections. For this work, we assume that we have access to calibration data for each particular sensor, however, given the low discrepancy between sensors (Fig. 4b right), we believe that it is possible to avoid individual calibration with more sophisticated data processing. We leave this aspect for future work.
    Honey bee foraging simulation
    To properly develop our methodology for using instrumented bees to monitor the state of pollination and bloom, we designed a colony foraging simulator with an example apple orchard. Central to our approach is an understanding of the behavior and environmental conditions surrounding honey bee foraging, summarized in Fig. 1c. The following subsections detail orchard, honey bee motion, and colony foraging models.
    Orchard model
    We modelled the orchard based on common characteristics seen in real orchards (Fig. 5a) as well as those reported by the University of Vermont Cooperative Extension for Growing Fruit Trees35. Specifically, these include a tree trunk radius of 0.15 m, separation between individual trees in a given planted row as 2.4 m, and separation between rows as 5 m. To make the model realistic to a variety of orchards, we add randomness to the trunk radius (0.15–0.30 m) and to the tree locations (up to 0.5 m in any direction). We further use a 60 × 60 m2 area with 200 trees, as is representative of the common grower practice utilizing a single colony per acre36. We account for the fact that trees can be in different stages of bloom by assigning each a randomly generated quality factor between 1 and 10; this quality factor affects the number of feeding events in a flight.
    Colony foraging model
    A high-quality honey bee colony for commercial apple pollination contains a laying queen, developing brood, and 20,000–40,000 worker bees, of which approximately 25% are “foragers”, or those that leave the hive to collect pollen, nectar, resin, and water29,37,38. Since resin and water foragers are a small proportion of the forager workforce, we expect our flight dataset to be largely from bees that are visiting flowers39. For this work, we assume favorable foraging conditions as previously described and a colony size of 35,000, 25% of which are foragers for a total of 8750 foragers conducting ~ 36,000 flights per day (an average of 4 flights per forager)37,40. In our model, a forager can perform either a learning-, return-, or scout flight. Note that we exclude orientation flights, which are conducted by new foragers, under the assumption that these can be easily classified given their tortuous nature23. A learning flight is when a bee orients to a feeding site it has not previously visited after learning the bearing and distance from one of its sisters in the hive41,42. A return flight occurs when a bee orients to a feeding site it has previously visited, and can be thought of as an optimized version of the learning flight in terms of distance flown43. A scout flight occurs when a forager leaves the hive to search independently for new feeding sites. In our model, we make the assumption based on published behavioral research that 20% of foragers are acting as scout foragers and the remaining 80% perform an initial learning flight followed by return flights to the same source41,42,43.
    We incorporate that return flights will frequent the same feeding sites and that neighboring trees are likely to bloom together by randomly assigning initial goal locations (trees that bees advertise in the colony as high quality food sources) to 5 neighboring trees. Bees will randomly choose between these 5, then continue feeding on neighboring trees until they have visited trees with quality factors accumulating to at least 10 before returning to the hive. Scout foragers randomly visit trees in the orchard. Realistically, not all bees will be tagged and some tags will be lost. Here, we consider a conservative estimate that at least 430 or 5% of all foragers will be tagged, leading us to 1750 recorded flights per day, and use accumulated data to overcome the loss of tagged bees, which we expect to occur as a result of predation, senescence, stress, and other factors. Note that honey bees have a pronounced division of labor associated with worker age41, making it easy to tag a cohort and wait for them to become foragers, or to identify foragers and tag them specifically. Tagging 430 bees would take our honey bee technician approximately a day; speeding up this process is an area of future investigation.
    Honey bee motion model
    To better illustrate the characteristics of foraging flights, we recorded activity between a queenright colony with about 10,000 workers and a nearby feeder station (Fig. 5b–d). Three distinct phases of the bee flights were recorded: an initial orientation flight upon leaving the hive, flights between the hive and the feeder, and search flights near the feeder. Flights near the entrance and the feeder were characterized by rapid turning, whereas flights in between the hive and the feeder were nearly straight “bee lines”. While at the feeder, bees crawl around at a significantly reduced velocity.
    Figure 5

    (a) Photo of a honey bee in a conventional apple orchard. (b–d) Setup to showcase different types of honey bee flights. Still images from videos recorded at the hive entrance, in between, and at the feeder station, with tracked paths overlaid. (e–f) Recorded heading over the course of a simulated foraging flight and feeding event. Straight line flights are marked in grey, turns in blue, and feeding events in green. Image overlays in (b), (c) and (d) were created in MATLAB33. Plots in (e) and (f) were created in Python 3.7.

    Full size image

    We use this study to inform our foraging simulation. We assume generally straight paths in obstacle-free environments, slow turns when avoiding obstacles, and rapid turns in AOI and yaw when nearing and crawling on a food source. We further base our flight model on the following assumptions, summarized in Fig. 1c. (1) We assume the starting location is well known since the flight path will always originate and terminate at the hive entrance. (2) Based on past studies and the fact that our simulation takes place in a dense apple orchard, we assume most flights will be within the 4 km range of our flight recorder44,45,46. When leaving the hive, bees will fly an average of ~ 7.5 m/s, but once loaded with nectar, flight speed is reduced to ~ 6.5 m/s32. Here, we assume a constant velocity of ~ 6.5 m/s. (3) Based on prior honey bee tracking studies23,47, we represent flight in only two dimensions. The apple trees in the orchards we model are not tall and bees will therefore experience much greater motion in the horizontal plane than the vertical. Regardless of whether a bee in reality will fly over or under the canopy, we can model this issue in two dimensions. Turns around tree trunks represent the largest source of error for flight reconstruction, therefore by modeling flight under the canopy, we model the “worst case” scenario. (4) We estimate that the AOI of sunlight with respect to the orchard will remain within a quantifiable margin throughout the duration of the simulated flights, as bees have been found to spend an average of 20–45 min on foraging flights48. (5) We model the yaw of a bee as constant during bee-line flights, i.e. given no nearby obstacles. When the bee changes its heading to circumvent obstacles, this causes a change in yaw. (6) Once implemented on bees, we expect to be able to add sensors near the hive which would help us acquire current temperature and weather patterns as well as other dynamic factors specific to a particular environment for calibrating our model.
    To simulate scouting, learning, and return foraging flights, we combine the honey bee motion model previously described, with the Bug2 algorithm and grid-based path planning49. Grid based path planning uses a discrete grid of points over which an agent searches to find obstacle-free path segments. We compute scout and learning flights as follows. Using the Bug2 algorithm, honey bee paths are generated by first assuming direct flight along a known heading from the hive. Once an obstacle is encountered, the bee searches for a path around it, until it can once more move unhindered toward the goal. The process is repeated until all goals are reached and the bee has returned to the hive. Since no two paths are identical in nature, we plan obstacle navigation with a randomly generated grid. Return flights are found by forming a graph of all the points visited during a learning flight and using a Dijkstra’s search algorithm49 to find the shortest path through these points from the hive to the goal. Once paths are generated, we compute the sequence of headings given the 240 ms sensor sampling frequency reported earlier. An example flight is shown in Fig. 5e,f. These headings are then discretized based on the ASP calibration data discussed earlier, and noise is added given the error shown in Fig. 4c left.
    When bees land at a feeding site, they tend to crawl on and among flowers to gather nectar and pollen. We simulate this by generating random motion centered around the feeding site. The average feeding time was reported to be 1–2 min per feeding site6. To make the simulation more realistic, we randomly generate a feeding time between 60 and 120 s for foragers, and between 20 and 130 s for scouts. We furthermore assume that the AOI of sunlight changes as the honey bee tilts up and down while crawling on flowers.
    Path reconstruction and generation of foraging activity maps
    Path reconstruction inherently depends on the accuracy with which our sensor is able to describe the motion of an instrumented bee. Beyond limited angle resolution, errors related to the sampling rate accumulate when turns occur, at worst (v_{loaded} Delta t) = 1.6 m. To increase the accuracy of our foraging activity maps, we use models of sensor noise and flight speed, and leverage all recorded flights. The full workflow is shown in Fig. 6, where the foraging simulation portion generates the data we expect if our sensors are placed on actual bees, and the remaining flow is the data processing portion of our methodology.
    Figure 6

    Flow chart combining the colony foraging simulation, simulated flight recorder, path reconstruction, and data processing to output the final foraging activity map. Recorded heading plot made in Python 3.7. Other plots were created in MATLAB33.

    Full size image

    We first identify feeding and turn features in our path data that stand out above the noise floor. Feeding features consist of crawling behavior in which the bee is moving at much lower speed compared to flying, but with rapidly varying yaw and AOI, inducing an elevated rate of change in measured AOI. A turn is marked by a significant change in yaw. Given the time of day and location, we can find the expected AOI on the orchard and use this to find the yaw from our lookup table. Our algorithm then indexes the sensor noise lookup table to find the related mean and standard deviation and uses this to estimate turns and feeding status. Our method marks a turn for a change greater than three standard deviations in yaw ((6.06^circ)). A feeding site is marked if the detected AOI deviates more than three standard deviations ((3.72^circ)) from the one expected, or if two consecutive AOI samples deviate more than 3 standard deviations, adjustable depending on the total flight time. The average detection accuracy of a turn is 99% with a standard deviation of 0.28% and average detection accuracy of a feeding site is 99% with a standard deviation of 0.29%.
    We explore three methods to generate activity maps: from the raw data, we classify feeding features using the aforementioned statistical approach and produce maps based on accumulated path reconstructions; in “iteration 1” and “iteration 4” we take a particle filter approach to improve path localization based on knowledge of the hive and frequented feeding sites respectively. Particle filters are used to track a variable of interest over time by creating many representative particles, generating predictions according to dynamics and error models, and then updating them according to observation models50. In this case, each particle forms a candidate trajectory and predictions are based on speed, sensor readings, and the sensor error model. Assuming that we start without knowledge of the orchard, we build up an observation model by reconstructing and accumulating the raw flight paths (Fig. 6, raw data). To account for the fact that bees may turn at any point between sensor readings, we then upsample our sensor readings by a factor of 8, essentially producing 8 guesses for where the bee actually turned. Based on the artificially upsampled data and a random sample from the sensor noise distribution at a given AOI, we then generate the displacement in each path segment as follows:

    $$begin{aligned} begin{bmatrix} Delta x_{t} \ Delta y_{t} end{bmatrix} = v Delta t begin{bmatrix} cos {(gamma _{t} + gamma _{noise})} \ sin {(gamma _{t} + gamma _{noise})} end{bmatrix} end{aligned}$$
    (6)

    The final path is found as a cumulative sum of these displacements. We repeat this process to generate 5000 particles for each flight. The choice of 5000 is guided by our variable dimensions; the upsampling rate of 8 was the highest we could handle on a quadcore desktop computer with 16 GB RAM—to truly represent all potential turns we would need a number of particles equal to 8 to the power of the number of turns per flight. For reference, the average number of turns per flight is 13, thus the true representation in our sampling approach would require (8^{13}) particles.
    In iteration 1, we choose ten of these particles according to proximity to the hive upon return, and use the feeding features from these to form an initial foraging activity map, represented by a discrete grid with computed visit numbers. Note that in a typical localization approach a single particle, or average of several particles, is chosen as the final reconstruction. In our approach, we retain 10 different reconstructions for each individual path in order to better represent the distribution of points in a path due to sensor noise.
    After this first pass, we repeat the process, but now filter particles by using the initial activity map as an observation model for the particle filter (Fig. 6, iteration 2–4). Specifically, we update particle probability at each detected feeding site by assigning the probability of the nearest grid cell in the map to the particle, and then sampling the particles by weight. At the end of the process, the ten particles with the highest probability product are used to construct an updated activity map. More

  • in

    Lifestyle of sponge symbiont phages by host prediction and correlative microscopy

    1.
    Wommack KE, Colwell RR. Virioplankton: viruses in aquatic ecosystems. Microbiol Mol Biol Rev. 2000;64:69–114.
    CAS  PubMed  PubMed Central  Article  Google Scholar 
    2.
    Keen EC, Dantas G. Close encounters of three kinds: bacteriophages, commensal bacteria, and host immunity. Trends Microbiol. 2018;26:943–54.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    3.
    Sausset R, Petit MA, Gaboriau-Routhiau V, De Paepe M. New insights into intestinal phages. Mucosal Immunol. 2020;13:205–15.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    4.
    Van Belleghem J, Dąbrowska K, Vaneechoutte M, Barr J, Bollyky P. Interactions between bacteriophage, bacteria, and the mammalian immune system. Viruses. 2018;11:205–15.
    Google Scholar 

    5.
    Wilhelm SW, Suttle CA. Viruses and nutrient cycles in the sea: viruses play critical roles in the structure and function of aquatic food webs. BioScience. 1999;49:781–8.
    Article  Google Scholar 

    6.
    Thingstad TF. Elements of a theory for the mechanisms controlling abundance, diversity, and biogeochemical role of lytic bacterial viruses in aquatic systems. Limnol Oceanogr. 2000;45:1320–2.
    Article  Google Scholar 

    7.
    Winter C, Bouvier T, Weinbauer MG, Thingstad TF. Trade-offs between competition and defense specialists among unicellular planktonic organisms: the “killing the winner” hypothesis revisited. Microbiol Mol Biol Rev. 2010;74:42–57.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    8.
    Minot S, Bryson A, Chehoud C, Wu GD, Lewis JD, Bushman FD. Rapid evolution of the human gut virome. PNAS. 2013;110:12450–5.
    CAS  PubMed  Article  Google Scholar 

    9.
    Thurber RV, Haynes M, Breitbart M, Wegley L, Rohwer F. Laboratory procedures to generate viral metagenomes. Nat Protocols. 2009;4:470–83..

