More stories

  • in

    Large-scale farmer-led experiment demonstrates positive impact of cover crops on multiple soil health indicators

    1.
    Seifert, C. A., Azzari, G. & Lobell, D. B. Satellite detection of cover crops and their effects on crop yield in the Midwestern United States. Environ. Res. Lett. 13, 064033 (2018).
    ADS  Article  Google Scholar 
    2.
    2017 Census of Agriculture, Summary and State Data (USDA, 2019); https://www.nass.usda.gov/Publications/AgCensus/2017/Full_Report/Volume_1,_Chapter_1_US/usv1.pdf

    3.
    Basche, A. D. et al. Soil water improvements with the long-term use of a winter rye cover crop. Agric. Water Manag. 172, 40–50 (2016).
    Article  Google Scholar 

    4.
    Schipanski, M. E. et al. A framework for evaluating ecosystem services provided by cover crops in agroecosystems. Agric. Syst. 125, 12–22 (2014).
    Article  Google Scholar 

    5.
    Blanco-Canqui, H. et al. Cover crops and ecosystem services: insights from studies in temperate soils. Agron. J. 107, 2449–2474 (2015).
    CAS  Article  Google Scholar 

    6.
    Andrews, S. S. et al. On‐farm assessment of soil quality in California’s central valley. Agron. J. 94, 12–23 (2002).
    Article  Google Scholar 

    7.
    Welch, R. Y., Behnke, G. D., Davis, A. S., Masiunas, J. & Villamil, M. B. Using cover crops in headlands of organic grain farms: effects on soil properties, weeds and crop yields. Agric. Ecosyst. Environ. 216, 322–332 (2016).
    Article  Google Scholar 

    8.
    Wyland, L. Winter cover crops in a vegetable cropping system: impacts on nitrate leaching, soil water, crop yield, pests and management costs. Agric. Ecosyst. Environ. 59, 1–17 (1996).
    Article  Google Scholar 

    9.
    Karlen, D. L. & Doran, J. W. Cover crop management effects on soybean and corn growth and nitrogen dynamics in an on-farm study. Am. J. Altern. Agric. 6, 71–82 (1991).
    Article  Google Scholar 

    10.
    Koch, R. L. et al. On-farm evaluation of a fall-seeded rye cover crop for suppression of soybean aphid (Hemiptera: Aphididae) on soybean: suppression of soybean aphid with rye cover crop. Agric. For. Entomol. 17, 239–246 (2015).
    Article  Google Scholar 

    11.
    Sayre, N. F., deBuys, W., Bestelmeyer, B. T. & Havstad, K. M. “The Range Problem” after a century of rangeland science: new research themes for altered landscapes. Rangeland Ecol. Manag. 65, 545–552 (2012).
    Article  Google Scholar 

    12.
    Kladivko, E. J. et al. State-wide soil health programs for education and on-farm assessment: lessons learned. J. Soil Water Conserv. 74, 12A–17A (2019).
    Article  Google Scholar 

    13.
    Poeplau, C. & Don, A. Carbon sequestration in agricultural soils via cultivation of cover crops – a meta-analysis. Agric. Ecosyst. Environ. 200, 33–41 (2015).
    CAS  Article  Google Scholar 

    14.
    Vermeulen, S. et al. A global agenda for collective action on soil carbon. Nat. Sustain. 2, 2–4 (2019).
    Article  Google Scholar 

    15.
    Lehmann, J., Bossio, D. A., Kögel-Knabner, I. & Rillig, M. C. The concept and future prospects of soil health. Nat. Rev. Earth Environ. 1, 544–553 (2020).
    ADS  PubMed  Article  Google Scholar 

    16.
    Stewart, R. D. et al. What we talk about when we talk about soil health. Agric. Environ. Lett. 3, 180033 (2018).
    Article  CAS  Google Scholar 

    17.
    Norris, C. E. et al. Introducing the North American project to evaluate soil health measurements. Agron. J. 112, 3195–3215 (2020).
    Article  Google Scholar 

    18.
    Sanderman, J., Savage, K. & Dangal, S. R. S. Mid‐infrared spectroscopy for prediction of soil health indicators in the United States. Soil Sci. Soc. Am. J. 84, 251–261 (2020).
    ADS  CAS  Article  Google Scholar 

    19.
    Rorick, J. D. & Kladivko, E. J. Cereal rye cover crop effects on soil carbon and physical properties in Southeastern Indiana. J. Soil Water Conserv. 72, 260–265 (2017).
    Article  Google Scholar 

    20.
    Faé, G. S. et al. Integrating winter annual forages into a no-till corn silage system. Agron. J. 101, 1286–1296 (2009).
    Article  Google Scholar 

    21.
    Wegner, B. R. et al. Soil response to corn residue removal and cover crops in eastern South Dakota. Soil Sci. Soc. Am. J. 79, 1179–1187 (2015).
    ADS  CAS  Article  Google Scholar 

    22.
    Karlen, D. L., Goeser, N. J., Veum, K. S. & Yost, M. A. On-farm soil health evaluations: challenges and opportunities. J. Soil Water Conserv. 72, 26A–31A (2017).
    Article  Google Scholar 

    23.
    Wade, J. et al. Improved soil biological health increases corn grain yield in N fertilized systems across the Corn Belt. Sci. Rep. 10, 3917 (2020).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    24.
    Bossio, D. A. et al. The role of soil carbon in natural climate solutions. Nat. Sustain. 3, 391–398 (2020).
    Article  Google Scholar 

    25.
    Stanton, C. Y. et al. Managing cropland and rangeland for climate mitigation: an expert elicitation on soil carbon in California. Clim. Change 147, 633–646 (2018).
    ADS  CAS  Article  Google Scholar 

    26.
    Lugato, E., Leip, A. & Jones, A. Mitigation potential of soil carbon management overestimated by neglecting N2O emissions. Nat. Clim. Change 8, 219–223 (2018).
    ADS  CAS  Article  Google Scholar 

    27.
    Kaye, J. P. & Quemada, M. Using cover crops to mitigate and adapt to climate change. A review. Agron. Sustain. Dev. 37, 4 (2017).
    Article  Google Scholar 

    28.
    Basche, A. D. & DeLonge, M. S. Comparing infiltration rates in soils managed with conventional and alternative farming methods: a meta-analysis. PLoS ONE 14, e0215702 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    29.
    Basche, A. & DeLonge, M. The impact of continuous living cover on soil hydrologic properties: a meta-analysis. Soil Sci. Soc. Am. J. 81, 1179–1190 (2017).
    ADS  CAS  Article  Google Scholar 

    30.
    Roper, W. R., Osmond, D. L. & Heitman, J. L. A response to “Reanalysis validates soil health indicator sensitivity and correlation with long‐term crop yields”. Soil Sci. Soc. Am. J. 83, 1842–1845 (2019).
    ADS  CAS  Article  Google Scholar 

    31.
    King, A. E., Ali, G. A., Gillespie, A. W. & Wagner-Riddle, C. Soil organic matter as catalyst of crop resource capture. Front. Environ. Sci. 8, 50 (2020).
    Article  Google Scholar 

    32.
    Oldfield, E. E., Bradford, M. A. & Wood, S. A. Global meta-analysis of the relationship between soil organic matter and crop yields. SOIL 5, 15–32 (2019).
    CAS  Article  Google Scholar 

    33.
    Oldfield, E. E., Wood, S. A. & Bradford, M. A. Direct evidence using a controlled greenhouse study for threshold effects of soil organic matter on crop growth. Ecol. Appl. 30, e02073 (2020).
    PubMed  Article  Google Scholar 

    34.
    Wood, S. A. et al. Opposing effects of different soil organic matter fractions on crop yields. Ecol. Appl. 26, 2072–2085 (2016).
    PubMed  Article  Google Scholar 

    35.
    Fine, A. K., van Es, H. M. & Schindelbeck, R. R. Statistics, scoring functions, and regional analysis of a comprehensive soil health database. Soil Sci. Soc. Am. J. 81, 589 (2017).
    ADS  CAS  Article  Google Scholar 

    36.
    Fine, A. K., Ristow, A., Schindelbeck, R. R. & van Es, H. M. Update of scoring functions for Cornell Soil Health Test. What’s Cropping Up? Blog https://blogs.cornell.edu/whatscroppingup/2016/11/30/update-of-scoring-functions-for-cornell-soil-health-test/ (2016).

    37.
    Bradford, M. A. et al. Discontinuity in the responses of ecosystem processes and multifunctionality to altered soil community composition. Proc. Natl Acad. Sci. USA 111, 14478–14483 (2014).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    38.
    Bradford, M. A. et al. Reply to Byrnes et al.: Aggregation can obscure understanding of ecosystem multifunctionality. Proc. Natl Acad. Sci. USA 111, E5491 (2014).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    39.
    Kettler, T. A., Doran, J. W. & Gilbert, T. L. Simplified method for soil particle-size determination to accompany soil-quality analyses. Soil Sci. Soc. Am. J. 65, 849–852 (2001).
    ADS  CAS  Article  Google Scholar 

    40.
    Moebius, B. N. et al. Evaluation of laboratory-measured soil properties as indicators of soil physical quality. Soil Sci. 172, 895–912 (2007).
    ADS  CAS  Article  Google Scholar 

    41.
    Reynolds, W. & Topp, G. in Soil Sampling and Methods of Analysis (eds Carter, M. R. & Gregorich, E. G.) 981–997 (CRC Press, 2008).

    42.
    Nelson, D. & Sommers, D. in Methods of Soil Analysis. Part 3 (Sparks, D. L., Page, A. L., Helmke, P. A. & Loeppert, R. H.) 961–1010 (Soil Science Society of America, 1996).

    43.
    Weil, R. R., Islam, K. R., Stine, M. A., Gruver, J. B. & Samson-Liebig, S. E. Estimating active carbon for soil quality assessment: a simplified method for laboratory and field use. Am. J. Altern. Agric. 18, 3–17 (2003).
    Article  Google Scholar 

    44.
    Haney, R. L. & Haney, E. B. Simple and rapid laboratory method for rewetting dry soil for incubations. Commun. Soil Sci. Plant Anal. 41, 1493–1501 (2010).
    CAS  Article  Google Scholar 

    45.
    Wright, S. F. & Upadhyaya, A. Extraction of an abundant and unusual protein from soil and comparison with hyphal protein of arbuscular mycorrhizal fungi. Soil Sci. 161, 575–586 (1996).
    ADS  CAS  Article  Google Scholar 

    46.
    Bunnefeld, N. & Phillimore, A. B. Island, archipelago and taxon effects: mixed models as a means of dealing with the imperfect design of nature’s experiments. Ecography 35, 15–22 (2012).
    Article  Google Scholar 

    47.
    Gelman, A. Scaling regression inputs by dividing by two standard deviations. Stat. Med. 27, 2865–2873 (2008).
    MathSciNet  PubMed  Article  Google Scholar 

    48.
    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).
    Article  Google Scholar 

    49.
    R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019).

    50.
    Stan Development Team. RStan: the R interface to Stan. R package v2.17.3 (2018).

    51.
    Rasmussen, C. et al. Beyond clay: towards an improved set of variables for predicting soil organic matter content. Biogeochemistry 137, 297–306 (2018).
    CAS  Article  Google Scholar 

    52.
    Gelman, A. et al. Bayesian Data Analysis 3rd edn (Chapman and Hall, CRC, 2013).

    53.
    Howard, P. J. A. & Howard, D. M. Use of organic carbon and loss-on-ignition to estimate soil organic matter in different soil types and horizons. Biol. Fertil. Soils 9, 306–310 (1990).
    CAS  Article  Google Scholar  More

  • in

    Using hyperspectral imagery to investigate large-scale seagrass cover and genus distribution in a temperate coast

    1.
    York, P. H., Hyndes, G. A., Bishop, M. J. & Barnes, R. S. Faunal assemblages of seagrass ecosystems. In Seagrasses of Australia. Structure, Ecology and Conservation (eds A. W. D. Larkum, G. A. Kendrick, & P. J. Ralph) Ch. 17, 541–588 (Springer, Berlin, 2018).
    2.
    Nordlund, L. M., Koch, E. W., Barbier, E. B. & Creed, J. C. Seagrass ecosystem services and their variability across genera and geographical regions. PLoS ONE 11, e0163091 (2016).
    Article  Google Scholar 

    3.
    Camp, E. F. et al. Mangrove and seagrass beds provide different biogeochemical services for corals threatened by climate change. Front. Mar. Sci. 3, 52 (2016).
    Article  Google Scholar 

    4.
    Gaylard, S. G., Waycott, M. & Lavery, P. S. Review of coast and marine ecosystems in temperate Australia demonstrate a wealth of ecosystem services. Front. Mar. Sci. 7, 453 (2020).
    Article  Google Scholar 

    5.
    Burkholder, J. M., Tomasko, D. A. & Touchette, B. W. Seagrasses and eutrophication. J. Exp. Mar. Biol. Ecol. 350, 46–72 (2007).
    Article  Google Scholar 

    6.
    Kendrick, G. A. et al. Demographic and genetic connectivity: the role and consequences of reproduction, dispersal and recruitment in seagrasses. Biol. Rev. 92, 921–938 (2017).
    Article  Google Scholar 

    7.
    Kendrick, G. A. et al. Australian seagrass seascapes: present understanding and future research directions. In Seagrasses of Australia. Structure, Ecology and Conservation (eds Anthony W.D. Larkum, Gary A. Kendrick, & Peter J. Ralph) Ch. 9, 257–286 (Springer, Berlin, 2018).