    10.
    Leigh BA, Bordenstein SR, Brooks AW, Mikaelyan A, Bordenstein SR. Finer-scale phylosymbiosis: insights from insect viromes. mSystems. 2018a;3:e00131–18.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    11.
    Wille M, Shi M, Klaassen M, Hurt AC, Holmes EC. Virome heterogeneity and connectivity in waterfowl and shorebird communities. ISME J. 2019;13:2603–16.
    PubMed  PubMed Central  Article  Google Scholar 

    12.
    Jahn MT, Arkhipova K, Markert SM, Stigloher C, Lachnit T, Pita L et al. A phage protein aids bacterial symbionts in eukaryote immune evasion. Cell Host Microbe. 2019;26:542–50.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    13.
    Leigh BA, Djurhuus A, Breitbart M, Dishaw LJ. The gut virome of the protochordate model organism, Ciona intestinalis subtype A. Virus Res. 2018b;244:137–46.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    14.
    Shkoporov AN, Clooney AG, Sutton TDS, Ryan FJ, Daly KM, Nolan JA, et al. The human gut virome is highly diverse, stable, and individual specific. Cell Host Microbe. 2019;26:527–41.e525.
    CAS  Article  Google Scholar 

    15.
    Fuhrman JA. Marine viruses and their biogeochemical and ecological effects. Nature. 1999;399:541–8.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    16.
    Paul JH. Prophages in marine bacteria: dangerous molecular time bombs or the key to survival in the seas? ISME J. 2008;2:579–89.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    17.
    Touchon M, Bernheim A, Rocha EP. Genetic and life-history traits associated with the distribution of prophages in bacteria. ISME J. 2016;10:2744–54.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    18.
    Howard-Varona C, Hargreaves KR, Abedon ST, Sullivan MB. Lysogeny in nature: mechanisms, impact and ecology of temperate phages. ISME J. 2017;11:1511–20.
    PubMed  PubMed Central  Article  Google Scholar 

    19.
    Weitz JS. Quantitative viral ecology dynamics of viruses and their microbial hosts. Princeton: Princeton University Press; 2015.

    20.
    Bondy-Denomy J, Qian J, Westra ER, Buckling A, Guttman DS, Davidson AR, et al. Prophages mediate defense against phage infection through diverse mechanisms. ISME J. 2016;10:2854–66.
    PubMed  PubMed Central  Article  Google Scholar 

    21.
    Herold S, Karch H, Schmidt H. Shiga toxin-encoding bacteriophages–genomes in motion. Int J Med Microbiol. 2004;294:115–21.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    22.
    Kim M-S, Bae J-W. Lysogeny is prevalent and widely distributed in the murine gut microbiota. ISME J. 2018;12:1127–41.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    23.
    Reyes A, Wu M, McNulty NP, Rohwer FL, Gordon JI. Gnotobiotic mouse model of phage–bacterial host dynamics in the human gut. PNAS. 2013;110:20236–41.

    24.
    Bonilla-Rosso G, Steiner T, Wichmann F, Bexkens E, Engel P. Honey bees harbor a diverse gut virome engaging in nested strain-level interactions with the microbiota. PNAS. 2020;117:7355–62.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    25.
    Sweere JM, Van Belleghem JD, Ishak H, Bach MS, Popescu M, Sunkari V, et al. Bacteriophage trigger antiviral immunity and prevent clearance of bacterial infection. Science. 2019;363:eaat9691.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    26.
    Hadas E, Marie D, Shpigel M, Ilan M. Virus predation by sponges is a new nutrient-flow pathway in coral reef food webs. Limnol Oceanogr. 2006;51:1548–50.
    Article  Google Scholar 

    27.
    Rix L, Ribes M, Coma R, Jahn MT, de Goeij JM, van Oevelen D, et al. Heterotrophy in the earliest gut: a single-cell view of heterotrophic carbon and nitrogen assimilation in sponge-microbe symbioses. ISME J. 2020;14:2554–67.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    28.
    Lurgi M, Thomas T, Wemheuer B, Webster NS, Montoya JM. Modularity and predicted functions of the global sponge-microbiome network. Nat Commun. 2019; 10. https://doi.org/10.1038/s41467-019-08925-4.

    29.
    Reveillaud J, Maignien L, Eren AM, Huber JA, Apprill A, Sogin ML, et al. Host-specificity among abundant and rare taxa in the sponge microbiome. ISME J. 2014;8:1198–209.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    30.
    Laffy PW, Wood-Charlson EM, Turaev D, Jutz S, Pascelli C, Botte ES, et al. Reef invertebrate viromics: diversity, host specificity and functional capacity. Environ Microbiol. 2018;20:2125–41.
    PubMed  Article  Google Scholar 

    31.
    Taylor MW, Radax R, Steger D, Wagner M. Sponge-associated microorganisms: evolution, ecology, and biotechnological potential. Microbiol Mol Biol Rev. 2007;71:295–+.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    32.
    Pascelli C, Laffy PW, Botté E, Kupresanin M, Rattei T, Lurgi M, et al. Viral ecogenomics across the Porifera. Microbiome. 2020;8:144.
    PubMed  PubMed Central  Article  Google Scholar 

    33.
    Allers E, Moraru C, Duhaime MB, Beneze E, Solonenko N, Barrero-Canosa J, et al. Single-cell and population level viral infection dynamics revealed by phageFISH, a method to visualize intracellular and free viruses. Environ Microbiol. 2013;15:2306–18.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    34.
    Edwards RA, McNair K, Faust K, Raes J, Dutilh BE. Computational approaches to predict bacteriophage-host relationships. FEMS Microbiol Rev. 2016;40:258–72.
    CAS  PubMed  Article  Google Scholar 

    35.
    Horn H, Slaby BM, Jahn MT, Bayer K, Moitinho-Silva L, Forster F, et al. An enrichment of CRISPR and other defense-related features in marine sponge-associated microbial metagenomes. Front Microbiol. 2016;7:1751.
    PubMed  PubMed Central  Google Scholar 

    36.
    Slaby BM, Hackl T, Horn H, Bayer K, Hentschel U. Metagenomic binning of a marine sponge microbiome reveals unity in defense but metabolic specialization. ISME J. 2017;11:2465.
    PubMed  PubMed Central  Article  Google Scholar 

    37.
    Fiore CL, Labrie M, Jarett JK, Lesser MP. Transcriptional activity of the giant barrel sponge, Xestospongia muta Holobiont: molecular evidence for metabolic interchange. Front Microbiol. 2015; 6. https://doi.org/10.3389/fmicb.2015.00364.

    38.
    Ryu T, Seridi L, Moitinho-Silva L, Oates M, Liew YJ, Mavromatis C, et al. Hologenome analysis of two marine sponges with different microbiomes. BMC Genom. 2016;17:1–11.
    Article  CAS  Google Scholar 

    39.
    Tully BJ, Sachdeva R, Graham ED, Heidelberg JF. 290 metagenome-assembled genomes from the Mediterranean Sea: a resource for marine microbiology. PeerJ. 2017;5:e3558.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    40.
    Biswas A, Staals RHJ, Morales SE, Fineran PC, Brown CM. CRISPRDetect: a flexible algorithm to define CRISPR arrays. BMC Genom. 2016;17:356–356.
    Article  CAS  Google Scholar 

    41.
    Biswas A, Gagnon JN, Brouns SJ, Fineran PC, Brown CM. CRISPRTarget: bioinformatic prediction and analysis of crRNA targets. RNA Biol. 2013;10:817–27.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    42.
    Burstein D, Harrington LB, Strutt SC, Probst AJ, Anantharaman K, Thomas BC, et al. New CRISPR–Cas systems from uncultivated microbes. Nature. 2016;542:237.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    43.
    Lowe TM, Chan PP. tRNAscan-SE On-line: integrating search and context for analysis of transfer RNA genes. Nucleic Acids Res. 2016;44:W54–57.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    44.
    Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498–504.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    45.
    McNair K, Bailey BA, Edwards RA. PHACTS, a computational approach to classifying the lifestyle of phages. Bioinformatics. 2012;28:614–8.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    46.
    Grazziotin AL, Koonin EV, Kristensen DM. Prokaryotic Virus Orthologous Groups (pVOGs): a resource for comparative genomics and protein family annotation. Nucleic Acids Res. 2017;45:D491–8.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    47.
    Jones P, Binns D, Chang HY, Fraser M, Li W, McAnulla C, et al. InterProScan 5: genome-scale protein function classification. Bioinformatics. 2014;30:1236–40.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    48.
    Jahn MT, Markert SM, Ryu T, Ravasi T, Stigloher C, Hentschel U, et al. Shedding light on cell compartmentation in the candidate phylum Poribacteria by high resolution visualisation and transcriptional profiling. Sci Rep. 2016;6:35860.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    49.
    Chin CR, Perreira JM, Savidis G, Portmann JM, Aker AM, Feeley EM, et al. Direct visualization of HIV-1 replication intermediates shows that capsid and CPSF6 modulate HIV-1 intra-nuclear invasion and integration. Cell Rep. 2015;13:1717–31.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    50.
    Reynolds ES. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol. 1963;17:208–12.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    51.
    Paul-Gilloteaux P, Heiligenstein X, Belle M, Domart MC, Larijani B, Collinson L, et al. eC-CLEM: flexible multidimensional registration software for correlative microscopies. Nat Methods. 2017;14:102–3.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    52.
    Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9:671–5.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    53.
    R Development Core Team. R: a language and environment for statistical computing. In: Computing RFfS (ed): Vienna, Austria 2020.

    54.
    Bayer K, Jahn MT, Slaby BM, Moitinho-Silva L, Hentschel U. Marine sponges as Chloroflexi hot spots: genomic insights and high-resolution visualization of an abundant and diverse symbiotic clade. mSystems. 2018;3:e00150–18.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    55.
    Thomas T, Moitinho-Silva L, Lurgi M, Bjork JR, Easson C, Astudillo-Garcia C, et al. Diversity, structure and convergent evolution of the global sponge microbiome. Nat Commun. 2016;7:11870.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    56.
    Lima-Mendez G, Van Helden J, Toussaint A, Leplae R. Reticulate representation of evolutionary and functional relationships between phage genomes. Mol Biol Evol. 2008;25:762–77.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    57.
    Bavestrello G, Burlando B, Sara M. The architecture of the canal systems of Petrosia ficiformis and Chondrosia reniformis studied by corrosion casts (Porifera, Demospongiae). Zoomorphology. 1988;108:161–6.
    Article  Google Scholar 

    58.
    Van Soest RWM, Boury-Esnault N, Hooper JNA, Rützler K, de Voogd NJ, Alvarez B et al. World porifera database. 2019.

    59.
    Oh JH, Alexander LM, Pan M, Schueler KL, Keller MP, Attie AD, et al. Dietary fructose and microbiota-derived short-chain fatty acids promote bacteriophage production in the gut symbiont Lactobacillus reuteri. Cell Host Microbe. 2019;25:273–84 e276.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    60.
    De Paepe M, Tournier L, Moncaut E, Son O, Langella P, Petit MA. Carriage of lambda latent virus is costly for its bacterial host due to frequent reactivation in monoxenic mouse intestine. PLoS Genet. 2016;12:e1005861.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    61.
    Barr JJ, Auro R, Furlan M, Whiteson KL, Erb ML, Pogliano J, et al. Bacteriophage adhering to mucus provide a non-host-derived immunity. PNAS. 2013;110:10771–6.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    62.
    Roux S. A viral ecogenomics framework to uncover the secrets of nature’s “microbe whisperers”. mSystems. 2019;4:e00111–9.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    63.
    Paez-Espino D, Roux S, Chen IA, Palaniappan K, Ratner A, Chu K, et al. IMG/VR v.2.0: an integrated data management and analysis system for cultivated and environmental viral genomes. Nucleic Acids Res. 2019;47:D678–86.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    64.
    Deng L, Ignacio-Espinoza JC, Gregory AC, Poulos BT, Weitz JS, Hugenholtz P, et al. Viral tagging reveals discrete populations in Synechococcus viral genome sequence space. Nature. 2014;513:242–45.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    65.
    Džunková M, Low SJ, Daly JN, Deng L, Rinke C, Hugenholtz P. Defining the human gut host–phage network through single-cell viral tagging. Nat Microbiol. 2019;4:2192–203.
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    66.
    Marbouty M, Baudry L, Cournac A, Koszul R. Scaffolding bacterial genomes and probing host-virus interactions in gut microbiome by proximity ligation (chromosome capture) assay. Sci Adv. 2017;3:e1602105.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    67.
    Sullivan MB, Waterbury JB, Chisholm SW. Cyanophages infecting the oceanic cyanobacterium Prochlorococcus. Nature. 2003;424:1047–51.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    68.
    de Jonge PA, Nobrega FL, Brouns SJJ, Dutilh BE. Molecular and evolutionary determinants of bacteriophage host range. Trends Microbiol. 2019;27:51–63.
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    69.
    Kauffman KM, Hussain FA, Yang J, Arevalo P, Brown JM, Chang WK, et al. A major lineage of non-tailed dsDNA viruses as unrecognized killers of marine bacteria. Nature. 2018;554:118–22.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    70.
    Flores CO, Valverde S, Weitz JS. Multi-scale structure and geographic drivers of cross-infection within marine bacteria and phages. ISME J. 2013;7:520–32.
    PubMed  Article  PubMed Central  Google Scholar 

    71.
    Soffer N, Zaneveld J, Vega Thurber R. Phage-bacteria network analysis and its implication for the understanding of coral disease. Environ Microbiol. 2015;17:1203–18.
    CAS  Article  Google Scholar 

    72.
    Tzipilevich E, Habusha M, Ben-Yehuda S. Acquisition of phage sensitivity by bacteria through exchange of phage receptors. Cell. 2017;168:186–99 e112.
    CAS  PubMed  Article  Google Scholar 

    73.
    Battich N, Stoeger T, Pelkmans L. Image-based transcriptomics in thousands of single human cells at single-molecule resolution. Nat Methods. 2013;10:1127–33.
    CAS  PubMed  Article  Google Scholar 

    74.
    Li X-Y, Lachnit T, Fraune S, Bosch TCG, Traulsen A, Sieber M. Temperate phages as self-replicating weapons in bacterial competition. J R Soc Interface. 2017;14:20170563.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    75.
    Pascelli C, Laffy PW, Kupresanin M, Ravasi T, Webster NS. Morphological characterization of virus-like particles in coral reef sponges. PeerJ. 2018;6:e5625–5625.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    76.
    Sime-Ngando T. Environmental bacteriophages: viruses of microbes in aquatic ecosystems. Front Microbiol. 2014;5:355.
    PubMed  PubMed Central  Article  Google Scholar 

    77.
    Knowles B, Silveira CB, Bailey BA, Barott K, Cantu VA, Cobián-Güemes AG, et al. Lytic to temperate switching of viral communities. Nature. 2016;531:466.
    CAS  PubMed  Article  Google Scholar 

    78.
    Duerkop BA, Clements CV, Rollins D, Rodrigues JLM, Hooper LV. A composite bacteriophage alters colonization by an intestinal commensal bacterium. PNAS. 2012;109:17621–6.

    79.
    Thingstad TF, Vage S, Storesund JE, Sandaa RA, Giske J. A theoretical analysis of how strain-specific viruses can control microbial species diversity. PNAS. 2014;111:7813–8.
    CAS  PubMed  Article  Google Scholar 

    80.
    Morella NM, Gomez AL, Wang G, Leung MS, Koskella B. The impact of bacteriophages on phyllosphere bacterial abundance and composition. Mol Ecol. 2018;27:2025–38.
    PubMed  Article  PubMed Central  Google Scholar 

    81.
    Wattam AR, Davis JJ, Assaf R, Boisvert S, Brettin T, Bun C, et al. Improvements to PATRIC, the all-bacterial Bioinformatics Database and Analysis Resource Center. Nucleic Acids Res. 2017;45:D535–42.
    CAS  PubMed  Article  PubMed Central  Google Scholar  More

  • in

    Large-scale farmer-led experiment demonstrates positive impact of cover crops on multiple soil health indicators

    1.
    Seifert, C. A., Azzari, G. & Lobell, D. B. Satellite detection of cover crops and their effects on crop yield in the Midwestern United States. Environ. Res. Lett. 13, 064033 (2018).
    ADS  Article  Google Scholar 
    2.
    2017 Census of Agriculture, Summary and State Data (USDA, 2019); https://www.nass.usda.gov/Publications/AgCensus/2017/Full_Report/Volume_1,_Chapter_1_US/usv1.pdf

    3.
    Basche, A. D. et al. Soil water improvements with the long-term use of a winter rye cover crop. Agric. Water Manag. 172, 40–50 (2016).
    Article  Google Scholar 

    4.
    Schipanski, M. E. et al. A framework for evaluating ecosystem services provided by cover crops in agroecosystems. Agric. Syst. 125, 12–22 (2014).
    Article  Google Scholar 

    5.
    Blanco-Canqui, H. et al. Cover crops and ecosystem services: insights from studies in temperate soils. Agron. J. 107, 2449–2474 (2015).
    CAS  Article  Google Scholar 

    6.
    Andrews, S. S. et al. On‐farm assessment of soil quality in California’s central valley. Agron. J. 94, 12–23 (2002).
    Article  Google Scholar 

    7.
    Welch, R. Y., Behnke, G. D., Davis, A. S., Masiunas, J. & Villamil, M. B. Using cover crops in headlands of organic grain farms: effects on soil properties, weeds and crop yields. Agric. Ecosyst. Environ. 216, 322–332 (2016).
    Article  Google Scholar 

    8.
    Wyland, L. Winter cover crops in a vegetable cropping system: impacts on nitrate leaching, soil water, crop yield, pests and management costs. Agric. Ecosyst. Environ. 59, 1–17 (1996).
    Article  Google Scholar 

    9.
    Karlen, D. L. & Doran, J. W. Cover crop management effects on soybean and corn growth and nitrogen dynamics in an on-farm study. Am. J. Altern. Agric. 6, 71–82 (1991).
    Article  Google Scholar 

    10.
    Koch, R. L. et al. On-farm evaluation of a fall-seeded rye cover crop for suppression of soybean aphid (Hemiptera: Aphididae) on soybean: suppression of soybean aphid with rye cover crop. Agric. For. Entomol. 17, 239–246 (2015).
    Article  Google Scholar 

    11.
    Sayre, N. F., deBuys, W., Bestelmeyer, B. T. & Havstad, K. M. “The Range Problem” after a century of rangeland science: new research themes for altered landscapes. Rangeland Ecol. Manag. 65, 545–552 (2012).
    Article  Google Scholar 

    12.
    Kladivko, E. J. et al. State-wide soil health programs for education and on-farm assessment: lessons learned. J. Soil Water Conserv. 74, 12A–17A (2019).
    Article  Google Scholar 

    13.
    Poeplau, C. & Don, A. Carbon sequestration in agricultural soils via cultivation of cover crops – a meta-analysis. Agric. Ecosyst. Environ. 200, 33–41 (2015).
    CAS  Article  Google Scholar 

    14.
    Vermeulen, S. et al. A global agenda for collective action on soil carbon. Nat. Sustain. 2, 2–4 (2019).
    Article  Google Scholar 

    15.
    Lehmann, J., Bossio, D. A., Kögel-Knabner, I. & Rillig, M. C. The concept and future prospects of soil health. Nat. Rev. Earth Environ. 1, 544–553 (2020).
    ADS  PubMed  Article  Google Scholar 

    16.
    Stewart, R. D. et al. What we talk about when we talk about soil health. Agric. Environ. Lett. 3, 180033 (2018).
    Article  CAS  Google Scholar 

    17.
    Norris, C. E. et al. Introducing the North American project to evaluate soil health measurements. Agron. J. 112, 3195–3215 (2020).
    Article  Google Scholar 

    18.
    Sanderman, J., Savage, K. & Dangal, S. R. S. Mid‐infrared spectroscopy for prediction of soil health indicators in the United States. Soil Sci. Soc. Am. J. 84, 251–261 (2020).
    ADS  CAS  Article  Google Scholar 

    19.
    Rorick, J. D. & Kladivko, E. J. Cereal rye cover crop effects on soil carbon and physical properties in Southeastern Indiana. J. Soil Water Conserv. 72, 260–265 (2017).
    Article  Google Scholar 

    20.
    Faé, G. S. et al. Integrating winter annual forages into a no-till corn silage system. Agron. J. 101, 1286–1296 (2009).
    Article  Google Scholar 

    21.
    Wegner, B. R. et al. Soil response to corn residue removal and cover crops in eastern South Dakota. Soil Sci. Soc. Am. J. 79, 1179–1187 (2015).
    ADS  CAS  Article  Google Scholar 

    22.
    Karlen, D. L., Goeser, N. J., Veum, K. S. & Yost, M. A. On-farm soil health evaluations: challenges and opportunities. J. Soil Water Conserv. 72, 26A–31A (2017).
    Article  Google Scholar 

    23.
    Wade, J. et al. Improved soil biological health increases corn grain yield in N fertilized systems across the Corn Belt. Sci. Rep. 10, 3917 (2020).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    24.
    Bossio, D. A. et al. The role of soil carbon in natural climate solutions. Nat. Sustain. 3, 391–398 (2020).
    Article  Google Scholar 

    25.
    Stanton, C. Y. et al. Managing cropland and rangeland for climate mitigation: an expert elicitation on soil carbon in California. Clim. Change 147, 633–646 (2018).
    ADS  CAS  Article  Google Scholar 

    26.
    Lugato, E., Leip, A. & Jones, A. Mitigation potential of soil carbon management overestimated by neglecting N2O emissions. Nat. Clim. Change 8, 219–223 (2018).
    ADS  CAS  Article  Google Scholar 

    27.
    Kaye, J. P. & Quemada, M. Using cover crops to mitigate and adapt to climate change. A review. Agron. Sustain. Dev. 37, 4 (2017).
    Article  Google Scholar 

    28.
    Basche, A. D. & DeLonge, M. S. Comparing infiltration rates in soils managed with conventional and alternative farming methods: a meta-analysis. PLoS ONE 14, e0215702 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    29.
    Basche, A. & DeLonge, M. The impact of continuous living cover on soil hydrologic properties: a meta-analysis. Soil Sci. Soc. Am. J. 81, 1179–1190 (2017).
    ADS  CAS  Article  Google Scholar 