    8.
    Hossain, M. S., Bujang, J. S., Zakaria, M. H. & Hashim, M. The application of remote sensing to seagrass ecosystems: an overview and future research prospects. Int. J. Remote Sens. 36, 61–114 (2015).
    Article  ADS  Google Scholar 

    9.
    Waycott, M. et al. Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proc. Natl. Acad. Sci. USA 106, 12377–12381 (2009).
    CAS  Article  ADS  Google Scholar 

    10.
    Lefcheck, J. S. et al. Long-term nutrient reductions lead to the unprecedented recovery of a temperate coastal region. Proc. Natl. Acad. Sci. USA 115, 3658–3662 (2018).
    Article  ADS  Google Scholar 

    11.
    Tomasko, D. et al. Widespread recovery of seagrass coverage in Southwest Florida (USA): temporal and spatial trends and management actions responsible for success. Mar. Pollut. Bull. 135, 1128–1137 (2018).
    CAS  Article  Google Scholar 

    12.
    Carmen, B. et al. Recent trend reversal for declining European seagrass meadows. Nat. Commun. 10, 3356 (2019).
    Article  ADS  Google Scholar 

    13.
    Reise, K. & Kohlus, J. Seagrass recovery in the northern Wadden Sea?. Helgol. Mar. Res. 62, 77 (2008).
    Article  ADS  Google Scholar 

    14.
    Kendrick, G. A., Holmes, K. W. & Niel, K. P. V. Multi-scale spatial patterns of three seagrass species with different growth dynamics. Ecography 31, 191–200 (2008).
    Article  Google Scholar 

    15.
    Kirkman, H. Community structure in seagrasses in southern Western Australia. Aquat. Bot. 21, 363–375 (1985).
    Article  Google Scholar 

    16.
    Rasheed, M. A. Recovery and succession in a multi-species tropical seagrass meadow following experimental disturbance: the role of sexual and asexual reproduction. J. Exp. Mar. Biol. Ecol. 310, 13–45 (2004).
    Article  Google Scholar 

    17.
    Fearns, P. R. C., Klonowski, W., Babcock, R. C., England, P. & Phillips, J. Shallow water substrate mapping using hyperspectral remote sensing. Cont. Shelf Res. 31, 1249–1259 (2011).
    Article  ADS  Google Scholar 

    18.
    Kilminster, K. et al. Unravelling complexity in seagrass systems for management: Australia as a microcosm. Sci. Total Environ. 534, 97–109 (2015).
    CAS  Article  ADS  Google Scholar 

    19.
    Tanner, J. E. et al. Seagrass rehabilitation off metropolitan Adelaide: a case study of loss, action, failure, and success. Ecol. Manage. Restor. 15, 168–179 (2014).
    Article  Google Scholar 

    20.
    Sherman, C. D. et al. Reproductive, dispersal and recruitment strategies in australian seagrasses. In Seagrasses of Australia. Structure, Ecology and Conservation (eds Anthony W.D. Larkum, Gary A. Kendrick, & Peter J. Ralph) Ch. 8, 213–256 (Springer, Berlin, 2018).

    21.
    Hart, D. Near-shore seagrass change between 1949 and 1996 mapped using digital aerial orthophotography, metropolitan Adelaide area, Largs Bay-Aldinga, South Australia. A report prepared for the South Australian EPA. 12 (Department of Environment and Natural Resources, Adelaide, South Australia, 1997).

    22.
    Cameron, J. Near-shore seagrass change between 1995/6 and 2002 mapped using digital aerial orthophotography, metropolitan Adelaide area, North Haven-Sellicks Beach, South Australia. 21 (South Australian Department for Environment and Heritage, Adelaide, South Australia, 2003).

    23.
    Cameron, J. Near-shore seagrass change between 2002 and 2007 mapped using digital aerial orthophotography, metropolitan Adelaide area, Port Gawler-Marino, South Australia. 27 (Environment Protection Authority and Department for Environment and Heritage, Adelaide, South Australia, 2008).

    24.
    Hart, D. Seagrass extent change 2007–13 – Adelaide coastal waters. DEWNR technical note 2013/07. 19 (Department of Environment Water and Natural Resources, Adelaide, South Australia, 2013).

    25.
    Pu, R., Bell, S., Baggett, L., Meyer, C. & Zhao, Y. Discrimination of seagrass species and cover classes with in situ hyperspectral data. J. Coast. Res. 28, 1330–1344 (2012).
    Article  Google Scholar 

    26.
    Hedley, J. D., Harborne, A. R. & Mumby, P. J. Simple and robust removal of sun glint for mapping shallow-water benthos. Int. J. Remote Sens. 26, 2107–2112 (2005).
    Article  ADS  Google Scholar 

    27.
    Blackburn, D. T. & Dekker, A. G. Remote sensing study of marine and coastal features and interpretation of changes in relation to natural and anthropogenic processes. Final Technical Report. ACWS Technical Report No.6 prepared for the Adelaide Coastal Waters Study Steering Committee. 177 (David Blackburn Environmental Pty Ltd and CSIRO Land and Water, Adelaide, South Australia, 2006).

    28.
    Bryars, S. & Rowling, K. Benthic habitats of Eastern Gulf St Vincent: major changes in benthic cover and composition following European settlement of Adelaide. Trans. R. Soc S. Aust. 133, 318–338 (2009).
    Google Scholar 

    29.
    Kuo, J., Cambridge, M. L. & Kirkman, H. Anatomy and structure of australian seagrasses. In Seagrasses of Australia. Structure, Ecology and Conservation (eds Anthony W.D. Larkum, Gary A. Kendrick, & Peter J. Ralph) Ch. 4, 93–125 (Springer, Berlin, 2018).

    30.
    Neverauskas, V. P. Monitoring seagrass beds around a sewage sludge outfall in South Australia. Mar. Pollut. Bull. 18, 158–164 (1987).
    CAS  Article  Google Scholar 

    31.
    Bryars, S., Collings, G. & Miller, D. Nutrient exposure causes epiphytic changes and coincident declines in two temperate Australian seagrasses. Mar. Ecol. Prog. Ser. 441, 89–103 (2011).
    CAS  Article  ADS  Google Scholar 

    32.
    Neverauskas, V. P. Accumulation of periphyton biomass on artificial substrates deployed near a sewage sludge outfall in South Australia. Est. Coast. Shelf Sci. 25, 509–517 (1987).
    Article  ADS  Google Scholar 

    33.
    Burnell, O. W., Connell, S. D., Irving, A. D. & Russell, B. D. Asymmetric patterns of recovery in two habitat forming seagrass species following simulated overgrazing by urchins. J. Exp. Mar. Biol. Ecol. 448, 114–120 (2013).
    Article  Google Scholar 

    34.
    Westphalen, G. et al. A review of seagrass loss on the Adelaide metropolitan coastline. Adelaide Coastal Waters Study Technical Report No. 2, August 2004. SARDI Aquatic Sciences Publication No. RD04/0073. 68 (South Australian Research & Development Institute, Adelaide, South Australia, 2004).

    35.
    Bryars, S. & Neverauskas, V. Natural recolonisation of seagrasses at a disused sewage sludge outfall. Aquat. Bot. 80, 283–289 (2004).
    Article  Google Scholar 

    36.
    McDowell, L.-M. & Pfennig, P. Adelaide Coastal Water Quality Improvement Plan (ACWQIP) 162 (Adelaide, South Australia, 2013).
    Google Scholar 

    37.
    Cheshire, A. C. Adelaide Coastal Waters fore-sighting workshop report. Prepared for SA Environment Protection Authority. 102 (Science to Manage Uncertainty, Adelaide, South Australia, 2018).

    38.
    Wilkinson, J. et al. Volumes of inputs, their concentrations and loads received by Adelaide metropolitan coastal waters. ACWS Technical Report No. 18 prepared for the Adelaide Coastal Waters Study Steering Committee. 83 (Flinders Centre for Coastal and Catchment Environments (Flinders University of SA), Adelaide, South Australia, 2005).

    39.
    Pattiaratchi, C., Newgard, J. & Hollings, B. Physical oceanographic studies of Adelaide coastal waters using high resolution modelling, in-situ observations and satellite techniques – Sub Task 2 Final Technical Report. ACWS Technical Report No. 20 prepared for the Adelaide Coastal Waters Study Steering Committee. 92 (School of Environmental Systems Engineering (The University of Western Australia), Crawley, Australia, 2007).

    40.
    van Gils, J., Erftemeijer, P. L. A., Fernandes, M. & Daly, R. Development of the Adelaide Receiving Environment Model. Deltares report 1210877–000. 152 (Delft, the Netherlands, 2017).

    41.
    Gaylard, S., Nelson, M. & Noble, W. The South Australian monitoring, evaluation and reporting program for aquatic ecosystems: Rationale and methods for the assessment of nearshore marine waters. 70 (Environment Protection Authority, Adelaide, South Australia, 2013).

    42.
    Richter, R. & Schläpfer, D. Atmospheric/Topographic Correction for Airborne Imagery, ATCOR-4 User Guide, Version 4.2. 125 (DLR, Wessling, Germany, 2007).

    43.
    Whiteway, T. Australian Bathymetry and Topography Grid. Record 2009/21. (Geoscience Australia, Canberra, 2009). More

  • in

    Fossil evidence for vampire squid inhabiting oxygen-depleted ocean zones since at least the Oligocene

    1.
    Jenkyns, H. C. Geochemistry of oceanic anoxic events. Geochem. Geophy. Geosy. 11, Q03004 (2010).
    Google Scholar 
    2.
    Gambacorta, G., Bersezio, R., Weissert, H. & Erba, E. Onset and demise of Cretaceous oceanic anoxic events: The coupling of surface and bottom oceanic processes in two pelagic basins of the western Tethys. Paleoceanography 31, 732–757 (2016).
    Google Scholar 

    3.
    Palfy, J. & Smith, P. L. Synchrony between Early Jurassic extinction, oceanic anoxic event, and the Karoo–Ferrar flood basalt volcanism. Geology 28, 747–750 (2000).
    Google Scholar 

    4.
    Leckie, R. M., Bralower, T. J. & Cashman, R. Oceanic anoxic events and plankton evolution: Biotic response to tectonic forcing during the mid‐Cretaceous. Paleoceanography 17, 13-11–13-29 (2002).
    Google Scholar 

    5.
    Erba, E. Calcareous nannofossils and Mesozoic oceanic anoxic events. Mar. Micropaleontol. 52, 85–106 (2004).
    Google Scholar 

    6.
    Erbacher, J. V. J. T. & Thurow, J. Influence of oceanic anoxic events on the evolution of mid-Cretaceous radiolaria in the North Atlantic and western Tethys. Mar. Micropaleontol. 30, 139–158 (1997).
    Google Scholar 

    7.
    Harries, P. J. & Little, C. T. The early Toarcian (Early Jurassic) and the Cenomanian–Turonian (Late Cretaceous) mass extinctions: similarities and contrasts. Palaeogeogr. Palaeoclimatol. Palaeoecol. 154, 39–66 (1999).
    Google Scholar 

    8.
    Danise, S., Twitchett, R. J. & Little, C. T. Environmental controls on Jurassic marine ecosystems during global warming. Geology 43, 263–266 (2015).
    CAS  Google Scholar 

    9.
    Dera, G., Toumoulin, A. & De Baets, K. Diversity and morphological evolution of Jurassic belemnites from South Germany. Palaeogeogr. Palaeoclimatol. Palaeoecol. 457, 80–97 (2016).
    Google Scholar 

    10.
    Rita, P., Nätscher, P., Duarte, L. V., Weis, R. & De Baets, K. Mechanisms and drivers of belemnite body-size dynamics across the Pliensbachian–Toarcian crisis. Roy. Soc. Open Sci. 6, 190494 (2019).
    Google Scholar 

    11.
    Chun, C. Aus den Tiefen des Weltmeeres, 88 (ed. Fischer, G.) (Schilderungen von der Deutschen Tiefsee-Expedition, 1903).