    30.
    Roper, W. R., Osmond, D. L. & Heitman, J. L. A response to “Reanalysis validates soil health indicator sensitivity and correlation with long‐term crop yields”. Soil Sci. Soc. Am. J. 83, 1842–1845 (2019).
    ADS  CAS  Article  Google Scholar 

    31.
    King, A. E., Ali, G. A., Gillespie, A. W. & Wagner-Riddle, C. Soil organic matter as catalyst of crop resource capture. Front. Environ. Sci. 8, 50 (2020).
    Article  Google Scholar 

    32.
    Oldfield, E. E., Bradford, M. A. & Wood, S. A. Global meta-analysis of the relationship between soil organic matter and crop yields. SOIL 5, 15–32 (2019).
    CAS  Article  Google Scholar 

    33.
    Oldfield, E. E., Wood, S. A. & Bradford, M. A. Direct evidence using a controlled greenhouse study for threshold effects of soil organic matter on crop growth. Ecol. Appl. 30, e02073 (2020).
    PubMed  Article  Google Scholar 

    34.
    Wood, S. A. et al. Opposing effects of different soil organic matter fractions on crop yields. Ecol. Appl. 26, 2072–2085 (2016).
    PubMed  Article  Google Scholar 

    35.
    Fine, A. K., van Es, H. M. & Schindelbeck, R. R. Statistics, scoring functions, and regional analysis of a comprehensive soil health database. Soil Sci. Soc. Am. J. 81, 589 (2017).
    ADS  CAS  Article  Google Scholar 

    36.
    Fine, A. K., Ristow, A., Schindelbeck, R. R. & van Es, H. M. Update of scoring functions for Cornell Soil Health Test. What’s Cropping Up? Blog https://blogs.cornell.edu/whatscroppingup/2016/11/30/update-of-scoring-functions-for-cornell-soil-health-test/ (2016).

    37.
    Bradford, M. A. et al. Discontinuity in the responses of ecosystem processes and multifunctionality to altered soil community composition. Proc. Natl Acad. Sci. USA 111, 14478–14483 (2014).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    38.
    Bradford, M. A. et al. Reply to Byrnes et al.: Aggregation can obscure understanding of ecosystem multifunctionality. Proc. Natl Acad. Sci. USA 111, E5491 (2014).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    39.
    Kettler, T. A., Doran, J. W. & Gilbert, T. L. Simplified method for soil particle-size determination to accompany soil-quality analyses. Soil Sci. Soc. Am. J. 65, 849–852 (2001).
    ADS  CAS  Article  Google Scholar 

    40.
    Moebius, B. N. et al. Evaluation of laboratory-measured soil properties as indicators of soil physical quality. Soil Sci. 172, 895–912 (2007).
    ADS  CAS  Article  Google Scholar 

    41.
    Reynolds, W. & Topp, G. in Soil Sampling and Methods of Analysis (eds Carter, M. R. & Gregorich, E. G.) 981–997 (CRC Press, 2008).

    42.
    Nelson, D. & Sommers, D. in Methods of Soil Analysis. Part 3 (Sparks, D. L., Page, A. L., Helmke, P. A. & Loeppert, R. H.) 961–1010 (Soil Science Society of America, 1996).

    43.
    Weil, R. R., Islam, K. R., Stine, M. A., Gruver, J. B. & Samson-Liebig, S. E. Estimating active carbon for soil quality assessment: a simplified method for laboratory and field use. Am. J. Altern. Agric. 18, 3–17 (2003).
    Article  Google Scholar 

    44.
    Haney, R. L. & Haney, E. B. Simple and rapid laboratory method for rewetting dry soil for incubations. Commun. Soil Sci. Plant Anal. 41, 1493–1501 (2010).
    CAS  Article  Google Scholar 

    45.
    Wright, S. F. & Upadhyaya, A. Extraction of an abundant and unusual protein from soil and comparison with hyphal protein of arbuscular mycorrhizal fungi. Soil Sci. 161, 575–586 (1996).
    ADS  CAS  Article  Google Scholar 

    46.
    Bunnefeld, N. & Phillimore, A. B. Island, archipelago and taxon effects: mixed models as a means of dealing with the imperfect design of nature’s experiments. Ecography 35, 15–22 (2012).
    Article  Google Scholar 

    47.
    Gelman, A. Scaling regression inputs by dividing by two standard deviations. Stat. Med. 27, 2865–2873 (2008).
    MathSciNet  PubMed  Article  Google Scholar 

    48.
    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).
    Article  Google Scholar 

    49.
    R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019).

    50.
    Stan Development Team. RStan: the R interface to Stan. R package v2.17.3 (2018).

    51.
    Rasmussen, C. et al. Beyond clay: towards an improved set of variables for predicting soil organic matter content. Biogeochemistry 137, 297–306 (2018).
    CAS  Article  Google Scholar 

    52.
    Gelman, A. et al. Bayesian Data Analysis 3rd edn (Chapman and Hall, CRC, 2013).

    53.
    Howard, P. J. A. & Howard, D. M. Use of organic carbon and loss-on-ignition to estimate soil organic matter in different soil types and horizons. Biol. Fertil. Soils 9, 306–310 (1990).
    CAS  Article  Google Scholar  More

  • in

    Using hyperspectral imagery to investigate large-scale seagrass cover and genus distribution in a temperate coast

    1.
    York, P. H., Hyndes, G. A., Bishop, M. J. & Barnes, R. S. Faunal assemblages of seagrass ecosystems. In Seagrasses of Australia. Structure, Ecology and Conservation (eds A. W. D. Larkum, G. A. Kendrick, & P. J. Ralph) Ch. 17, 541–588 (Springer, Berlin, 2018).
    2.
    Nordlund, L. M., Koch, E. W., Barbier, E. B. & Creed, J. C. Seagrass ecosystem services and their variability across genera and geographical regions. PLoS ONE 11, e0163091 (2016).
    Article  Google Scholar 

    3.
    Camp, E. F. et al. Mangrove and seagrass beds provide different biogeochemical services for corals threatened by climate change. Front. Mar. Sci. 3, 52 (2016).
    Article  Google Scholar 

    4.
    Gaylard, S. G., Waycott, M. & Lavery, P. S. Review of coast and marine ecosystems in temperate Australia demonstrate a wealth of ecosystem services. Front. Mar. Sci. 7, 453 (2020).
    Article  Google Scholar 

    5.
    Burkholder, J. M., Tomasko, D. A. & Touchette, B. W. Seagrasses and eutrophication. J. Exp. Mar. Biol. Ecol. 350, 46–72 (2007).
    Article  Google Scholar 

    6.
    Kendrick, G. A. et al. Demographic and genetic connectivity: the role and consequences of reproduction, dispersal and recruitment in seagrasses. Biol. Rev. 92, 921–938 (2017).
    Article  Google Scholar 

    7.
    Kendrick, G. A. et al. Australian seagrass seascapes: present understanding and future research directions. In Seagrasses of Australia. Structure, Ecology and Conservation (eds Anthony W.D. Larkum, Gary A. Kendrick, & Peter J. Ralph) Ch. 9, 257–286 (Springer, Berlin, 2018).

    8.
    Hossain, M. S., Bujang, J. S., Zakaria, M. H. & Hashim, M. The application of remote sensing to seagrass ecosystems: an overview and future research prospects. Int. J. Remote Sens. 36, 61–114 (2015).
    Article  ADS  Google Scholar 

    9.
    Waycott, M. et al. Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proc. Natl. Acad. Sci. USA 106, 12377–12381 (2009).
    CAS  Article  ADS  Google Scholar 

    10.
    Lefcheck, J. S. et al. Long-term nutrient reductions lead to the unprecedented recovery of a temperate coastal region. Proc. Natl. Acad. Sci. USA 115, 3658–3662 (2018).
    Article  ADS  Google Scholar 

    11.
    Tomasko, D. et al. Widespread recovery of seagrass coverage in Southwest Florida (USA): temporal and spatial trends and management actions responsible for success. Mar. Pollut. Bull. 135, 1128–1137 (2018).
    CAS  Article  Google Scholar 

    12.
    Carmen, B. et al. Recent trend reversal for declining European seagrass meadows. Nat. Commun. 10, 3356 (2019).
    Article  ADS  Google Scholar 

    13.
    Reise, K. & Kohlus, J. Seagrass recovery in the northern Wadden Sea?. Helgol. Mar. Res. 62, 77 (2008).
    Article  ADS  Google Scholar 

    14.
    Kendrick, G. A., Holmes, K. W. & Niel, K. P. V. Multi-scale spatial patterns of three seagrass species with different growth dynamics. Ecography 31, 191–200 (2008).
    Article  Google Scholar 

    15.
    Kirkman, H. Community structure in seagrasses in southern Western Australia. Aquat. Bot. 21, 363–375 (1985).
    Article  Google Scholar 

    16.
    Rasheed, M. A. Recovery and succession in a multi-species tropical seagrass meadow following experimental disturbance: the role of sexual and asexual reproduction. J. Exp. Mar. Biol. Ecol. 310, 13–45 (2004).
    Article  Google Scholar 

    17.
    Fearns, P. R. C., Klonowski, W., Babcock, R. C., England, P. & Phillips, J. Shallow water substrate mapping using hyperspectral remote sensing. Cont. Shelf Res. 31, 1249–1259 (2011).
    Article  ADS  Google Scholar 

    18.
    Kilminster, K. et al. Unravelling complexity in seagrass systems for management: Australia as a microcosm. Sci. Total Environ. 534, 97–109 (2015).
    CAS  Article  ADS  Google Scholar 

    19.
    Tanner, J. E. et al. Seagrass rehabilitation off metropolitan Adelaide: a case study of loss, action, failure, and success. Ecol. Manage. Restor. 15, 168–179 (2014).
    Article  Google Scholar 

    20.
    Sherman, C. D. et al. Reproductive, dispersal and recruitment strategies in australian seagrasses. In Seagrasses of Australia. Structure, Ecology and Conservation (eds Anthony W.D. Larkum, Gary A. Kendrick, & Peter J. Ralph) Ch. 8, 213–256 (Springer, Berlin, 2018).

    21.
    Hart, D. Near-shore seagrass change between 1949 and 1996 mapped using digital aerial orthophotography, metropolitan Adelaide area, Largs Bay-Aldinga, South Australia. A report prepared for the South Australian EPA. 12 (Department of Environment and Natural Resources, Adelaide, South Australia, 1997).

    22.
    Cameron, J. Near-shore seagrass change between 1995/6 and 2002 mapped using digital aerial orthophotography, metropolitan Adelaide area, North Haven-Sellicks Beach, South Australia. 21 (South Australian Department for Environment and Heritage, Adelaide, South Australia, 2003).

    23.
    Cameron, J. Near-shore seagrass change between 2002 and 2007 mapped using digital aerial orthophotography, metropolitan Adelaide area, Port Gawler-Marino, South Australia. 27 (Environment Protection Authority and Department for Environment and Heritage, Adelaide, South Australia, 2008).

    24.
    Hart, D. Seagrass extent change 2007–13 – Adelaide coastal waters. DEWNR technical note 2013/07. 19 (Department of Environment Water and Natural Resources, Adelaide, South Australia, 2013).

    25.
    Pu, R., Bell, S., Baggett, L., Meyer, C. & Zhao, Y. Discrimination of seagrass species and cover classes with in situ hyperspectral data. J. Coast. Res. 28, 1330–1344 (2012).
    Article  Google Scholar 

    26.
    Hedley, J. D., Harborne, A. R. & Mumby, P. J. Simple and robust removal of sun glint for mapping shallow-water benthos. Int. J. Remote Sens. 26, 2107–2112 (2005).
    Article  ADS  Google Scholar 

    27.
    Blackburn, D. T. & Dekker, A. G. Remote sensing study of marine and coastal features and interpretation of changes in relation to natural and anthropogenic processes. Final Technical Report. ACWS Technical Report No.6 prepared for the Adelaide Coastal Waters Study Steering Committee. 177 (David Blackburn Environmental Pty Ltd and CSIRO Land and Water, Adelaide, South Australia, 2006).

    28.
    Bryars, S. & Rowling, K. Benthic habitats of Eastern Gulf St Vincent: major changes in benthic cover and composition following European settlement of Adelaide. Trans. R. Soc S. Aust. 133, 318–338 (2009).
    Google Scholar 

    29.
    Kuo, J., Cambridge, M. L. & Kirkman, H. Anatomy and structure of australian seagrasses. In Seagrasses of Australia. Structure, Ecology and Conservation (eds Anthony W.D. Larkum, Gary A. Kendrick, & Peter J. Ralph) Ch. 4, 93–125 (Springer, Berlin, 2018).

    30.
    Neverauskas, V. P. Monitoring seagrass beds around a sewage sludge outfall in South Australia. Mar. Pollut. Bull. 18, 158–164 (1987).
    CAS  Article  Google Scholar 

    31.
    Bryars, S., Collings, G. & Miller, D. Nutrient exposure causes epiphytic changes and coincident declines in two temperate Australian seagrasses. Mar. Ecol. Prog. Ser. 441, 89–103 (2011).
    CAS  Article  ADS  Google Scholar 

    32.
    Neverauskas, V. P. Accumulation of periphyton biomass on artificial substrates deployed near a sewage sludge outfall in South Australia. Est. Coast. Shelf Sci. 25, 509–517 (1987).
    Article  ADS  Google Scholar 

    33.
    Burnell, O. W., Connell, S. D., Irving, A. D. & Russell, B. D. Asymmetric patterns of recovery in two habitat forming seagrass species following simulated overgrazing by urchins. J. Exp. Mar. Biol. Ecol. 448, 114–120 (2013).
    Article  Google Scholar 

    34.
    Westphalen, G. et al. A review of seagrass loss on the Adelaide metropolitan coastline. Adelaide Coastal Waters Study Technical Report No. 2, August 2004. SARDI Aquatic Sciences Publication No. RD04/0073. 68 (South Australian Research & Development Institute, Adelaide, South Australia, 2004).

    35.
    Bryars, S. & Neverauskas, V. Natural recolonisation of seagrasses at a disused sewage sludge outfall. Aquat. Bot. 80, 283–289 (2004).
    Article  Google Scholar 

    36.
    McDowell, L.-M. & Pfennig, P. Adelaide Coastal Water Quality Improvement Plan (ACWQIP) 162 (Adelaide, South Australia, 2013).
    Google Scholar 

    37.
    Cheshire, A. C. Adelaide Coastal Waters fore-sighting workshop report. Prepared for SA Environment Protection Authority. 102 (Science to Manage Uncertainty, Adelaide, South Australia, 2018).

    38.
    Wilkinson, J. et al. Volumes of inputs, their concentrations and loads received by Adelaide metropolitan coastal waters. ACWS Technical Report No. 18 prepared for the Adelaide Coastal Waters Study Steering Committee. 83 (Flinders Centre for Coastal and Catchment Environments (Flinders University of SA), Adelaide, South Australia, 2005).

    39.
    Pattiaratchi, C., Newgard, J. & Hollings, B. Physical oceanographic studies of Adelaide coastal waters using high resolution modelling, in-situ observations and satellite techniques – Sub Task 2 Final Technical Report. ACWS Technical Report No. 20 prepared for the Adelaide Coastal Waters Study Steering Committee. 92 (School of Environmental Systems Engineering (The University of Western Australia), Crawley, Australia, 2007).

    40.
    van Gils, J., Erftemeijer, P. L. A., Fernandes, M. & Daly, R. Development of the Adelaide Receiving Environment Model. Deltares report 1210877–000. 152 (Delft, the Netherlands, 2017).

    41.
    Gaylard, S., Nelson, M. & Noble, W. The South Australian monitoring, evaluation and reporting program for aquatic ecosystems: Rationale and methods for the assessment of nearshore marine waters. 70 (Environment Protection Authority, Adelaide, South Australia, 2013).

    42.
    Richter, R. & Schläpfer, D. Atmospheric/Topographic Correction for Airborne Imagery, ATCOR-4 User Guide, Version 4.2. 125 (DLR, Wessling, Germany, 2007).

    43.
    Whiteway, T. Australian Bathymetry and Topography Grid. Record 2009/21. (Geoscience Australia, Canberra, 2009). More

  • in

    Fossil evidence for vampire squid inhabiting oxygen-depleted ocean zones since at least the Oligocene

    1.
    Jenkyns, H. C. Geochemistry of oceanic anoxic events. Geochem. Geophy. Geosy. 11, Q03004 (2010).
    Google Scholar 
    2.
    Gambacorta, G., Bersezio, R., Weissert, H. & Erba, E. Onset and demise of Cretaceous oceanic anoxic events: The coupling of surface and bottom oceanic processes in two pelagic basins of the western Tethys. Paleoceanography 31, 732–757 (2016).
    Google Scholar 

    3.
    Palfy, J. & Smith, P. L. Synchrony between Early Jurassic extinction, oceanic anoxic event, and the Karoo–Ferrar flood basalt volcanism. Geology 28, 747–750 (2000).
    Google Scholar 

    4.
    Leckie, R. M., Bralower, T. J. & Cashman, R. Oceanic anoxic events and plankton evolution: Biotic response to tectonic forcing during the mid‐Cretaceous. Paleoceanography 17, 13-11–13-29 (2002).
    Google Scholar 

    5.
    Erba, E. Calcareous nannofossils and Mesozoic oceanic anoxic events. Mar. Micropaleontol. 52, 85–106 (2004).
    Google Scholar 

    6.
    Erbacher, J. V. J. T. & Thurow, J. Influence of oceanic anoxic events on the evolution of mid-Cretaceous radiolaria in the North Atlantic and western Tethys. Mar. Micropaleontol. 30, 139–158 (1997).
    Google Scholar 

    7.
    Harries, P. J. & Little, C. T. The early Toarcian (Early Jurassic) and the Cenomanian–Turonian (Late Cretaceous) mass extinctions: similarities and contrasts. Palaeogeogr. Palaeoclimatol. Palaeoecol. 154, 39–66 (1999).
    Google Scholar 

    8.
    Danise, S., Twitchett, R. J. & Little, C. T. Environmental controls on Jurassic marine ecosystems during global warming. Geology 43, 263–266 (2015).
    CAS  Google Scholar 

    9.
    Dera, G., Toumoulin, A. & De Baets, K. Diversity and morphological evolution of Jurassic belemnites from South Germany. Palaeogeogr. Palaeoclimatol. Palaeoecol. 457, 80–97 (2016).
    Google Scholar 

    10.
    Rita, P., Nätscher, P., Duarte, L. V., Weis, R. & De Baets, K. Mechanisms and drivers of belemnite body-size dynamics across the Pliensbachian–Toarcian crisis. Roy. Soc. Open Sci. 6, 190494 (2019).
    Google Scholar 

    11.
    Chun, C. Aus den Tiefen des Weltmeeres, 88 (ed. Fischer, G.) (Schilderungen von der Deutschen Tiefsee-Expedition, 1903).

    12.
    Seibel, B. A. et al. Vampire blood: respiratory physiology of the vampire squid (Vampyromorpha: Cephalopoda) in relation to the oxygen minimum layer. Exp. Biol. Online 4, 1–10 (1999).
    Google Scholar 

    13.
    Hoving, H. J. T. & Robison, B. H. Vampire squid: Detritivores in the oxygen minimum zone. Proc. Biol. Sci. 279, 4559–4567 (2012).
    PubMed  PubMed Central  Google Scholar 

    14.
    Golikov, A. V. et al. The first global deep-sea stable isotope assessment reveals the unique trophic ecology of Vampire Squid Vampyroteuthis infernalis (Cephalopoda). Sci. Rep. 9, 19099 (2019).
    CAS  PubMed  PubMed Central  Google Scholar 

    15.
    Young, R. & Vecchione, M. Analysis of morphology to determine primary sister taxon relationships within coleoid cephalopods. Am. Malacol. Bull. 12, 91–112 (1996).
    Google Scholar 

    16.
    Strugnell, J. et al. Whole mitochondrial genome of the Ram’s Horn Squid shines light on the phylogenetic position of the monotypic order Spirulida (Haeckel, 1896). Mol. Phylogenet. Evol. 109, 296–301 (2017).
    CAS  Google Scholar 

    17.
    Sanchez, G. et al. Genus-level phylogeny of cephalopods using molecular markers: current status and problematic areas. PeerJ 6, e4331 (2018).
    PubMed  PubMed Central  Google Scholar 

    18.
    Lindgren, A. R. et al. A multi-gene phylogeny of Cephalopoda supports convergent morphological evolution in association with multiple habitat shifts in the marine environment. BMC Evol. Biol. 12, 129 (2012).
    PubMed  PubMed Central  Google Scholar 

    19.
    Tanner, A. R. et al. Molecular clocks indicate turnover and diversification of modern coleoid cephalopods during the Mesozoic marine revolution. Proc. Biol. Sci. 284, 20162818 (2017).
    PubMed  PubMed Central  Google Scholar 

    20.
    Lindgren, A. R., Giribet, G. & Nishiguchi, M. K. A combined approach to the phylogeny of Cephalopoda (Mollusca). Cladistics 20, 454–486 (2004).
    Google Scholar 

    21.
    Fara, E. What are Lazarus taxa? Geol. J. 36, 291–303 (2001).
    Google Scholar 

    22.
    Packard, A. Cephalopods and fish: the limits of convergence. Biol. Rev. 47, 241–307 (1972).
    CAS  Google Scholar 

    23.
    Nixon, M. & Young, J. Z. The Brains and Lives of Cephalopods, 1–406 (Oxford University Press, 2003).

    24.
    Kröger, B. et al. Cephalopod origin and evolution. Bioessays 33, 602–613 (2011).
    Google Scholar 

    25.
    Fuchs, D. Part M, Chapter 9B: the gladius and gladius vestige in fossil Coleoidea. Treatise Online 83, 1–23 (2016).
    Google Scholar 

    26.
    Fuchs, D. et al. The Muensterelloidea: phylogeny and character evolution of Mesozoic stem octopods. Pap. Palaeontol. 6, 31–92 (2019).
    Google Scholar 

    27.
    Fuchs, D. et al. The locomotion system of fossil Coleoidea (Cephalopoda) and its phylogenetic significance. Lethaia 49, 433–454 (2016).
    Google Scholar 

    28.
    Kretzoi, M. Necroteuthis n.gen. (Ceph. Dibr. Necroteuthidae n.f.) aus dem Oligozän von Budapest und das System der Dibranchiata. F.öldt. K.özl. (Bp.) 72, 124–138 (1942).
    Google Scholar 

    29.
    Donovan, D. T. Evolution of the dibranchiate Cephalopoda. Symp. Zool. Soc. Lond. 38, 15–48 (1977).
    Google Scholar 

    30.
    Riegraf, W., Janssen, N., & Schmitt-Riegraf, C. A. in Fossilum Catalogus I. Animalia, Vol. 135 (ed. Westphal, F.), 1–512 (1998).