    12.
    Seibel, B. A. et al. Vampire blood: respiratory physiology of the vampire squid (Vampyromorpha: Cephalopoda) in relation to the oxygen minimum layer. Exp. Biol. Online 4, 1–10 (1999).
    Google Scholar 

    13.
    Hoving, H. J. T. & Robison, B. H. Vampire squid: Detritivores in the oxygen minimum zone. Proc. Biol. Sci. 279, 4559–4567 (2012).
    PubMed  PubMed Central  Google Scholar 

    14.
    Golikov, A. V. et al. The first global deep-sea stable isotope assessment reveals the unique trophic ecology of Vampire Squid Vampyroteuthis infernalis (Cephalopoda). Sci. Rep. 9, 19099 (2019).
    CAS  PubMed  PubMed Central  Google Scholar 

    15.
    Young, R. & Vecchione, M. Analysis of morphology to determine primary sister taxon relationships within coleoid cephalopods. Am. Malacol. Bull. 12, 91–112 (1996).
    Google Scholar 

    16.
    Strugnell, J. et al. Whole mitochondrial genome of the Ram’s Horn Squid shines light on the phylogenetic position of the monotypic order Spirulida (Haeckel, 1896). Mol. Phylogenet. Evol. 109, 296–301 (2017).
    CAS  Google Scholar 

    17.
    Sanchez, G. et al. Genus-level phylogeny of cephalopods using molecular markers: current status and problematic areas. PeerJ 6, e4331 (2018).
    PubMed  PubMed Central  Google Scholar 

    18.
    Lindgren, A. R. et al. A multi-gene phylogeny of Cephalopoda supports convergent morphological evolution in association with multiple habitat shifts in the marine environment. BMC Evol. Biol. 12, 129 (2012).
    PubMed  PubMed Central  Google Scholar 

    19.
    Tanner, A. R. et al. Molecular clocks indicate turnover and diversification of modern coleoid cephalopods during the Mesozoic marine revolution. Proc. Biol. Sci. 284, 20162818 (2017).
    PubMed  PubMed Central  Google Scholar 

    20.
    Lindgren, A. R., Giribet, G. & Nishiguchi, M. K. A combined approach to the phylogeny of Cephalopoda (Mollusca). Cladistics 20, 454–486 (2004).
    Google Scholar 

    21.
    Fara, E. What are Lazarus taxa? Geol. J. 36, 291–303 (2001).
    Google Scholar 

    22.
    Packard, A. Cephalopods and fish: the limits of convergence. Biol. Rev. 47, 241–307 (1972).
    CAS  Google Scholar 

    23.
    Nixon, M. & Young, J. Z. The Brains and Lives of Cephalopods, 1–406 (Oxford University Press, 2003).

    24.
    Kröger, B. et al. Cephalopod origin and evolution. Bioessays 33, 602–613 (2011).
    Google Scholar 

    25.
    Fuchs, D. Part M, Chapter 9B: the gladius and gladius vestige in fossil Coleoidea. Treatise Online 83, 1–23 (2016).
    Google Scholar 

    26.
    Fuchs, D. et al. The Muensterelloidea: phylogeny and character evolution of Mesozoic stem octopods. Pap. Palaeontol. 6, 31–92 (2019).
    Google Scholar 

    27.
    Fuchs, D. et al. The locomotion system of fossil Coleoidea (Cephalopoda) and its phylogenetic significance. Lethaia 49, 433–454 (2016).
    Google Scholar 

    28.
    Kretzoi, M. Necroteuthis n.gen. (Ceph. Dibr. Necroteuthidae n.f.) aus dem Oligozän von Budapest und das System der Dibranchiata. F.öldt. K.özl. (Bp.) 72, 124–138 (1942).
    Google Scholar 

    29.
    Donovan, D. T. Evolution of the dibranchiate Cephalopoda. Symp. Zool. Soc. Lond. 38, 15–48 (1977).
    Google Scholar 

    30.
    Riegraf, W., Janssen, N., & Schmitt-Riegraf, C. A. in Fossilum Catalogus I. Animalia, Vol. 135 (ed. Westphal, F.), 1–512 (1998).

    31.
    Fuchs, D. Part M, Coleoidea, chapter 23G: systematic descriptions: octobrachia. Treatise Online 138, 1–52 (2020).
    Google Scholar 

    32.
    Schulz, H. M., Bechtel, A. & Sachsenhofer, R. F. The birth of the Paratethys during the Early Oligocene: from Tethys to an ancient Black Sea analogue? Glob. Planet. Change 49, 163–176 (2005).
    Google Scholar 

    33.
    Bojanowski, M. J. et al. The Central Paratethys during Oligocene as an ancient counterpart of the present-day Black Sea: Unique records from the coccolith limestones. Mar. Geol. 403, 301–328 (2018).
    CAS  Google Scholar 

    34.
    Bizikov, V. A. Evolution of the shell in Cephalopoda, 1–448 (VNIRO, 2008).

    35.
    Weaver, P. G. et al. Characterization of organics consistent with β-Chitin preserved in the Late Eocene cuttlefish Mississaepia mississippiensis. PLoS ONE 6, e28195 (2011).
    CAS  PubMed  PubMed Central  Google Scholar 

    36.
    Kaiho, K. Benthic foraminiferal dissolved-oxygen index and dissolved-oxygen levels in the modern ocean. Geology 22, 719–722 (1994).
    CAS  Google Scholar 

    37.
    Bechtel, A. et al. Facies evolution and stratigraphic correlation in the early Oligocene Tard clay of Hungary as revealed by maceral, biomarker and stable isotope composition. Mar. Petrol. Geol. 35, 55–74 (2012).
    CAS  Google Scholar 

    38.
    Donovan, D. T. Part M., Chapter 9C: composition and structure of gladii in fossil Coleoidea. Treatise Online 75, 1–5 (2016).
    Google Scholar 

    39.
    Nagymarosy, A. et al. The effect of the relative sea-level changes in the north Hungarian Paleogene Basin. Geol. Soc. Greece Spec. Publ. 4, 247–253 (1995).
    Google Scholar 

    40.
    Ozsvárt, P. et al. The Eocene-Oligocene climate transition in the Central Paratethys. Palaeogeogr. Palaeoclimatol. Palaeoecol. 459, 471–487 (2016).
    Google Scholar 

    41.
    Nyerges, A., Kocsis, T. Á. & Pálfy, J. Changes in calcareous nannoplankton assemblages around the Eocene-Oligocene climate transition in the Hungarian Palaeogene Basin (Central Paratethys). Hist. Biol. 1–14. https://doi.org/10.1080/08912963.2019.1705295 (2020).
    Article  Google Scholar 

    42.
    Ozsvárt, P. Middle and Late Eocene benthic foraminiferal fauna from the Hungarian Paleogene Basin: systematics and paleoecology. Geol. Pannonica Spec. Pap. 2, 1–129 (2007).
    Google Scholar 

    43.
    Nagymarosy, A. Lower Oligocene nannoplankton in anoxic deposits of the central Paratethys. 8th International Nannoplankton Assoc. Conf., Bremen. J. Nannoplankton Res. 22, 128–129 (2000).
    Google Scholar 

    44.
    Nagymarosy, A. & Voronina, A. A. Calcareous nannoplankton from the Lower Maikopian beds (Early Oligocene, Union of Independent States). In Proc. 4thINA Conf. Prague 1991, Knihovnička ZPN 14b (eds Hamršmíd, B. & Young, J.) 187–221 (Nannoplankton Research, 1992).

    45.
    Murray, J. W. Ecology and Applications of Benthic Foraminifera, 1–426 (Cambridge University Press, 2006).

    46.
    Mørk, A. & Bromley, R. G. Ichnology of a marine regressive systems tract: the Middle Triassic of Svalbard. Polar Res. 27, 339–359 (2008).
    Google Scholar 

    47.
    Báldi, T. Mid-Tertiary Stratigraphy and Paleogeographic Evolution of Hungary, 1–201 (Akadémiai Kiadó, 1986).

    48.
    Khromov, D. N. Distribution patterns in Sepiidae. Smithson. Contr. Zool. 568, 191–206 (1998).
    Google Scholar 

    49.
    Sepkoski, J. J. Jr. A model of onshore-offshore change in faunal diversity. Paleobiology 17, 68–77 (1991).
    Google Scholar 

    50.
    Smith, A. B. & Stockley, B. The geological history of deep-sea colonization by echinoids: roles of surface productivity and deep-water ventilation. P. Roy. Soc. B Biol. Sci. 272, 865–869 (2005).
    Google Scholar 

    51.
    Thuy, B. et al. First glimpse into Lower Jurassic deep-sea biodiversity: in situ diversification and resilience against extinction. P. Roy. Soc. B Biol. Sci. 281, 20132624 (2014).
    Google Scholar 

    52.
    Jacobs, D. K. & Lindberg, D. R. Oxygen and evolutionary patterns in the sea: onshore/offshore trends and recent recruitment of deep-sea faunas. Proc. Natl Acad. Sci. USA 95, 9396–9401 (1998).
    CAS  Google Scholar 

    53.
    Zeidberg, L. D. & Robison, B. H. Invasive range expansion by the Humboldt squid, Dosidicus gigas, in the eastern North Pacific. Proc. Natl Acad. Sci. USA 104, 12948–12950 (2007).
    CAS  Google Scholar 

    54.
    Rogers, A. D. The role of the oceanic oxygen minima in generating biodiversity in the deep sea. Deep Sea Res. Pt. II 47, 119–148 (2000).
    Google Scholar 

    55.
    Levin, L. A. Oxygen minimum zone benthos: adaptation and community response to hypoxia. Oceanogr. Mar. Biol. Annu. Rev. 41, 1–45 (2003).
    Google Scholar 

    56.
    Childress, J. J. & Seibel, B. A. Life at stable low oxygen levels: adaptations of animals to oceanic oxygen minimum layers. J. Exp. Biol. 201, 1223–1232 (1998).
    CAS  Google Scholar 

    57.
    Gooday, A. J. et al. Habitat heterogeneity and its influence on benthic biodiversity in oxygen minimum zones. Mar. Ecol. 31, 125–147 (2010).
    Google Scholar 

    58.
    Wood, R. & Erwin, D. H. Innovation not recovery: dynamic redox promotes metazoan radiations. Biol. Rev. 93, 863–873 (2018).
    Google Scholar 

    59.
    Hermoso, M., Minoletti, F. & Pellenard, P. Black shale deposition during Toarcian super‐greenhouse driven by sea level. Clim 9, 2703–2712 (2013).
    Google Scholar 

    60.
    Kruta, I. et al. Proteroctopus ribeti in coleoid evolution. Paleontology 59, 767–773 (2016).
    Google Scholar 

    61.
    Wilby, P. R., Briggs, D. E. & Riou, B. Mineralization of soft-bodied invertebrates in a Jurassic metalliferous deposit. Geology 24, 847–850 (1996).
    CAS  Google Scholar 

    62.
    Etter, W. in Exceptional fossil preservation. A Unique View on the Evolution of Marine Life (eds Bottjer, D. J., Etter, W., Hagadorn, J. W. & Tang, C. M.) 293–305 (Columbia University Press, 2002).