    31.
    Fuchs, D. Part M, Coleoidea, chapter 23G: systematic descriptions: octobrachia. Treatise Online 138, 1–52 (2020).
    Google Scholar 

    32.
    Schulz, H. M., Bechtel, A. & Sachsenhofer, R. F. The birth of the Paratethys during the Early Oligocene: from Tethys to an ancient Black Sea analogue? Glob. Planet. Change 49, 163–176 (2005).
    Google Scholar 

    33.
    Bojanowski, M. J. et al. The Central Paratethys during Oligocene as an ancient counterpart of the present-day Black Sea: Unique records from the coccolith limestones. Mar. Geol. 403, 301–328 (2018).
    CAS  Google Scholar 

    34.
    Bizikov, V. A. Evolution of the shell in Cephalopoda, 1–448 (VNIRO, 2008).

    35.
    Weaver, P. G. et al. Characterization of organics consistent with β-Chitin preserved in the Late Eocene cuttlefish Mississaepia mississippiensis. PLoS ONE 6, e28195 (2011).
    CAS  PubMed  PubMed Central  Google Scholar 

    36.
    Kaiho, K. Benthic foraminiferal dissolved-oxygen index and dissolved-oxygen levels in the modern ocean. Geology 22, 719–722 (1994).
    CAS  Google Scholar 

    37.
    Bechtel, A. et al. Facies evolution and stratigraphic correlation in the early Oligocene Tard clay of Hungary as revealed by maceral, biomarker and stable isotope composition. Mar. Petrol. Geol. 35, 55–74 (2012).
    CAS  Google Scholar 

    38.
    Donovan, D. T. Part M., Chapter 9C: composition and structure of gladii in fossil Coleoidea. Treatise Online 75, 1–5 (2016).
    Google Scholar 

    39.
    Nagymarosy, A. et al. The effect of the relative sea-level changes in the north Hungarian Paleogene Basin. Geol. Soc. Greece Spec. Publ. 4, 247–253 (1995).
    Google Scholar 

    40.
    Ozsvárt, P. et al. The Eocene-Oligocene climate transition in the Central Paratethys. Palaeogeogr. Palaeoclimatol. Palaeoecol. 459, 471–487 (2016).
    Google Scholar 

    41.
    Nyerges, A., Kocsis, T. Á. & Pálfy, J. Changes in calcareous nannoplankton assemblages around the Eocene-Oligocene climate transition in the Hungarian Palaeogene Basin (Central Paratethys). Hist. Biol. 1–14. https://doi.org/10.1080/08912963.2019.1705295 (2020).
    Article  Google Scholar 

    42.
    Ozsvárt, P. Middle and Late Eocene benthic foraminiferal fauna from the Hungarian Paleogene Basin: systematics and paleoecology. Geol. Pannonica Spec. Pap. 2, 1–129 (2007).
    Google Scholar 

    43.
    Nagymarosy, A. Lower Oligocene nannoplankton in anoxic deposits of the central Paratethys. 8th International Nannoplankton Assoc. Conf., Bremen. J. Nannoplankton Res. 22, 128–129 (2000).
    Google Scholar 

    44.
    Nagymarosy, A. & Voronina, A. A. Calcareous nannoplankton from the Lower Maikopian beds (Early Oligocene, Union of Independent States). In Proc. 4thINA Conf. Prague 1991, Knihovnička ZPN 14b (eds Hamršmíd, B. & Young, J.) 187–221 (Nannoplankton Research, 1992).

    45.
    Murray, J. W. Ecology and Applications of Benthic Foraminifera, 1–426 (Cambridge University Press, 2006).

    46.
    Mørk, A. & Bromley, R. G. Ichnology of a marine regressive systems tract: the Middle Triassic of Svalbard. Polar Res. 27, 339–359 (2008).
    Google Scholar 

    47.
    Báldi, T. Mid-Tertiary Stratigraphy and Paleogeographic Evolution of Hungary, 1–201 (Akadémiai Kiadó, 1986).

    48.
    Khromov, D. N. Distribution patterns in Sepiidae. Smithson. Contr. Zool. 568, 191–206 (1998).
    Google Scholar 

    49.
    Sepkoski, J. J. Jr. A model of onshore-offshore change in faunal diversity. Paleobiology 17, 68–77 (1991).
    Google Scholar 

    50.
    Smith, A. B. & Stockley, B. The geological history of deep-sea colonization by echinoids: roles of surface productivity and deep-water ventilation. P. Roy. Soc. B Biol. Sci. 272, 865–869 (2005).
    Google Scholar 

    51.
    Thuy, B. et al. First glimpse into Lower Jurassic deep-sea biodiversity: in situ diversification and resilience against extinction. P. Roy. Soc. B Biol. Sci. 281, 20132624 (2014).
    Google Scholar 

    52.
    Jacobs, D. K. & Lindberg, D. R. Oxygen and evolutionary patterns in the sea: onshore/offshore trends and recent recruitment of deep-sea faunas. Proc. Natl Acad. Sci. USA 95, 9396–9401 (1998).
    CAS  Google Scholar 

    53.
    Zeidberg, L. D. & Robison, B. H. Invasive range expansion by the Humboldt squid, Dosidicus gigas, in the eastern North Pacific. Proc. Natl Acad. Sci. USA 104, 12948–12950 (2007).
    CAS  Google Scholar 

    54.
    Rogers, A. D. The role of the oceanic oxygen minima in generating biodiversity in the deep sea. Deep Sea Res. Pt. II 47, 119–148 (2000).
    Google Scholar 

    55.
    Levin, L. A. Oxygen minimum zone benthos: adaptation and community response to hypoxia. Oceanogr. Mar. Biol. Annu. Rev. 41, 1–45 (2003).
    Google Scholar 

    56.
    Childress, J. J. & Seibel, B. A. Life at stable low oxygen levels: adaptations of animals to oceanic oxygen minimum layers. J. Exp. Biol. 201, 1223–1232 (1998).
    CAS  Google Scholar 

    57.
    Gooday, A. J. et al. Habitat heterogeneity and its influence on benthic biodiversity in oxygen minimum zones. Mar. Ecol. 31, 125–147 (2010).
    Google Scholar 

    58.
    Wood, R. & Erwin, D. H. Innovation not recovery: dynamic redox promotes metazoan radiations. Biol. Rev. 93, 863–873 (2018).
    Google Scholar 

    59.
    Hermoso, M., Minoletti, F. & Pellenard, P. Black shale deposition during Toarcian super‐greenhouse driven by sea level. Clim 9, 2703–2712 (2013).
    Google Scholar 

    60.
    Kruta, I. et al. Proteroctopus ribeti in coleoid evolution. Paleontology 59, 767–773 (2016).
    Google Scholar 

    61.
    Wilby, P. R., Briggs, D. E. & Riou, B. Mineralization of soft-bodied invertebrates in a Jurassic metalliferous deposit. Geology 24, 847–850 (1996).
    CAS  Google Scholar 

    62.
    Etter, W. in Exceptional fossil preservation. A Unique View on the Evolution of Marine Life (eds Bottjer, D. J., Etter, W., Hagadorn, J. W. & Tang, C. M.) 293–305 (Columbia University Press, 2002).

    63.
    Charbonnier, S., Vannier, J., Gaillard, C., Bourseau, J.-P. & Hantzpergue, P. The La Voulte Lagerstätte (Callovian): Evidence for a deep water setting from sponge and crinoid communities. Palaeogeogr. Palaeoclimatol. Palaeoecol. 250, 216–236 (2007).
    Google Scholar 

    64.
    Charbonnier, S., Audo, D., Caze, B. & Biot, V. The La Voulte-sur-Rhône Lagerstätte (Middle Jurassic, France). CR Palevol 13, 369–381 (2014).
    Google Scholar 

    65.
    Vannier, J., Schoenemann, B., Gillot, B., S. Charbonnier, S. & Clarkson, E. Exceptional preservation of eye structure in arthropod visual predators from the Middle Jurassic. Nat. Commun. 7, 10320 (2016).
    CAS  PubMed  PubMed Central  Google Scholar 

    66.
    Audo, D. et al. palaeoecology of Voulteryon parvulus (eucrustacea, polychelida) from the Middle Jurassic of La Voulte-sur-Rhône Fossil-Lagerstätte (France). Sci. Rep. 9, 1–13 (2019).
    CAS  Google Scholar 

    67.
    Viohl, G. in Solnhofen. Ein Fenster in die Jurazeit. (eds Arratia, G., Schultze, H.-P., Tischlinger, H. & Viohl, G.) 56–62 (Verlag Dr. Friedrich Pfeil, 2015).

    68.
    Engeser, T. & Reitner, J. Teuthiden aus dem Unterapt (“Töck”) von Helgoland (Schleswig-Holstein, Norddeutschland). Pal. Z. 59, 245–260 (1985).
    Google Scholar 

    69.
    Mutterlose, J., Pauly, S. & Steuber, T. Temperature controlled deposition of early Cretaceous (Barremian–early Aptian) black shales in an epicontinental sea. Palaeogeogr. Palaeoclimatol. Palaeoecol. 273, 330–345 (2009).
    Google Scholar 

    70.
    Heldt, M., Mutterlose, J., Berner, U. & Erbacher, J. First high-resolution δ13C-records across black shales of the Early Aptian Oceanic Anoxic Event 1a within the mid-latitudes of northwest Europe (Germany, Lower Saxony Basin). Newsl. Stratigr. 45, 151–169 (2012).
    Google Scholar 

    71.
    Bottini, C. & Mutterlose, J. Integrated stratigraphy of Early Aptian black shalesin the Boreal Realm: calcareous nanofossil and stable isotope evidence forglobal and regional processes. Newsl. Stratigr. 45, 115–137 (2012).
    Google Scholar 

    72.
    Landman, N. H. et al. Ammonite extinction and nautilid survival at the end of the Cretaceous. Geology 42, 707–710 (2014).
    CAS  Google Scholar 

    73.
    Fuchs, D., Laptikhovsky, V., Nikolaeva, S., Ippolitov, A. & Rogov, M. Evolution of reproductive strategies in coleoid mollusks. Paleobiology 46, 82–103 (2020).
    Google Scholar 

    74.
    Tajika, A., Nützel, A. & Klug, C. The old and the new plankton: ecological replacement of associations of mollusc plankton and giant filter feeders after the Cretaceous? PeerJ 6, e4219 (2018).
    PubMed  PubMed Central  Google Scholar 

    75.
    Lu, C. C. & Clarke, M. R. Vertical distribution of cephalopods at 40°N, 53°N and 60°N at 20°W in the North Atlantic. J. Mar. Biol. Assoc. U.K. 55, 143–163 (1975).
    Google Scholar 

    76.
    Clements, T., Colleary, C., De Baets, K. & Vinther, J. Buoyancy mechanisms limit preservation of coleoid cephalopod soft tissues in Mesozoic Lagerstätten. Palaeontology 60, 1–14 (2017).
    Google Scholar 

    77.
    Košťák, M., Kohout, O., Mazuch, M. & Čech, S. An unusual occurrence of vascoceratid ammonites in the Bohemian Cretaceous Basin (Czech Republic) marks the lower Turonian boundary between the Boreal and Tethyan realms in central Europe. Cret. Res. 108, 104338 (2020).
    Google Scholar 

    78.
    Oji, T. in Palaeobiology II (eds Briggs, D. E. G. & Crowther, P. R.) 444–447 (Blackwell Science Ltd, 2001).

    79.
    Báldi, T. A. in Geológiai Kirándulások Magyarország Közepén (ed. Palotai, M.) 94–129 (Hantken Kiadó, 2010).

    80.
    Tari, G. et al. Paleogene retroarc flexural basin beneath the Neogene Pannonian Basin: a geodynamic model. Tectonophysics 226, 433–455 (1993).
    Google Scholar 

    81.
    Švábenická, L. et al. Biostratigraphy and paleoenvironmental changes on the transition from the Menilite to Krosno lithofacies (Western Carpathians, Czech Republic). Geol. Carpath. 58, 237–262 (2007).
    Google Scholar 

    82.
    Kováč, M. et al. Paleogene palaeogeography and basin evolution of the Western Carpathians, Northern Pannonian domain and adjoining areas. Glob. Planet. Change 140, 9–27 (2016).
    Google Scholar 

    83.
    Nevesskaja, L. A. et al. History of Paratethys. Ann. Inst. Géol. Hong. 70, 337–342 (1987).
    Google Scholar 

    84.
    Lafuente, B., Downs, R. T., Yang, H. & Stone, N. in Highlights in Mineralogical Crystallography (eds Armbruster, T. & Danisi, R. M.) 1–30 (De Gruyter, 2015).