    63.
    Charbonnier, S., Vannier, J., Gaillard, C., Bourseau, J.-P. & Hantzpergue, P. The La Voulte Lagerstätte (Callovian): Evidence for a deep water setting from sponge and crinoid communities. Palaeogeogr. Palaeoclimatol. Palaeoecol. 250, 216–236 (2007).
    Google Scholar 

    64.
    Charbonnier, S., Audo, D., Caze, B. & Biot, V. The La Voulte-sur-Rhône Lagerstätte (Middle Jurassic, France). CR Palevol 13, 369–381 (2014).
    Google Scholar 

    65.
    Vannier, J., Schoenemann, B., Gillot, B., S. Charbonnier, S. & Clarkson, E. Exceptional preservation of eye structure in arthropod visual predators from the Middle Jurassic. Nat. Commun. 7, 10320 (2016).
    CAS  PubMed  PubMed Central  Google Scholar 

    66.
    Audo, D. et al. palaeoecology of Voulteryon parvulus (eucrustacea, polychelida) from the Middle Jurassic of La Voulte-sur-Rhône Fossil-Lagerstätte (France). Sci. Rep. 9, 1–13 (2019).
    CAS  Google Scholar 

    67.
    Viohl, G. in Solnhofen. Ein Fenster in die Jurazeit. (eds Arratia, G., Schultze, H.-P., Tischlinger, H. & Viohl, G.) 56–62 (Verlag Dr. Friedrich Pfeil, 2015).

    68.
    Engeser, T. & Reitner, J. Teuthiden aus dem Unterapt (“Töck”) von Helgoland (Schleswig-Holstein, Norddeutschland). Pal. Z. 59, 245–260 (1985).
    Google Scholar 

    69.
    Mutterlose, J., Pauly, S. & Steuber, T. Temperature controlled deposition of early Cretaceous (Barremian–early Aptian) black shales in an epicontinental sea. Palaeogeogr. Palaeoclimatol. Palaeoecol. 273, 330–345 (2009).
    Google Scholar 

    70.
    Heldt, M., Mutterlose, J., Berner, U. & Erbacher, J. First high-resolution δ13C-records across black shales of the Early Aptian Oceanic Anoxic Event 1a within the mid-latitudes of northwest Europe (Germany, Lower Saxony Basin). Newsl. Stratigr. 45, 151–169 (2012).
    Google Scholar 

    71.
    Bottini, C. & Mutterlose, J. Integrated stratigraphy of Early Aptian black shalesin the Boreal Realm: calcareous nanofossil and stable isotope evidence forglobal and regional processes. Newsl. Stratigr. 45, 115–137 (2012).
    Google Scholar 

    72.
    Landman, N. H. et al. Ammonite extinction and nautilid survival at the end of the Cretaceous. Geology 42, 707–710 (2014).
    CAS  Google Scholar 

    73.
    Fuchs, D., Laptikhovsky, V., Nikolaeva, S., Ippolitov, A. & Rogov, M. Evolution of reproductive strategies in coleoid mollusks. Paleobiology 46, 82–103 (2020).
    Google Scholar 

    74.
    Tajika, A., Nützel, A. & Klug, C. The old and the new plankton: ecological replacement of associations of mollusc plankton and giant filter feeders after the Cretaceous? PeerJ 6, e4219 (2018).
    PubMed  PubMed Central  Google Scholar 

    75.
    Lu, C. C. & Clarke, M. R. Vertical distribution of cephalopods at 40°N, 53°N and 60°N at 20°W in the North Atlantic. J. Mar. Biol. Assoc. U.K. 55, 143–163 (1975).
    Google Scholar 

    76.
    Clements, T., Colleary, C., De Baets, K. & Vinther, J. Buoyancy mechanisms limit preservation of coleoid cephalopod soft tissues in Mesozoic Lagerstätten. Palaeontology 60, 1–14 (2017).
    Google Scholar 

    77.
    Košťák, M., Kohout, O., Mazuch, M. & Čech, S. An unusual occurrence of vascoceratid ammonites in the Bohemian Cretaceous Basin (Czech Republic) marks the lower Turonian boundary between the Boreal and Tethyan realms in central Europe. Cret. Res. 108, 104338 (2020).
    Google Scholar 

    78.
    Oji, T. in Palaeobiology II (eds Briggs, D. E. G. & Crowther, P. R.) 444–447 (Blackwell Science Ltd, 2001).

    79.
    Báldi, T. A. in Geológiai Kirándulások Magyarország Közepén (ed. Palotai, M.) 94–129 (Hantken Kiadó, 2010).

    80.
    Tari, G. et al. Paleogene retroarc flexural basin beneath the Neogene Pannonian Basin: a geodynamic model. Tectonophysics 226, 433–455 (1993).
    Google Scholar 

    81.
    Švábenická, L. et al. Biostratigraphy and paleoenvironmental changes on the transition from the Menilite to Krosno lithofacies (Western Carpathians, Czech Republic). Geol. Carpath. 58, 237–262 (2007).
    Google Scholar 

    82.
    Kováč, M. et al. Paleogene palaeogeography and basin evolution of the Western Carpathians, Northern Pannonian domain and adjoining areas. Glob. Planet. Change 140, 9–27 (2016).
    Google Scholar 

    83.
    Nevesskaja, L. A. et al. History of Paratethys. Ann. Inst. Géol. Hong. 70, 337–342 (1987).
    Google Scholar 

    84.
    Lafuente, B., Downs, R. T., Yang, H. & Stone, N. in Highlights in Mineralogical Crystallography (eds Armbruster, T. & Danisi, R. M.) 1–30 (De Gruyter, 2015).

    85.
    McCrea, J. M. On the isotopic chemistry of carbonates and a paleotemperature scale. J. Chem. Phys. 18, 849–857 (1950).
    CAS  Google Scholar 

    86.
    Guiry, M. D. & Guiry, G. M. AlgaeBase (World-wide electronic publication, National University of Ireland, Galway, accessed May 18, 2020); https://www.algaebase.org.

    87.
    Holcová, K. Postmortem transport and resedimentation of foraminiferal tests: relations to cyclical changes of foraminiferal assemblages. Palaeogeogr. Palaeoclimatol. Palaeoecol. 145, 157–182 (1999).
    Google Scholar 

    88.
    Folk, R. L. Nannobacteria and the formation of framboidal pyrite: Textural evidence. J. Earth Syst. Sci. 114, 369–374 (2005).
    Google Scholar 

    89.
    Zágoršek, K. et al. Bryozoan event from Middle Miocene (Early Badenian) lower neritic sediments from the locality Kralice nad Oslavou (Central Paratethys, Moravian part of the Carpathian Foredeep). Int. J. Earth. Sci. 97, 835–850 (2007).

    90.
    Košťák, M. et al. Micro-computed tomography data supporting the manuscript: Fossil evidence for vampire squid inhabiting oxygen-depleted ocean zones since at least the Oligocene. figshare https://doi.org/10.6084/m9.figshare.13526024 (2021). More

  • in

    Environmental stressors, complex interactions and marine benthic communities’ responses

    1.
    Sanderson, E. W. et al. The human footprint and the last of the wild. Bioscience 52, 891–904 (2002).
    Article  Google Scholar 
    2.
    Millenium Ecosystem Assessment. Ecosystems and Human Wellbeing: Wetlands and Water. World Resources Institute, Washington, DC. https://www.millenniumassessment.org/documents/document.358.aspx.pdf (2005).

    3.
    Waters, C. N. et al. The Anthropocene is functionally and stratigraphically distinct from the Holocene. Science 351, aad2622. https://doi.org/10.1126/science.aad2622 (2016).

    4.
    Halpern, B. S. et al. Recent pace of change in human impact on the world’s ocean. Sci. Rep. 9, 11609 (2019).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    5.
    Vinebrooke, R. D. et al. Impacts of multiple stressors on biodiversity and ecosystem functioning: The role of species co-tolerance. Oikos 104, 451–457 (2004).
    Article  Google Scholar 

    6.
    Hewitt, J. E., Ellis, J. I. & Thrush, S. F. Multiple stressors, nonlinear effects and the implications of climate change impacts on marine coastal ecosystems. Glob. Chang. Biol. 22, 2665–2675 (2016).
    ADS  PubMed  Article  Google Scholar 

    7.
    Côté, I., Darling, E. & Brown, C. Interactions among ecosystem stressors and their importance in conservation. Proc. R. Soc. Lond. B Biol. Sci. 283, 20152592. Doi: https://doi.org/10.1098/rspb.2015.2592 (2016).

    8.
    Vörösmarty, C. J. et al. Global threats to human water security and river biodiversity. Nature 467, 555–561 (2010).
    ADS  PubMed  Article  CAS  Google Scholar 

    9.
    Séguin, A., Gravel, D. & Archambault, P. Effect of disturbance regime on Alpha and Beta diversity of rock pools. Biodivers. J. 6, 1–17 (2014).
    Google Scholar 

    10.
    Halpern, B. S. et al. Spatial and temporal changes in cumulative human impacts on the world’s ocean. Nat. Commun. 6, 1–7 (2015).
    Article  CAS  Google Scholar 

    11.
    Folt, C. L., Chen, C. Y., Moore, M. V. & Burnaford, J. Synergism and antagonism among multiple stressors. Limnol. Oceanogr. 44, 864–877 (1999).
    ADS  Article  Google Scholar 

    12.
    Brook, B. W., Sodhi, N. S. & Bradshaw, C. J. A. Synergies among extinction drivers under global change. Trends Ecol. Evol. 23, 453–460 (2008).
    PubMed  Article  Google Scholar 

    13.
    Crain, C. M., Kroeker, K. & Halpern, B. S. Interactive and cumulative effects of multiple human stressors in marine systems. Ecol. Lett. 11, 1304–1315 (2008).
    PubMed  Article  Google Scholar 

    14.
    Piggott, J. J., Townsend, C. R. & Matthaei, C. D. Reconceptualizing synergism and antagonism among multiple stressors. Ecol. Evol. 5, 1538–1547 (2015).
    PubMed  PubMed Central  Article  Google Scholar 

    15.
    Galic, N., Sullivan, L. L., Grimm, V. & Forbes, V. E. When things don’t add up: quantifying impacts of multiple stressors from individual metabolism to ecosystem processing. Ecol. Lett. 21, 568–577 (2018).
    PubMed  Article  Google Scholar 

    16.
    Brown, C. J., Saunders, M. I., Possingham, H. P. & Richardson, A. J. Managing for interactions between local and global stressors of ecosystems. PLoS ONE 8, e65765. https://doi.org/10.1371/journal.pone.0065765 (2013).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    17.
    Brown, C. J., Saunders, M. I., Possingham, H. P. & Richardson, A. J. Interactions between global and local stressors of ecosystems determine management effectiveness in cumulative impact mapping. Divers. Distrib. 20, 538–546 (2014).
    Article  Google Scholar 

    18.
    Kaplan, I. C., Levin, P. S., Burden, M. & Fulton, E. A. Fishing catch shares in the face of global change: A framework for integrating cumulative impacts and single species management. Can. J. Fish. Aquat. Sci. 67, 1968–1982 (2010).
    Article  Google Scholar 

    19.
    Ghedini, G., Russell, B. D. & Connell, S. D. Managing local coastal stressors to reduce the ecological effects of ocean acidification and warming. Water (Switzerland) 5, 1653–1661 (2013).
    Google Scholar 

    20.
    Hodgson, E. E., Halpern, B. S. & Essington, T. E. Moving beyond silos in cumulative effects assessment. Front. Ecol. Evol. 7, 1–8 (2019).
    Article  Google Scholar 

    21.
    Schindler, D. E. & Hilborn, R. Prediction, precaution, and policy under global change. Science 347, 953–954 (2015).
    ADS  CAS  PubMed  Article  Google Scholar 

    22.
    Ling, S. D., Johnson, C. R., Frusher, S. D. & Ridgway, K. R. Overfishing reduces resilience of kelp beds to climate-driven catastrophic phase shift. Proc. Natl. Acad. Sci. USA 106, 22341–22345 (2009).
    ADS  CAS  PubMed  Article  Google Scholar 

    23.
    Munday, P. L. et al. Ocean acidification impairs olfactory discrimination and homing ability of a marine fish. Proc. Natl. Acad. Sci. USA 106, 1848–1852 (2009).
    ADS  CAS  PubMed  Article  Google Scholar 

    24.
    Power, M. Assessing the effects of environmental stressors on fish populations. Aquat. Toxicol. 39, 151–169 (1997).
    CAS  Article  Google Scholar 

    25.
    Hodgson, E. E., Essington, T. E. & Halpern, B. S. Density dependence governs when population responses to multiple stressors are magnified or mitigated. Ecology 98, 2673–2683 (2017).
    PubMed  Article  Google Scholar 

    26.
    Griffith, G. P. & Fulton, E. A. New approaches to simulating the complex interaction effects of multiple human impacts on the marine environment. ICES J. Mar. Sci. 71, 764–774 (2014).
    Article  Google Scholar 

    27.
    Harvey, E., Séguin, A., Nozais, C., Archambault, P. & Gravel, D. Identify effects dominate the impacts of multiple species extinctions on the functioning of complex food webs. Ecology 94, 169–179 (2013).
    PubMed  Article  Google Scholar 

    28.
    Schmolke, A., Brain, R., Thorbek, P., Perkins, D. & Forbes, V. Population modeling for pesticide risk assessment of threatened species—A case study of a terrestrial plant Boltonia decurrens. Environ. Toxicol. Chem. 36, 480–491 (2017).
    CAS  PubMed  Article  Google Scholar 

    29.
    Calosi, P. et al. Adaptation and acclimatization to ocean acidification in marine ectotherms: An in situ transplant experiment with polychaetes at a shallow CO2 vent system. Philos. Trans. R. Soc. B, Biol. Sci. 368, (2013).

    30.
    Alsterberg, C., Sundbäck, K. & Hulth, S. Functioning of a shallow-water sediment system during experimental warming and nutrient enrichment. PLoS One 7, (2012).

    31.
    Rosenberg, R. Eutrophication – The future marine coastal nuisance?. Mar. Pollut. Bull. 16, 227–231 (1985).
    CAS  Article  Google Scholar 

    32.
    Levin, L. A. et al. Effects of natural and human-induced hypoxia on coastal benthos. Biogeosciences 6, 2063–2098 (2009).
    ADS  CAS  Article  Google Scholar 

    33.
    McGlathery, K. J., Sundbäck, K. & Anderson, I. C. Eutrophication in shallow coastal bays and lagoons: The role of plants in the coastal filter. Mar. Ecol. Prog. Ser. 348, 1–18 (2007).
    ADS  CAS  Article  Google Scholar 

    34.
    Attrill, M. J. & Power, M. Effects on invertebrate populations of drought-induced changes in estuarine water quality. Mar. Ecol. Prog. Ser. 203, 133–143 (2000).
    ADS  CAS  Article  Google Scholar 

    35.
    McLusky, D. S., Hull, S. C. & Elliott, M. Variations in the intertidal and subtidal macrofauna and sediments along a salinity gradient in the upper Forth estuary. Netherlands J. Aquat. Ecol. 27, 101–109 (1993).
    Article  Google Scholar 

    36.
    Levinton, J., Doall, M., Ralston, D., Starke, A. & Allam, B. Climate change, precipitation and impacts on an estuarine refuge from disease. PLoS ONE 6(4), e18849 (2011).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    37.
    Greimel, F. et al. Hydropeaking impacts and mitigation in Riverine ecosystem management: Science for governing towards a sustainable future (ed. Schmutz, S. & Sendzimir, J.) 91–110 (Aquatic Ecology Series 8, 2018).

    38.
    Parmesan, C. & Yohe, G. A globally coherent fingerprint of climate change. Nature 421, 37–42 (2003).
    ADS  CAS  PubMed  Article  Google Scholar 

    39.
    Jordà, G., Marbà, N. & Duarte, C. M. Mediterranean seagrass vulnerable to regional climate warming. Nat. Clim. Chang. 2, 821–824 (2012).
    ADS  Article  Google Scholar 

    40.
    Lotzel, H. K. & Worm, B. Complex interactions of climatic and ecological controls on macroalgal recruitment. Limnol. Oceanogr. 47, 1734–1741 (2002).
    ADS  Article  Google Scholar 

    41.
    Paerl, H. W. & Scott, J. T. Throwing fuel on the fire: Synergistic effects of excessive nitrogen inputs and global warming on harmful algal blooms. Environ. Sci. Technol. 44, 7756–7758 (2010).
    ADS  CAS  PubMed  Article  Google Scholar 

    42.
    Drejou, E. et al. Biodiversity and habitat assessment of coastal benthic communities in a sub-Arctic industrial harbour area. Water J. 12, 2424. https://doi.org/10.3390/w12092424 (2020).
    Article  Google Scholar 

    43.
    Romero, F., Acuña, V., Font, C., Freixa, A. & Sabater, S. Effects of multiple stressors on river biofilms depend on the time scale. Sci. Rep. 9, 15810. https://doi.org/10.1038/s41598-019-52320-42 (2019).
    ADS  Article  PubMed  PubMed Central  Google Scholar 

    44.
    Borja, A., Franco, J. & Pérez, V. A. A marine biotic index to establish the ecological quality of soft-bottom benthos within European estuarine and coastal environmentls. Mar. Pollut. Bull. 40, 1100–1114 (2000).
    CAS  Article  Google Scholar 

    45.
    Bourget, E., Ardisson, P.-L., Lapointe, L. & Daigle, G. Environmental factors as predictors of epibenthic assemblage biomass in the St Lawrence system. Estuar. Coast. Shelf. Sci. 57, 641–652 (2003).
    ADS  CAS  Article  Google Scholar 

    46.
    McLusky, D.S. & Allan, D.G. Aspects of the biology of Macoma balthica (L.) from estuarine Firth of Forth. J. Molluscan Stud. 42, 31–45 (1976).

    47.
    Cottrell, R. S., Kenny, D. B., Hutchison, Z. L. & Last, K. S. The influence of organic material and temperature on the burial tolerance of the blue mussel, Mytilus edulis: Considerations for the management of marine aggregate dredging. PLoS ONE 11, 1. https://doi.org/10.1371/journal.pone.0147534 (2020).
    CAS  Article  Google Scholar 

    48.
    Pearson, T. H. & Rosenberg, R. Macrobenthic succession in relation to organic enrichment and pollution of the marine environment. Oceanogr. Mar. Biol. 16, 229–311 (1978).
    Google Scholar 

    49.
    Ratcliffe, P.J., Jones, N.V. & Walters, N.J. The survival of Macoma balthica (L.) in mobile sediments. In Feeding and Survival Strategies of Estuarine Organisms (ed. Jones, N.V & Wolff, W.J.) 91–108 (Plenum Press, 1981).

    50.
    Riaux-Gobin, C. & Klein, B. Microphytobenthic biomass measurement using HPLC and conventional pigment analysis. In Handbooks of Methods in Aquatic Microbial Ecology, (ed. Kemp, P.F., Sherr, B.F., Sherr, E.B. & Cole, J.J.) 369–376 (Lewis Publishers, 1993).

    51.
    Davies, B. E. Loss-on-ignition as an estimate of soil organic matter. Soil Sci. Soc. Am. J. 38, 150–151 (1974).
    ADS  Article  Google Scholar 

    52.
    Wentworth, C. K. A scale of grade and class terms for clastic sediments. J. Geol. 30, 377–392 (1922).
    ADS  Article  Google Scholar 

    53.
    Folk, R. L. & Ward, W. C. Brazos River Bar: a study in the significance of grain size parameters. J. Sediment. Petrol. 27, 3–26 (1957).
    ADS  Article  Google Scholar 

    54.
    Galbraith, P. et al. Physical oceanographic conditions in the Gulf of St. Lawrence during 2018. DFO Can. Sci. Advis. Sec. Res. Doc. 2019/046, iv + 69 p. (2019).

    55.
    Baden, S., Boström, C., Tobiasson, S., Arponen, H. & Moksnes, P. O. Relative importance of trophic interactions and nutrient enrichment in seagrass ecosystems: A broad-scale field experiment in the Baltic-Skagerrak area. Limnol. Oceanogr. 55, 1435–1448 (2010).
    ADS  CAS  Article  Google Scholar 

    56.
    Moksnes, P.-O., Gullström, M., Tryman, K. & Baden, S. Trophic cascades in a temperature seagrass community. Oikos 117, 763–777 (2008).
    Article  Google Scholar 

    57.
    Bonsdorff, E. Establisment, growth and dynamics of a Macoma balthica (L.) population. Limnologica. 15, 403–405 (1984)

    58.
    Castañeda, R. A., Cvetanovska, E., Hamelin, K. M., Simard, M. A. & Ricciardi, A. Distribution, abundance and condition of an invasive bivalve (Corbicula fluminea) along an artificial thermal gradient in the St Lawrence River. Aquat. Invasions. 13, 379–392 (2018).
    Article  Google Scholar 

    59.
    Baden, S. P. & Eriksson, S. P. Role, routes and effects of manganese in crustaceans. Oceanogr. Mar. Biol. Ann. Rev. 44, 61–83 (2006).
    Google Scholar 

    60.
    Page, T. M., Worthington, S., Calosi, P. & Stillman, J. H. Effects of elevated pCO2 on crab survival and exoskeleton composition depend on shell function and species distribution: A comparative analysis of carapace and claw mineralogy across four porcelain crab species from different habitats. ICES J. Mar. Sci. 74, 1021–1032 (2017).
    Article  Google Scholar 

    61.
    Small, D., Calosi, P., White, D., Spicer, J. I. & Widdicombe, S. Impact of medium-term exposure to CO2 enriched seawater on the physiological functions of the velvet swimming crab Necora puber. Aquat. Biol. 10, 11–21 (2010).
    Article  Google Scholar 

    62.
    Marchant, H. K., Calosi, P. & Spicer, J. I. Short-term exposure to hypercapnia does not compromise feeding, acid-base balance or respiration of Patella vulgata but surprisingly is accompanied by radula damage. J. Mar. Biol. Assoc. UK 90, 1379–1384 (2010).
    Article  Google Scholar 

    63.
    Horne, F.R. & Tarsitano, S. The mineralization and biomechanics of the exoskeleton. In The Biology and Fisheries of the Slipper Lobster (ed. Lavalli, K.L & Spanier, E.) 183–189 (CRC Press, 2007).

    64.
    Tao, J., Zhou, D., Zhang, Z., Xu, X. & Tang, R. Magnesium-aspartate-based crystallization switch inspired from shell molt of crustacean. Proc. Natl. Acad. Sci. USA 106, 22096–22101 (2009).
    ADS  CAS  PubMed  Article  Google Scholar 

    65.
    Menu-Courey, K. et al. Energy metabolism and survival of the juvenile recruits of the American lobster (Homarus americanus) exposed to a gradient of elevated seawater pCO2. Mar. Environ. Res. 143, 111–123 (2019).
    CAS  PubMed  Article  Google Scholar 

    66.
    Siddon, E. C., Heintz, R. A. & Mueter, F. J. Conceptual model of energy allocation in walleye pollock (Theragra chalcogramma) from age-0 to age-1 in the southeastern Bering Sea. Deep Sea Res. Part II Top. Stud. Oceanogr. 94, 140–149 (2013).

    67.
    Anderson, M. J. Permanova: A fortran computer program for permutational multivariate analysis of variance (University of Auckland, Auckland, Department of Statistics, 2005).
    Google Scholar 

    68.
    Clarke, K.R & Gorley, R.N. PRIMER v6: User Manual/Tutorial (Plymouth Routines in Multivariate Ecological Research). PRIMER-E, Plymouth (2006).

    69.
    Sih, A., Englund, G. & Wooster, D. Emergent impacts of multiple predators on prey. Trends Ecol. Evol. 13, 350–355 (1998).
    CAS  PubMed  Article  Google Scholar 

    70.
    Thornton, D. C. O., Dong, L. F., Underwood, G. J. C. & Nedwell, D. B. Factors affecting microphytobenthic biomass, species composition and production in the Colne Estuary (UK). Aquat. Microb. Ecol. 27, 285–300 (2002).
    Article  Google Scholar 

    71.
    Pinckney, J., Paerl, H. W. & Fitzpatrick, M. Impacts of seasonality and nutrients on microbial mat community structure and function. Mar. Ecol. Prog. Ser. 123, 207–216 (1995).
    ADS  Article  Google Scholar 

    72.
    Lin, J. & Hines, A. H. Effects of suspended food availability on the feeding mode and burial depth of the Baltic clam Macoma balthica. Oikos 69, 28–36 (1994).
    Article  Google Scholar 

    73.
    Bougrier, S., Hawkins, A. J. S. & Héral, M. Preingestive selection of different microalgal mixtures in Crassostrea gigas and Mytilus edulis, analyzed by flow cytometry. Aquaculture 150, 123–134 (1997).
    Article  Google Scholar 

    74.
    Cognie, B., Barillé, L. & Rincé, Y. Selective feeding of the oyster Crassostrea gigas fed on a natural microphytobenthos assemblage. Estuaries Coast. 24, 126–131 (2001).
    Article  Google Scholar 

    75.
    Camargo, J. A. & Alonso, Á. Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems: A global assessment. Environ. Int. 32, 831–849 (2006).
    CAS  PubMed  Article  Google Scholar 

    76.
    Davenport, J. & Redpath, K.J. Copper and the mussel Mytilus edulis (L.) in Toxins, drugs and pollutants in marine animals (ed. Bolis, L., Zadunaisky, J. & Gilles, R.) 176–189 (Springler-Verlag, 1984).