    85.
    McCrea, J. M. On the isotopic chemistry of carbonates and a paleotemperature scale. J. Chem. Phys. 18, 849–857 (1950).
    CAS  Google Scholar 

    86.
    Guiry, M. D. & Guiry, G. M. AlgaeBase (World-wide electronic publication, National University of Ireland, Galway, accessed May 18, 2020); https://www.algaebase.org.

    87.
    Holcová, K. Postmortem transport and resedimentation of foraminiferal tests: relations to cyclical changes of foraminiferal assemblages. Palaeogeogr. Palaeoclimatol. Palaeoecol. 145, 157–182 (1999).
    Google Scholar 

    88.
    Folk, R. L. Nannobacteria and the formation of framboidal pyrite: Textural evidence. J. Earth Syst. Sci. 114, 369–374 (2005).
    Google Scholar 

    89.
    Zágoršek, K. et al. Bryozoan event from Middle Miocene (Early Badenian) lower neritic sediments from the locality Kralice nad Oslavou (Central Paratethys, Moravian part of the Carpathian Foredeep). Int. J. Earth. Sci. 97, 835–850 (2007).

    90.
    Košťák, M. et al. Micro-computed tomography data supporting the manuscript: Fossil evidence for vampire squid inhabiting oxygen-depleted ocean zones since at least the Oligocene. figshare https://doi.org/10.6084/m9.figshare.13526024 (2021). More

  • in

    Environmental stressors, complex interactions and marine benthic communities’ responses

    1.
    Sanderson, E. W. et al. The human footprint and the last of the wild. Bioscience 52, 891–904 (2002).
    Article  Google Scholar 
    2.
    Millenium Ecosystem Assessment. Ecosystems and Human Wellbeing: Wetlands and Water. World Resources Institute, Washington, DC. https://www.millenniumassessment.org/documents/document.358.aspx.pdf (2005).

    3.
    Waters, C. N. et al. The Anthropocene is functionally and stratigraphically distinct from the Holocene. Science 351, aad2622. https://doi.org/10.1126/science.aad2622 (2016).

    4.
    Halpern, B. S. et al. Recent pace of change in human impact on the world’s ocean. Sci. Rep. 9, 11609 (2019).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    5.
    Vinebrooke, R. D. et al. Impacts of multiple stressors on biodiversity and ecosystem functioning: The role of species co-tolerance. Oikos 104, 451–457 (2004).
    Article  Google Scholar 

    6.
    Hewitt, J. E., Ellis, J. I. & Thrush, S. F. Multiple stressors, nonlinear effects and the implications of climate change impacts on marine coastal ecosystems. Glob. Chang. Biol. 22, 2665–2675 (2016).
    ADS  PubMed  Article  Google Scholar 

    7.
    Côté, I., Darling, E. & Brown, C. Interactions among ecosystem stressors and their importance in conservation. Proc. R. Soc. Lond. B Biol. Sci. 283, 20152592. Doi: https://doi.org/10.1098/rspb.2015.2592 (2016).

    8.
    Vörösmarty, C. J. et al. Global threats to human water security and river biodiversity. Nature 467, 555–561 (2010).
    ADS  PubMed  Article  CAS  Google Scholar 

    9.
    Séguin, A., Gravel, D. & Archambault, P. Effect of disturbance regime on Alpha and Beta diversity of rock pools. Biodivers. J. 6, 1–17 (2014).
    Google Scholar 

    10.
    Halpern, B. S. et al. Spatial and temporal changes in cumulative human impacts on the world’s ocean. Nat. Commun. 6, 1–7 (2015).
    Article  CAS  Google Scholar 

    11.
    Folt, C. L., Chen, C. Y., Moore, M. V. & Burnaford, J. Synergism and antagonism among multiple stressors. Limnol. Oceanogr. 44, 864–877 (1999).
    ADS  Article  Google Scholar 

    12.
    Brook, B. W., Sodhi, N. S. & Bradshaw, C. J. A. Synergies among extinction drivers under global change. Trends Ecol. Evol. 23, 453–460 (2008).
    PubMed  Article  Google Scholar 

    13.
    Crain, C. M., Kroeker, K. & Halpern, B. S. Interactive and cumulative effects of multiple human stressors in marine systems. Ecol. Lett. 11, 1304–1315 (2008).
    PubMed  Article  Google Scholar 

    14.
    Piggott, J. J., Townsend, C. R. & Matthaei, C. D. Reconceptualizing synergism and antagonism among multiple stressors. Ecol. Evol. 5, 1538–1547 (2015).
    PubMed  PubMed Central  Article  Google Scholar 

    15.
    Galic, N., Sullivan, L. L., Grimm, V. & Forbes, V. E. When things don’t add up: quantifying impacts of multiple stressors from individual metabolism to ecosystem processing. Ecol. Lett. 21, 568–577 (2018).
    PubMed  Article  Google Scholar 

    16.
    Brown, C. J., Saunders, M. I., Possingham, H. P. & Richardson, A. J. Managing for interactions between local and global stressors of ecosystems. PLoS ONE 8, e65765. https://doi.org/10.1371/journal.pone.0065765 (2013).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    17.
    Brown, C. J., Saunders, M. I., Possingham, H. P. & Richardson, A. J. Interactions between global and local stressors of ecosystems determine management effectiveness in cumulative impact mapping. Divers. Distrib. 20, 538–546 (2014).
    Article  Google Scholar 

    18.
    Kaplan, I. C., Levin, P. S., Burden, M. & Fulton, E. A. Fishing catch shares in the face of global change: A framework for integrating cumulative impacts and single species management. Can. J. Fish. Aquat. Sci. 67, 1968–1982 (2010).
    Article  Google Scholar 

    19.
    Ghedini, G., Russell, B. D. & Connell, S. D. Managing local coastal stressors to reduce the ecological effects of ocean acidification and warming. Water (Switzerland) 5, 1653–1661 (2013).
    Google Scholar 

    20.
    Hodgson, E. E., Halpern, B. S. & Essington, T. E. Moving beyond silos in cumulative effects assessment. Front. Ecol. Evol. 7, 1–8 (2019).
    Article  Google Scholar 

    21.
    Schindler, D. E. & Hilborn, R. Prediction, precaution, and policy under global change. Science 347, 953–954 (2015).
    ADS  CAS  PubMed  Article  Google Scholar 

    22.
    Ling, S. D., Johnson, C. R., Frusher, S. D. & Ridgway, K. R. Overfishing reduces resilience of kelp beds to climate-driven catastrophic phase shift. Proc. Natl. Acad. Sci. USA 106, 22341–22345 (2009).
    ADS  CAS  PubMed  Article  Google Scholar 

    23.
    Munday, P. L. et al. Ocean acidification impairs olfactory discrimination and homing ability of a marine fish. Proc. Natl. Acad. Sci. USA 106, 1848–1852 (2009).
    ADS  CAS  PubMed  Article  Google Scholar 

    24.
    Power, M. Assessing the effects of environmental stressors on fish populations. Aquat. Toxicol. 39, 151–169 (1997).
    CAS  Article  Google Scholar 

    25.
    Hodgson, E. E., Essington, T. E. & Halpern, B. S. Density dependence governs when population responses to multiple stressors are magnified or mitigated. Ecology 98, 2673–2683 (2017).
    PubMed  Article  Google Scholar 

    26.
    Griffith, G. P. & Fulton, E. A. New approaches to simulating the complex interaction effects of multiple human impacts on the marine environment. ICES J. Mar. Sci. 71, 764–774 (2014).
    Article  Google Scholar 

    27.
    Harvey, E., Séguin, A., Nozais, C., Archambault, P. & Gravel, D. Identify effects dominate the impacts of multiple species extinctions on the functioning of complex food webs. Ecology 94, 169–179 (2013).
    PubMed  Article  Google Scholar 

    28.
    Schmolke, A., Brain, R., Thorbek, P., Perkins, D. & Forbes, V. Population modeling for pesticide risk assessment of threatened species—A case study of a terrestrial plant Boltonia decurrens. Environ. Toxicol. Chem. 36, 480–491 (2017).
    CAS  PubMed  Article  Google Scholar 

    29.
    Calosi, P. et al. Adaptation and acclimatization to ocean acidification in marine ectotherms: An in situ transplant experiment with polychaetes at a shallow CO2 vent system. Philos. Trans. R. Soc. B, Biol. Sci. 368, (2013).

    30.
    Alsterberg, C., Sundbäck, K. & Hulth, S. Functioning of a shallow-water sediment system during experimental warming and nutrient enrichment. PLoS One 7, (2012).

    31.
    Rosenberg, R. Eutrophication – The future marine coastal nuisance?. Mar. Pollut. Bull. 16, 227–231 (1985).
    CAS  Article  Google Scholar 

    32.
    Levin, L. A. et al. Effects of natural and human-induced hypoxia on coastal benthos. Biogeosciences 6, 2063–2098 (2009).
    ADS  CAS  Article  Google Scholar 

    33.
    McGlathery, K. J., Sundbäck, K. & Anderson, I. C. Eutrophication in shallow coastal bays and lagoons: The role of plants in the coastal filter. Mar. Ecol. Prog. Ser. 348, 1–18 (2007).
    ADS  CAS  Article  Google Scholar 

    34.
    Attrill, M. J. & Power, M. Effects on invertebrate populations of drought-induced changes in estuarine water quality. Mar. Ecol. Prog. Ser. 203, 133–143 (2000).
    ADS  CAS  Article  Google Scholar 

    35.
    McLusky, D. S., Hull, S. C. & Elliott, M. Variations in the intertidal and subtidal macrofauna and sediments along a salinity gradient in the upper Forth estuary. Netherlands J. Aquat. Ecol. 27, 101–109 (1993).
    Article  Google Scholar 

    36.
    Levinton, J., Doall, M., Ralston, D., Starke, A. & Allam, B. Climate change, precipitation and impacts on an estuarine refuge from disease. PLoS ONE 6(4), e18849 (2011).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    37.
    Greimel, F. et al. Hydropeaking impacts and mitigation in Riverine ecosystem management: Science for governing towards a sustainable future (ed. Schmutz, S. & Sendzimir, J.) 91–110 (Aquatic Ecology Series 8, 2018).

    38.
    Parmesan, C. & Yohe, G. A globally coherent fingerprint of climate change. Nature 421, 37–42 (2003).
    ADS  CAS  PubMed  Article  Google Scholar 

    39.
    Jordà, G., Marbà, N. & Duarte, C. M. Mediterranean seagrass vulnerable to regional climate warming. Nat. Clim. Chang. 2, 821–824 (2012).
    ADS  Article  Google Scholar 

    40.
    Lotzel, H. K. & Worm, B. Complex interactions of climatic and ecological controls on macroalgal recruitment. Limnol. Oceanogr. 47, 1734–1741 (2002).
    ADS  Article  Google Scholar 

    41.
    Paerl, H. W. & Scott, J. T. Throwing fuel on the fire: Synergistic effects of excessive nitrogen inputs and global warming on harmful algal blooms. Environ. Sci. Technol. 44, 7756–7758 (2010).
    ADS  CAS  PubMed  Article  Google Scholar 

    42.
    Drejou, E. et al. Biodiversity and habitat assessment of coastal benthic communities in a sub-Arctic industrial harbour area. Water J. 12, 2424. https://doi.org/10.3390/w12092424 (2020).
    Article  Google Scholar 

    43.
    Romero, F., Acuña, V., Font, C., Freixa, A. & Sabater, S. Effects of multiple stressors on river biofilms depend on the time scale. Sci. Rep. 9, 15810. https://doi.org/10.1038/s41598-019-52320-42 (2019).
    ADS  Article  PubMed  PubMed Central  Google Scholar 

    44.
    Borja, A., Franco, J. & Pérez, V. A. A marine biotic index to establish the ecological quality of soft-bottom benthos within European estuarine and coastal environmentls. Mar. Pollut. Bull. 40, 1100–1114 (2000).
    CAS  Article  Google Scholar 

    45.
    Bourget, E., Ardisson, P.-L., Lapointe, L. & Daigle, G. Environmental factors as predictors of epibenthic assemblage biomass in the St Lawrence system. Estuar. Coast. Shelf. Sci. 57, 641–652 (2003).
    ADS  CAS  Article  Google Scholar 

    46.
    McLusky, D.S. & Allan, D.G. Aspects of the biology of Macoma balthica (L.) from estuarine Firth of Forth. J. Molluscan Stud. 42, 31–45 (1976).