    77.
    Gosling, E. Bivalve Molluscs: Biology, Ecology and Culture (ed. Blackwell Publishing) 95–96 (Wiley-Blackwell, 2003).

    78.
    Hauton, C. Physiological responses: Effects of salinity as a stressor to aquatic in- vertebrates. In Stressors in the Marine Environment: Physiological and Ecological Responses; Societal Implications (ed. Solan, M & Whiteley, N.M.) 3–24 (Oxford University Press, 2016)

    79.
    Almada-Villela, P. C. The effects of reduced salinity on the shell growth of small Mytilus edulis. J. Mar. Biol. Assoc. U.K. 64, 171–182 (1984).

    80.
    Kautsky, N., Johannesson, K. & Tedengren, M. Genotypic and phenotypic differences between Baltic and North Sea populations of Mytilus edulis evaluated through reciprocal transplantations. I. Growth and morphology. Mar. Ecol. Prog. Ser. 59, 203–210 (1990).

    81.
    Westerbom, M., Kilpi, M. & Mustonen, O. Blue mussels, Mytilus edulis, at the edge of the range: Population structure, growth and biomass along a salinity gradient in the north-eastern Baltic Sea. Mar. Biol. 140, 991–999 (2002).
    Article  Google Scholar 

    82.
    Qiu, J., Tremblay, R. & Bourget, E. Ontogenetic changes in hyposaline tolerance in the mussels Mytilus edulis and M. trossulus: implications for distribution. Mar. Ecol. Prog. Ser. 228, 143–152 (2002).

    83.
    Cederwal, H. & Elmgren, R. Biomass increase of benthic macro- fauna demonstrates eutrophication of the Baltic Sea. Ophelia Suppl. 1, 287–304 (1980).
    Google Scholar 

    84.
    Josefson, A. B. & Rasmussen, B. Nutrient retention by benthic macrofaunal biomass of Danish estuaries: Importance of nutrient load and residence time. Estuar. Coast. Shelf Sci. 50, 205–216 (2000).
    ADS  CAS  Article  Google Scholar 

    85.
    Carmichael, R. H., Shriver, A. C. & Valiela, I. Bivalve response to estuarine eutrophication: The balance between enhanced food supply and habitat alterations. J. Shellfish Res. 31, 1–11 (2012).
    Article  Google Scholar 

    86.
    Lin, J. & Hines, A. Effects of suspended food availability on the feeding mode and burial depth of the Baltic clam. Macoma balthica. Oiko 69, 28–36 (1994).
    Article  Google Scholar 

    87.
    Findlay, H. S. et al. Comparing the impact of high CO2 on calcium carbonate structures in different marine organisms. Mar. Biol. Res. 7, 565–575 (2011).
    Article  Google Scholar 

    88.
    Ries, J.B., Cohen. A.L. & McCorkle, D.C. Marine calcifiers exhibit mixed responses to CO2-induced ocean acidification. Geology 37, 1131−1134 (2009).

    89.
    Michaelidis, B., Ouzounis, C., Paleras, A. & Pörtner, H. O. Effects of long-term moderate hypercapnia on acid-base balance and growth rate in marine mussels Mytilus galloprovincialis. Mar. Ecol. Prog. Ser. 293, 109–118 (2005).
    ADS  Article  Google Scholar 

    90.
    Whiteley, N. M., Scott, J. L., Breeze, S. J. & McCann, L. Effects of water salinity on acid-base balance in decapod crustaceans. J. Exp. Biol. 204, 1003–1011 (2001).
    CAS  PubMed  Google Scholar 

    91.
    Darling, E. S. & Côté, I. M. Quantifying the evidence for ecological synergies. Ecol. Lett. 11, 1278–1286 (2008).
    PubMed  Article  Google Scholar 

    92.
    Withey, J. C. et al. Maximizing return on conservation investment in the conterminous USA. Ecol. Lett. 15, 1249–1256 (2012).
    PubMed  Article  Google Scholar  More

  • in

    Climate change threatens Chinook salmon throughout their life cycle

    1.
    Nicola, G. G., Elvira, B., Jonsson, B., Ayllon, D. & Almodovar, A. Local and global climatic drivers of Atlantic salmon decline in southern Europe. Fish. Res. 198, 78–85 (2018).
    Article  Google Scholar 
    2.
    Peterman, R. M. & Dorner, B. A widespread decrease in productivity of Sockeye Salmon (Oncorhynchus nerka) populations in western North America. Canadian J. Fisheries Aquatic Sci. 69, 1255–1260 (2012).

    3.
    Chaput, G. Overview of the status of Atlantic salmon (Salmo salar) in the North Atlantic and trends in marine mortality. ICES J. Mar. Sci. 69, 1538–1548 (2012).
    Article  Google Scholar 

    4.
    Mills, K. E., Pershing, A. J., Sheehan, T. F. & Mountain, D. Climate and ecosystem linkages explain widespread declines in North American Atlantic salmon populations. Glob. Chang Biol. 19, 3046–3061 (2013).
    PubMed  Article  PubMed Central  Google Scholar 

    5.
    Ward, E. J., Anderson, J. H., Beechie, T. J., Pess, G. R. & Ford, M. J. Increasing hydrologic variability threatens depleted anadromous fish populations. Glob. Chang Biol. 21, 2500–2509 (2015).
    PubMed  Article  PubMed Central  Google Scholar 

    6.
    Galbreath, P. F., Bisbee, M. A., Dompier, D. W., Kamphaus, C. M. & Newsome, T. H. Extirpation and tribal reintroduction of Coho salmon to the interior Columbia River basin. Fisheries 39, 77–87 (2014).
    Article  Google Scholar 

    7.
    Wasser, S. K. et al. Population growth is limited by nutritional impacts on pregnancy success in endangered Southern Resident killer whales (Orcinus orca). PLoS ONE 12, 0179824 (2017).
    Article  CAS  Google Scholar 

    8.
    NMFS, National Marine Fisheries Service. West Coast salmon & steelhead listings. NOAA Fisheries West Coast Region. www.westcoast.fisheries.noaa.gov/protected_species/salmon_steelhead/salmon_and_steelhead_listings/salmon_and_steelhead_listings.html (2014).

    9.
    NRC, Committee on Protection and Management of Pacific Northwest Anadromous Salmonids. Upstream: salmon and society in the Pacific Northwest. Vol. Board on Environmental Studies and Toxicology. Commission on Life Sciences (National Academies Press, 1996).

    10.
    Lehnert, S. J. et al. Genomic signatures and correlates of widespread population declines in salmon. Nat. Commun. 10, 10 (2019).
    Article  CAS  Google Scholar 

    11.
    Cunningham, C. J., Westley, P. A. H. & Adkison, M. D. Signals of large scale climate drivers, hatchery enhancement, and marine factors in Yukon River Chinook salmon survival revealed with a Bayesian life history model. Glob. Change Biol. 24, 4399–4416 (2018).
    Article  Google Scholar 

    12.
    Abdul-Aziz, O. I., Mantua, N. J. & Myers, K. W. Potential climate change impacts on thermal habitats of Pacific salmon (Oncorhynchus spp.) in the North Pacific Ocean and adjacent seas. Can. J. Fish. Aquat. Sci. 68, 1660–1680 (2011).
    Article  Google Scholar 

    13.
    Hare, J. A. et al. A vulnerability assessment of fish and invertebrates to climate change on the northeast U.S. continental shelf. PLoS ONE 11, e0146756 (2016).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    14.
    Crozier, L. G. et al. Climate vulnerability assessment for Pacific salmon and steelhead in the California Current Large Marine Ecosystem. PLoS ONE 14, e0217711 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    15.
    Healey, M. The cumulative impacts of climate change on Fraser River sockeye salmon (Oncorhynchus nerka) and implications for management. Can. J. Fish. Aquat. Sci. 68, 718–737 (2011).
    Article  Google Scholar 

    16.
    Honea, J. M., McClure, M. M., Jorgensen, J. C. & Scheuerell, M. D. Assessing freshwater life-stage vulnerability of an endangered Chinook salmon population to climate change influences on stream habitat. Clim. Res. 71, 127–137 (2017).
    Article  Google Scholar 

    17.
    Battin, J. et al. Projected impacts of climate change on salmon habitat restoration. Proc. Natl Acad. Sci. USA 104, 6720–6725 (2007).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    18.
    Thompson, L. C. et al. Water management adaptations to prevent loss of spring-run Chinook Salmon in California under climate change. J. Water Resour. Plan. Manag. 138, 465–478 (2012).
    Article  Google Scholar 

    19.
    Cheung, W. W. L., Brodeur, R. D., Okey, T. A. & Pauly, D. Projecting future changes in distributions of pelagic fish species of Northeast Pacific shelf seas. Prog. Oceanogr. 130, 19–31 (2015).
    Article  Google Scholar 

    20.
    Morley, J. W. et al. Projecting shifts in thermal habitat for 686 species on the North American continental shelf. PLoS ONE 13, e0196127 (2018).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    21.
    Burke, B. J. et al. Multivariate models of adult Pacific salmon returns. PLoS ONE 8, e54134 (2013).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    22.
    Newman, M. et al. The Pacific decadal oscillation, revisited. J. Clim. 29, 4399–4427 (2016).
    Article  Google Scholar 

    23.
    Achuthavarier, D., Schubert, S. D. & Vikhliaev, Y. V. North Pacific decadal variability: insights from a biennial ENSO environment. Clim. Dyn. 49, 1379–1397 (2017).
    Article  Google Scholar 

    24.
    Crozier, L. G. et al. Potential responses to climate change in organisms with complex life histories: evolution and plasticity in Pacific salmon. Evolut. Appl. 1, 252–270 (2008).
    CAS  Article  Google Scholar 

    25.
    Litzow, M. A. et al. Non-stationary climate-salmon relationships in the Gulf of Alaska. Proc. R. Soc. B-Biol. Sci. 285, 9 (2018).
    Google Scholar 

    26.
    O’Connor, C. M., Norris, D. R., Crossin, G. T. & Cooke, S. J. Biological carryover effects: linking common concepts and mechanisms in ecology and evolution. Ecosphere 5, 1–11 (2014).

    27.
    Carlson, S. M. & Seamons, T. R. A review of quantitative genetic components of fitness in salmonids: implications for adaptation to future change. Evol. Appl. 1, 222–238 (2008).
    PubMed  PubMed Central  Article  Google Scholar 

    28.
    Munsch, S. H. et al. Warm, dry winters truncate timing and size distribution of seaward-migrating salmon across a large, regulated watershed. Ecol. Appl. 29, 14 (2019).
    Article  Google Scholar 

    29.
    Otero, J. et al. Basin-scale phenology and effects of climate variability on global timing of initial seaward migration of Atlantic salmon (Salmo salar). Glob. Change Biol. 20, 61–75 (2014).
    Article  Google Scholar 

    30.
    Crozier, L. G., Scheuerell, M. D. & Zabel, R. W. Using time series analysis to characterize evolutionary and plastic responses to environmental change: A case study of a shift toward earlier migration date in sockeye salmon. Am. Naturalist 178, 755–773 (2011).
    Article  Google Scholar 

    31.
    Gosselin, J. L. et al. Conservation planning for freshwater-marine carryover effects on Chinook salmon survival. Ecol. Evolution 8, 319–332 (2018).
    Article  Google Scholar 

    32.
    United States v. Oregon. 2018-2027 United States v. Oregon Management Agreement. Case 3:68-cv-00513-MO Document 2607-1. (2018).

    33.
    IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. (IPCC, 2014).

    34.
    IPCC. The Ocean and Cryosphere in a Changing Climate. A Special Report of the Intergovernmental Panel on Climate Change. https://www.ipcc.ch/srocc/ (2019).

    35.
    USGCRP, U.S. Global Change Research Program. Climate Science Special Report: Fourth National Climate Assessment, Volume I. (U.S. Global Change Research Program, 2017).

    36.
    Gosselin, J. L., Crozier, L. G. & Burke, B. J. Shifting signals: Correlations among freshwater, marine and climatic indices often investigated in Pacific salmon studies. Ecological Indicators, 121, 107167 https://doi.org/10.1016/j.ecolind.2020.107167 (2021).
    Article  Google Scholar 

    37.
    Crozier, L. G., Zabel, R. W. & Hamlett, A. F. Predicting differential effects of climate change at the population level with life-cycle models of spring Chinook salmon. Glob. Change Biol. 14, 236–249 (2008).
    Article  Google Scholar 

    38.
    Zabel, R. W., Scheuerell, M. D., McClure, M. M. & Williams, J. G. The interplay between climate variability and density dependence in the population viability of Chinook salmon. Conserv. Biol. 20, 190–200 (2006).
    PubMed  Article  Google Scholar 

    39.
    Ford, M. J. et al. 2015 Status Review Update for Pacific Salmon and Steelhead Listed under the Endangered Species Act: Pacific Northwest. National Marine Fisheries Service, Northwest Fisheries Science Center. https://www.nwfsc.noaa.gov/publications/scipubs/display_doctrack_allinfo.cfm?doctrackmetadataid=8623 (2016).

    40.
    NMFS, National Marine Fisheries Service. Endangered Species Act Section 7(a)(2) Biological Opinion and Magnuson-Stevens Fishery Conservation and Management Act Essential Fish Habitat Consultation. Consultation for the Continued Operation and Maintenance of the Columbia River System. NMFS, Portland, Oregon. https://doi.org/10.25923/3tce-8p07. Report No. Consultation number: WCRO-2020-00113 (2020).

    41.
    Doney, S. C. et al. Climate Change Impacts on Marine Ecosystems. Annual Review of Marine Science, 4, 11–37 (2012).
    PubMed  Article  PubMed Central  Google Scholar 

    42.
    Carlson, S. M., Cunningham, C. J. & Westley, P. A. H. Evolutionary rescue in a changing world. Trends Ecol. Evol. 29, 521–530 (2014).
    PubMed  Article  PubMed Central  Google Scholar 

    43.
    Waples, R. S. Pacific salmon, Oncorhynchus spp., and the definition of “species” under the endangered species act. Marine Fisheries Rev. 53, 11–22 (1991).

    44.
    Waples, R. S. Life-history traits and effective population size in species with overlapping generations revisited: the importance of adult mortality. Heredity 117, 241–250 (2016).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    45.
    ICTRT & Zabel, R. W. Required survival rate changes to meet Technical Recovery Team abundance and productivity viability criteria for interior Columbia River basin salmon and steelhead populations. http://www.nwfsc.noaa.gov/trt/col_docs/ictrt_gaps_report_nov_2007_final.pdf (NWFSC, Seattle, Washington, 2007).

    46.
    Scheuerell, M. D., Zabel, R. W. & Sandford, B. P. Relating juvenile migration timing and survival to adulthood in two species of threatened Pacific salmon (Oncorhynchus spp.). J. Appl. Ecol. 46, 983–990 (2009).
    Article  Google Scholar 

    47.
    Crozier, L. G. et al. Snake River sockeye and Chinook salmon in a changing climate: implications for upstream migration survival during recent extreme and future climates. PLoS ONE 15, e0238886 (2020).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    48.
    McElhany, P., Ruckelshaus, M. H., Ford, M. J., Wainwright, T. C. & Bjorkstedt, E. P. Viable Salmonid Populations and the recovery of Evolutionarily Significant Units. Report No. Technical Memorandum NMFS-NWFSC 42, 156 (National Marine Fisheries Service, Northwest Fisheries Science Center, Seattle, WA, 2000).

    49.
    Jorgensen, J. C., Ward, E. J., Scheuerell, M. D. & Zabel, R. W. Assessing spatial covariance among time series of abundance. Ecol. Evol. 6, 2472–2485 (2016).
    PubMed  PubMed Central  Article  Google Scholar 

    50.
    Ohlberger, J., Scheuerell, M. D. & Schindler, D. E. Population coherence and environmental impacts across spatial scales: a case study of Chinook salmon. Ecosphere 7, e01333 (2016).

    51.
    Zimmerman, M. S. et al. Spatial and temporal patterns in smolt survival of wild and hatchery coho salmon in the Salish Sea. Mar. Coast. Fish. 7, 116–134 (2015).
    Article  Google Scholar 

    52.
    Welch, D. W., Porter, A. D. & Rechisky, E. L. A synthesis of the coast‐wide decline in survival of West Coast Chinook Salmon (Oncorhynchus tshawytscha, Salmonidae). Fish Fish. 22, 194–211 (2021).

    53.
    Dorner, B., Catalano, M. J. & Peterman, R. M. Spatial and temporal patterns of covariation in productivity of Chinook salmon populations of the northeastern Pacific Ocean. Can. J. Fish. Aquat. Sci. 75, 1082–1095 (2018).
    Article  Google Scholar 

    54.
    Black, B. A. et al. Rising synchrony controls western North American ecosystems. Glob. Change Biol. 24, 2305–2314 (2018).
    Article  Google Scholar 

    55.
    Jones, L. A. et al. Watershed-scale climate influences productivity of Chinook salmon populations across southcentral Alaska. Glob. Change Biol. 26, 4919–4936 (2020).

    56.
    Cline, T. J., Ohlberger, J. & Schindler, D. E. Effects of warming climate and competition in the ocean for life-histories of Pacific salmon. Nat. Ecol. Evol. 3, 935–942 (2019).
    PubMed  Article  PubMed Central  Google Scholar 

    57.
    Litzow, M. A., Ciannelli, L., Cunningham, C. J., Johnson, B. & Puerta, P. Nonstationary effects of ocean temperature on Pacific salmon productivity. Can. J. Fish. Aquat. Sci. 76, 1923–1928 (2019).
    Article  Google Scholar 

    58.
    Johnstone, J. A. & Mantua, N. J. Atmospheric controls on northeast Pacific temperature variability and change, 1900-2012. Proc. Natl Acad. Sci. USA 111, 14360–14365 (2014).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    59.
    Lindenmayer, D. B., Likens, G. E., Krebs, C. J. & Hobbs, R. J. Improved probability of detection of ecological “surprises”. Proc. Natl Acad. Sci. USA 107, 21957–21962 (2010).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    60.
    Ottersen, G., Kim, S., Huse, G., Polovina, J. J. & Stenseth, N. C. Major pathways by which climate may force marine fish populations. J. Mar. Syst. 79, 343–360 (2010).
    Article  Google Scholar 

    61.
    Chasco, B. E. et al. Competing tradeoffs between increasing marine mammal predation and fisheries harvest of Chinook salmon. Sci. Rep. 7, 15439 (2017).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    62.
    Ruzicka, J. J., Daly, E. A. & Brodeur, R. D. Evidence that summer jellyfish blooms impact Pacific Northwest salmon production. Ecosphere 7, https://doi.org/10.1002/ecs2.1324 (2016).

    63.
    Morgan, C. A., Beckman, B. R., Weitkamp, L. A. & Fresh, K. L. Recent ecosystem disturbance in the Northern California current. Fisheries 44, 465–474 (2019).
    Article  Google Scholar 

    64.
    Auth, T. D., Daly, E. A., Brodeur, R. D. & Fisher, J. L. Phenological and distributional shifts in ichthyoplankton associated with recent warming in the northeast Pacific Ocean. Glob. Change Biol. 24, 259–272 (2018).
    Article  Google Scholar 

    65.
    Zeidberg, L. D. & Robison, B. H. Invasive range expansion by the Humboldt squid, Dosidicus gigas, in the eastern North Pacific. Proc. Natl Acad. Sci. USA 104, 12948–12950 (2007).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    66.
    Wells, B. K. et al. Environmental conditions and prey-switching by a seabird predator impact juvenile salmon survival. J. Mar. Syst. 174, 54–63 (2017).
    Article  Google Scholar 

    67.
    Marshall, K. N. et al. Risks of ocean acidification in the California Current food web and fisheries: Ecosystem model projections. Glob. Change Biol. 23, 1525–1539 (2017).
    Article  Google Scholar 

    68.
    Ou, M. et al. Responses of pink salmon to CO2-induced aquatic acidification. Nat. Clim. Change 5, 950–955 (2015).

    69.
    Williams, C. R. et al. Elevated CO2 impairs olfactory-mediated neural and behavioral responses and gene expression in ocean-phase coho salmon (Oncorhynchus kisutch). Glob. Change Biol. 25, 963–977 (2019).

    70.
    Chegwidden, O. S. et al. How do modeling decisions affect the spread among hydrologic climate change projections? Exploring a large ensemble of simulations across a diversity of hydroclimates. Earth’s Future 7, 623–637 (2019).

    71.
    Paulsen, C. M. & Fisher, T. R. Statistical relationship between parr-to-smolt survival of Snake River spring-summer Chinook salmon and indices of land use. Trans. Am. Fish. Soc. 130, 347–358 (2001).
    Article  Google Scholar 

    72.
    Justice, C., White, S. M., McCullough, D. A., Graves, D. S. & Blanchard, M. R. Can stream and riparian restoration offset climate change impacts to salmon populations? J. Environ. Manag. 188, 212–227 (2017).
    Article  Google Scholar 

    73.
    Andrews, K. S. et al. The legacy of a crowded ocean: indicators, status, and trends of anthropogenic pressures in the California Current ecosystem. Environ. Conserv. 42, 139–151 (2015).
    Article  Google Scholar 

    74.
    Harvey, C. J. et al. Ecosystem status report of the California current for 2019: a summary of Ecosystem indicators compiled by the california current integrated ecosystem assessment team (CCIEA). NOAA Institutional Repository: https://doi.org/10.25923/mvhf-yk36, https://doi.org/10.25923/p0ed-ke21 (2019).

    75.
    Harvey, C. J., Reum, J. C. P., Poe, M. R., Williams, G. D. & Kim, S. J. Using conceptual models and qualitative network models to advance integrative assessments of marine ecosystems. Coast. Manag. 44, 486–503 (2016).
    Article  Google Scholar 

    76.
    Wells, B. K. et al. Implementing ecosystem-based management principles in the design of a Salmon ocean ecology program. Front. Marine Sci. 7, https://doi.org/10.3389/fmars.2020.00342 (2020).

    77.
    Adams, J. et al. A century of Chinook salmon consumption by marine mammal predators in the Northeast Pacific Ocean. Ecol. Inform. 34, 44–51 (2016).
    Article  Google Scholar 

    78.
    Thorne, K. et al. U.S. Pacific coastal wetland resilience and vulnerability to sea-level rise. Sci. Adv. 4, eaao3270 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    79.
    Weitkamp, L. A., Bentley, P. J. & Litz, M. N. C. Seasonal and interannual variation in juvenile salmonids and associated fish assemblage in open waters of the lower Columbia River estuary. Fish. Bull. 110, 426–450 (2012).
    Google Scholar 

    80.
    Diefenderfer, H. L. et al. Evidence-based evaluation of the cumulative effects of ecosystem restoration. Ecosphere 7, https://doi.org/10.1002/ecs2.1242 (2016).

    81.
    Kaplan, I. C. et al. Impacts of depleting forage species in the California current. Environ. Conserv. 40, 380–393 (2013).
    Article  Google Scholar 

    82.
    Collie, J. S. et al. Ecosystem models for fisheries management: finding the sweet spot. Fish. Fish. 17, 101–125 (2016).
    Article  Google Scholar 

    83.
    Skalski, J. R. et al. Status after 5 years of survival compliance testing in the federal Columbia river power system (FCRPS). North Am. J. Fish. Manag. 36, 720–730 (2016).
    Article  Google Scholar 

    84.
    Welch, D. W. et al. Survival of migrating salmon smolts in large rivers with and without dams. PLoS Biol. 6, 2101–2108 (2008).
    CAS  Google Scholar 

    85.
    Environmental Protection Agency U.S.A. Region 10. Total Maximum Daily Load (TMDL) for Temperature in the Columbia and Lower Snake Rivers, May 18, 2020 TMDL for Public Comment. Available at: https://www.epa.gov/columbiariver/tmdl-temperature-columbia-and-lower-snake-rivers (2020).