    47.
    Cottrell, R. S., Kenny, D. B., Hutchison, Z. L. & Last, K. S. The influence of organic material and temperature on the burial tolerance of the blue mussel, Mytilus edulis: Considerations for the management of marine aggregate dredging. PLoS ONE 11, 1. https://doi.org/10.1371/journal.pone.0147534 (2020).
    CAS  Article  Google Scholar 

    48.
    Pearson, T. H. & Rosenberg, R. Macrobenthic succession in relation to organic enrichment and pollution of the marine environment. Oceanogr. Mar. Biol. 16, 229–311 (1978).
    Google Scholar 

    49.
    Ratcliffe, P.J., Jones, N.V. & Walters, N.J. The survival of Macoma balthica (L.) in mobile sediments. In Feeding and Survival Strategies of Estuarine Organisms (ed. Jones, N.V & Wolff, W.J.) 91–108 (Plenum Press, 1981).

    50.
    Riaux-Gobin, C. & Klein, B. Microphytobenthic biomass measurement using HPLC and conventional pigment analysis. In Handbooks of Methods in Aquatic Microbial Ecology, (ed. Kemp, P.F., Sherr, B.F., Sherr, E.B. & Cole, J.J.) 369–376 (Lewis Publishers, 1993).

    51.
    Davies, B. E. Loss-on-ignition as an estimate of soil organic matter. Soil Sci. Soc. Am. J. 38, 150–151 (1974).
    ADS  Article  Google Scholar 

    52.
    Wentworth, C. K. A scale of grade and class terms for clastic sediments. J. Geol. 30, 377–392 (1922).
    ADS  Article  Google Scholar 

    53.
    Folk, R. L. & Ward, W. C. Brazos River Bar: a study in the significance of grain size parameters. J. Sediment. Petrol. 27, 3–26 (1957).
    ADS  Article  Google Scholar 

    54.
    Galbraith, P. et al. Physical oceanographic conditions in the Gulf of St. Lawrence during 2018. DFO Can. Sci. Advis. Sec. Res. Doc. 2019/046, iv + 69 p. (2019).

    55.
    Baden, S., Boström, C., Tobiasson, S., Arponen, H. & Moksnes, P. O. Relative importance of trophic interactions and nutrient enrichment in seagrass ecosystems: A broad-scale field experiment in the Baltic-Skagerrak area. Limnol. Oceanogr. 55, 1435–1448 (2010).
    ADS  CAS  Article  Google Scholar 

    56.
    Moksnes, P.-O., Gullström, M., Tryman, K. & Baden, S. Trophic cascades in a temperature seagrass community. Oikos 117, 763–777 (2008).
    Article  Google Scholar 

    57.
    Bonsdorff, E. Establisment, growth and dynamics of a Macoma balthica (L.) population. Limnologica. 15, 403–405 (1984)

    58.
    Castañeda, R. A., Cvetanovska, E., Hamelin, K. M., Simard, M. A. & Ricciardi, A. Distribution, abundance and condition of an invasive bivalve (Corbicula fluminea) along an artificial thermal gradient in the St Lawrence River. Aquat. Invasions. 13, 379–392 (2018).
    Article  Google Scholar 

    59.
    Baden, S. P. & Eriksson, S. P. Role, routes and effects of manganese in crustaceans. Oceanogr. Mar. Biol. Ann. Rev. 44, 61–83 (2006).
    Google Scholar 

    60.
    Page, T. M., Worthington, S., Calosi, P. & Stillman, J. H. Effects of elevated pCO2 on crab survival and exoskeleton composition depend on shell function and species distribution: A comparative analysis of carapace and claw mineralogy across four porcelain crab species from different habitats. ICES J. Mar. Sci. 74, 1021–1032 (2017).
    Article  Google Scholar 

    61.
    Small, D., Calosi, P., White, D., Spicer, J. I. & Widdicombe, S. Impact of medium-term exposure to CO2 enriched seawater on the physiological functions of the velvet swimming crab Necora puber. Aquat. Biol. 10, 11–21 (2010).
    Article  Google Scholar 

    62.
    Marchant, H. K., Calosi, P. & Spicer, J. I. Short-term exposure to hypercapnia does not compromise feeding, acid-base balance or respiration of Patella vulgata but surprisingly is accompanied by radula damage. J. Mar. Biol. Assoc. UK 90, 1379–1384 (2010).
    Article  Google Scholar 

    63.
    Horne, F.R. & Tarsitano, S. The mineralization and biomechanics of the exoskeleton. In The Biology and Fisheries of the Slipper Lobster (ed. Lavalli, K.L & Spanier, E.) 183–189 (CRC Press, 2007).

    64.
    Tao, J., Zhou, D., Zhang, Z., Xu, X. & Tang, R. Magnesium-aspartate-based crystallization switch inspired from shell molt of crustacean. Proc. Natl. Acad. Sci. USA 106, 22096–22101 (2009).
    ADS  CAS  PubMed  Article  Google Scholar 

    65.
    Menu-Courey, K. et al. Energy metabolism and survival of the juvenile recruits of the American lobster (Homarus americanus) exposed to a gradient of elevated seawater pCO2. Mar. Environ. Res. 143, 111–123 (2019).
    CAS  PubMed  Article  Google Scholar 

    66.
    Siddon, E. C., Heintz, R. A. & Mueter, F. J. Conceptual model of energy allocation in walleye pollock (Theragra chalcogramma) from age-0 to age-1 in the southeastern Bering Sea. Deep Sea Res. Part II Top. Stud. Oceanogr. 94, 140–149 (2013).

    67.
    Anderson, M. J. Permanova: A fortran computer program for permutational multivariate analysis of variance (University of Auckland, Auckland, Department of Statistics, 2005).
    Google Scholar 

    68.
    Clarke, K.R & Gorley, R.N. PRIMER v6: User Manual/Tutorial (Plymouth Routines in Multivariate Ecological Research). PRIMER-E, Plymouth (2006).

    69.
    Sih, A., Englund, G. & Wooster, D. Emergent impacts of multiple predators on prey. Trends Ecol. Evol. 13, 350–355 (1998).
    CAS  PubMed  Article  Google Scholar 

    70.
    Thornton, D. C. O., Dong, L. F., Underwood, G. J. C. & Nedwell, D. B. Factors affecting microphytobenthic biomass, species composition and production in the Colne Estuary (UK). Aquat. Microb. Ecol. 27, 285–300 (2002).
    Article  Google Scholar 

    71.
    Pinckney, J., Paerl, H. W. & Fitzpatrick, M. Impacts of seasonality and nutrients on microbial mat community structure and function. Mar. Ecol. Prog. Ser. 123, 207–216 (1995).
    ADS  Article  Google Scholar 

    72.
    Lin, J. & Hines, A. H. Effects of suspended food availability on the feeding mode and burial depth of the Baltic clam Macoma balthica. Oikos 69, 28–36 (1994).
    Article  Google Scholar 

    73.
    Bougrier, S., Hawkins, A. J. S. & Héral, M. Preingestive selection of different microalgal mixtures in Crassostrea gigas and Mytilus edulis, analyzed by flow cytometry. Aquaculture 150, 123–134 (1997).
    Article  Google Scholar 

    74.
    Cognie, B., Barillé, L. & Rincé, Y. Selective feeding of the oyster Crassostrea gigas fed on a natural microphytobenthos assemblage. Estuaries Coast. 24, 126–131 (2001).
    Article  Google Scholar 

    75.
    Camargo, J. A. & Alonso, Á. Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems: A global assessment. Environ. Int. 32, 831–849 (2006).
    CAS  PubMed  Article  Google Scholar 

    76.
    Davenport, J. & Redpath, K.J. Copper and the mussel Mytilus edulis (L.) in Toxins, drugs and pollutants in marine animals (ed. Bolis, L., Zadunaisky, J. & Gilles, R.) 176–189 (Springler-Verlag, 1984).

    77.
    Gosling, E. Bivalve Molluscs: Biology, Ecology and Culture (ed. Blackwell Publishing) 95–96 (Wiley-Blackwell, 2003).

    78.
    Hauton, C. Physiological responses: Effects of salinity as a stressor to aquatic in- vertebrates. In Stressors in the Marine Environment: Physiological and Ecological Responses; Societal Implications (ed. Solan, M & Whiteley, N.M.) 3–24 (Oxford University Press, 2016)

    79.
    Almada-Villela, P. C. The effects of reduced salinity on the shell growth of small Mytilus edulis. J. Mar. Biol. Assoc. U.K. 64, 171–182 (1984).

    80.
    Kautsky, N., Johannesson, K. & Tedengren, M. Genotypic and phenotypic differences between Baltic and North Sea populations of Mytilus edulis evaluated through reciprocal transplantations. I. Growth and morphology. Mar. Ecol. Prog. Ser. 59, 203–210 (1990).

    81.
    Westerbom, M., Kilpi, M. & Mustonen, O. Blue mussels, Mytilus edulis, at the edge of the range: Population structure, growth and biomass along a salinity gradient in the north-eastern Baltic Sea. Mar. Biol. 140, 991–999 (2002).
    Article  Google Scholar 

    82.
    Qiu, J., Tremblay, R. & Bourget, E. Ontogenetic changes in hyposaline tolerance in the mussels Mytilus edulis and M. trossulus: implications for distribution. Mar. Ecol. Prog. Ser. 228, 143–152 (2002).

    83.
    Cederwal, H. & Elmgren, R. Biomass increase of benthic macro- fauna demonstrates eutrophication of the Baltic Sea. Ophelia Suppl. 1, 287–304 (1980).
    Google Scholar 

    84.
    Josefson, A. B. & Rasmussen, B. Nutrient retention by benthic macrofaunal biomass of Danish estuaries: Importance of nutrient load and residence time. Estuar. Coast. Shelf Sci. 50, 205–216 (2000).
    ADS  CAS  Article  Google Scholar 

    85.
    Carmichael, R. H., Shriver, A. C. & Valiela, I. Bivalve response to estuarine eutrophication: The balance between enhanced food supply and habitat alterations. J. Shellfish Res. 31, 1–11 (2012).
    Article  Google Scholar 

    86.
    Lin, J. & Hines, A. Effects of suspended food availability on the feeding mode and burial depth of the Baltic clam. Macoma balthica. Oiko 69, 28–36 (1994).
    Article  Google Scholar 

    87.
    Findlay, H. S. et al. Comparing the impact of high CO2 on calcium carbonate structures in different marine organisms. Mar. Biol. Res. 7, 565–575 (2011).
    Article  Google Scholar 

    88.
    Ries, J.B., Cohen. A.L. & McCorkle, D.C. Marine calcifiers exhibit mixed responses to CO2-induced ocean acidification. Geology 37, 1131−1134 (2009).

    89.
    Michaelidis, B., Ouzounis, C., Paleras, A. & Pörtner, H. O. Effects of long-term moderate hypercapnia on acid-base balance and growth rate in marine mussels Mytilus galloprovincialis. Mar. Ecol. Prog. Ser. 293, 109–118 (2005).
    ADS  Article  Google Scholar 

    90.
    Whiteley, N. M., Scott, J. L., Breeze, S. J. & McCann, L. Effects of water salinity on acid-base balance in decapod crustaceans. J. Exp. Biol. 204, 1003–1011 (2001).
    CAS  PubMed  Google Scholar 

    91.
    Darling, E. S. & Côté, I. M. Quantifying the evidence for ecological synergies. Ecol. Lett. 11, 1278–1286 (2008).
    PubMed  Article  Google Scholar 

    92.
    Withey, J. C. et al. Maximizing return on conservation investment in the conterminous USA. Ecol. Lett. 15, 1249–1256 (2012).
    PubMed  Article  Google Scholar  More