    86.
    Gosselin, J. L. & Anderson, J. J. Combining migration history, river conditions, and fish condition to examine cross-life-stage effects on marine survival in Chinook Salmon. Trans. Am. Fish. Soc. 146, 408–421 (2017).
    Article  Google Scholar 

    87.
    Zabel, R. W. & Williams, J. G. Selective mortality in chinook salmon: what is the role of human disturbance? Ecol. Appl. 12, 173–183 (2002).
    Article  Google Scholar 

    88.
    Bond, M. H., Nodine, T. G., Beechie, T. J. & Zabel, R. W. Estimating the benefits of widespread floodplain reconnection for Columbia River Chinook salmon. Can. J. Fish. Aquat. Sci. 76, 1212–1226 (2019).
    Article  Google Scholar 

    89.
    National Marine Fisheries Service, W. C. R. ESA recovery plan for Snake river sockeye salmon (Oncorhynchus nerka). https://repository.library.noaa.gov/view/noaa/16001 (2015).

    90.
    Hinrichsen, R. A., Hasselman, D. J., Ebbesmeyer, C. C. & Shields, B. A. The role of impoundments, temperature, and discharge on colonization of the Columbia River basin, USA, by nonindigenous American Shad. Trans. Am. Fish. Soc. 142, 887–900 (2013).
    Article  Google Scholar 

    91.
    Herbold, B. et al. Managing for salmon resilience in California’s variable and changing climate. San Franc. Estuary Watershed Sci. 16, https://escholarship.org/uc/item/8rb3z3nj (2018).

    92.
    Chittaro, P. et al. Variability in the performance of juvenile Chinook salmon is explained primarily by when and where they resided in estuarine habitats. Ecol. Freshw. Fish. 27, 857–873 (2018).
    Article  Google Scholar 

    93.
    Beechie, T. et al. Restoring salmon habitat for a changing climate. River Res. Appl. 29, 939–960 (2013).
    Article  Google Scholar 

    94.
    Idaho Department of Fish and Game, Oregon Department of Fish and Wildlife & Washington Department of Fish and Wildlife. Snake River ESU Spring Summer Chinook Natural Origin Spawner Abundance Dataset (1949-2017) (2018).

    95.
    Nez Perce Tribe East Fork South Fork Salmon River summer Chinook and Secesh River summer Chinook, Natural Origin Spawner Abundance Dataset (1957-2017). (Protocol and methods available at https://www.cbfish.org/Document.mvc/Viewer/P165414. Personal communication with Mari Williams, NOAAF NWFSC/OAI 2019, 2019).

    96.
    StreamNet. Fish data for the Northwest. http://www.streamnet.org/ (2018).

    97.
    Faulkner, J. R., Widener, D. L., Smith, S. G., Marsh, T. M. & Zabel, R. W. Survival estimates for the passage of spring migrating juvenile salmonids through Snake and Columbia River dams and reservoirs, 2017. (Draft report of the National Marine Fisheries Service to the Bonneville Power Administration. Portland, Oregon). https://www.nwfsc.noaa.gov/contact/display_staffprofilepubs.cfm?staffid=1524 (2018).

    98.
    Lamb, J. J. et al. Monitoring the migrations of wild Snake River spring/summer Chinook salmon juveniles: survival and timing, 2017. (Report of the National Marine Fisheries Service to the Bonneville Power Administration. Portland, Oregon. https://www.nwfsc.noaa.gov/contact/display_staffprofilepubs.cfm?staffid=550 (2018).

    99.
    DART. Columbia river data access in real time. http://www.cbr.washington.edu/dart/dart.html (2019).

    100.
    NOAA Fisheries. Salmon population summary. https://catalog.data.gov/dataset/sps-abundance-salmon-population-summary-database (2019).

    101.
    Kareiva, P., Marvier, M. & McClure, M. Recovery and management options for spring/summer Chinook salmon in the Columbia River basin. Science 290, 977–979 (2000).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    102.
    Hartig, F., Calabrese, J. M., Reineking, B., Wiegand, T. & Huth, A. Statistical inference for stochastic simulation models—theory and application. Ecol. Letts. 14, 816–827 (2011).

    103.
    Csillery, K., Blum, M. G. B., Gaggiotti, O. E. & Francois, O. Approximate Bayesian computation (ABC). Pract. Trends Ecol. Evolution 25, 410–418 (2010).
    Article  Google Scholar 

    104.
    R. Core Team. R version 3.6.2: A Language and Environmental for Statistical Computing (R Foundation for Statistical Computing, Vienna, Austria, 2019).

    105.
    Gompertz, B. On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies. Philos. Trans. R. Soc. Lond. B: Biol. Sci. 182, 513–585 (1825).
    Google Scholar 

    106.
    Gelman, A., Carlin, J. B. & Rubin, D. B. Bayesian Data Analysis (Chapman & Hall, 2004).

    107.
    Vehtari, A., Gelman, A. & Gabry, J. Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC. Stat. Comput. 27, 1413–1432 (2017).
    Article  Google Scholar 

    108.
    Zabel, R. W., Burke, B. J., Moser, M. L. & Peery, C. Relating dam passage of adult salmon to varying river conditions using time-to-event analysis. Am. Fish. Soc. Symp. 61, 153–163 (2008).
    Google Scholar 

    109.
    Chasco, B. E., Burke, B. J., Crozier, L. G. & Zabel, R. W. In press. Differential impacts of freshwater and marine covariates on wild and hatchery Chinook salmon marine survival. Plos One.

    110.
    U.S. Army Corps of Engineers (ACOE), Northwestern Division Bureau of Reclamation & Administration, P. N. R. B. P. Columbia River System Operations Draft Environmental Impact Statement, February 2020. DOE/EIS-0529 (2020).

    111.
    Kristensen, K., Nielsen, A., Berg, C. W., Skaug, H. & Bell, B. M. TMB: automatic differentiation and laplace approximation. J. Stat. Softw. 70, 1–21 (2016).
    Article  Google Scholar 

    112.
    Brady, R. X., Alexander, M. A., Lovenduski, N. S. & Rykaczewski, R. R. Emergent anthropogenic trends in California Current upwelling. Geophys. Res. Lett. 44, 5044–5052 (2017).
    Article  Google Scholar 

    113.
    National Oceanic and Atmospheric Administration. NOAA Earth System Research Laboratory, Climate Change web portal, CMIP5 maps. Available at https://psl.noaa.gov/ipcc/ocn/ccwp.html (2018). (Accessed November 2018).

    114.
    Yearsley, J. R. A semi-Lagrangian water temperature model for advection-dominated river systems. Water Resour. Res. 45, W12405 (2009).
    Article  Google Scholar 

    115.
    Brekke, L., Kuepper, B. & Vaddey, S. Climate and hydrology datasets for use in the RMJOC agencies’ longer-term planning studies: Part 1 – Future Climate and Hydrology Datasets. https://www.usbr.gov/pn/climate/planning/reports/index.html (2010). More

  • in

    Feral swine as sources of fecal contamination in recreational waters

    1.
    Eckert, K. D., Keiter, D. A. & Beasley, J. C. Animal visitation to wild pig (Sus scrofa) wallows and implications for disease transmission. J. Wildl. Dis. 55, 488–493. https://doi.org/10.7589/2018-05-143 (2019).
    Article  PubMed  Google Scholar 
    2.
    Fenaux, H. et al. Transmission of hepatitis E virus by water: an issue still pending in industrialized countries. Water Res. 151, 144–157 (2019).
    CAS  Article  Google Scholar 

    3.
    Atwill, E. R. et al. Prevalence of and associated risk factors for shedding Cryptosporidium parvum oocysts and Giardia cysts within feral pig populations in California. Appl. Environ. Microbiol. 63, 3946–3949 (1997).
    CAS  Article  Google Scholar 

    4.
    Hampton, J., Spencer, P. B. S., Elliot, A. D. & Thompson, R. C. A. Prevalence of zoonotic pathogens from feral pigs in major public drinking water catchments in Western Australia. EcoHealth 3, 103–108. https://doi.org/10.1007/s10393-006-0018-8 (2006).
    Article  Google Scholar 

    5.
    McClure, M. L. et al. Modeling and mapping the probability of occurrence of invasive wild pigs across the contiguous United States. PLoS ONE 10, e0133771. https://doi.org/10.1371/journal.pone.0133771 (2015).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    6.
    Mayer, J. J. & Beasley, J. C. Ecology and management of terrestrial vertebrate invasive species in the United States 221–250 (CRC Press, Boca Raton, 2017).
    Google Scholar 

    7.
    Boughton, E. H. & Boughton, R. K. Modification by an invasive ecosystem engineer shifts a wet prairie to a monotypic stand. Biol. Invas. 16, 2105–2114. https://doi.org/10.1007/s10530-014-0650-0 (2014).
    Article  Google Scholar 

    8.
    Hone, J. Feral pig rooting in a mountain forest and woodland: distribution, abundance and relationships with environmental variables. Aust. J. Ecol. 13, 393–400 (1988).
    Article  Google Scholar 

    9.
    Belden, R. C. & Pelton, M. R. Wallows of the European Wild Hog in the Mountains of East Tennessee. J. Tenn. Acad. Sci. 51, 91–93 (1976).
    Google Scholar 

    10.
    Kaller, M. & Kelso, W. in Proceedings of the Annual Conference of the southeastern Association of Fish and Wildlife Agencies. 291–298.

    11.
    Kaller, M. D. & Kelso, W. E. Swine activity alters invertebrate and microbial communities in a coastal plain watershed. Am. Midl. Nat. 156, 163–178 (2006).
    Article  Google Scholar 

    12.
    Kaller, M. D., Hudson, J. D. III., Achberger, E. C. & Kelso, W. E. Feral hog research in western Louisiana: expanding populations and unforeseen consequences. Hum. Wildl. Confl. 1, 168–177 (2007).
    Google Scholar 

    13.
    U.S. Environmental Protection Agency. National Summary of Impaired Waters and TMDL Information, accessed Nov. 20, 2020 at https://iaspub.epa.gov/waters10/attains_nation_cy.control?p_report_type=T (2020).

    14.
    U.S. Environmental Protection Agency. Recreational Water Quality Criteria. (Health and Ecological Criteria Division, Office of Science and Technology, U.S. Environmental Protection Agency. EPA 820-F-12-058, 2012).

    15.
    Hutton, T., DeLiberto, T. J., Owen, S. & Morrison, B. Disease risks associated with increasing feral swine numbers and distribution in the United States. Mich. Bovine Tubercul. Bibliogr. Database 59, 1–15 (2006).
    Google Scholar 

    16.
    Ruiz-Fons, F. A review of the current status of relevant zoonotic pathogens in wild swine (Sus scrofa) populations: changes modulating the risk of transmission to humans. Transb. Emerg. Dis. 64, 68–88 (2017).
    CAS  Article  Google Scholar 

    17.
    Shwiff, S., Shwiff, S., Holderieath, J., Haden-Chomphosy, W. & Anderson, A. Ecology and management of terrestrial vertebrate invasive species in the United States 35–60 (CRC Press, Boca Raton, 2017).
    Google Scholar 

    18.
    Brown, V., Bowen, R. & Bosco-Lauth, A. Zoonotic pathogens from feral swine that pose a significant threat to public health. Transb. Emerg. Dis. 65, 649–659 (2018).
    CAS  Article  Google Scholar 

    19.
    Jay, M. T. et al. Escherichia coli O157:H7 in feral swine near spinach fields and cattle, central California coast. Emerg. Infect. Dis. 13, 1908–1911. https://doi.org/10.3201/eid1312.070763 (2007).
    Article  PubMed  PubMed Central  Google Scholar 

    20.
    Friebel, A. & Jodice, P. Home range and habitat use of feral hogs in Congaree National Park, South Carolina. Hum. Wildl. Confl. 3, 49–63 (2009).
    Google Scholar 

    21.
    Zengel, S. Wild pig habitat use, substrate disturbance, and understory vegetation at Congaree National Park Ph. D. thesis, Clemson University (2008).

    22.
    U.S. National Park Service. Final management plan for non-native wild pigs within Congaree National Park (CONG), with Environmental Assessment. (2014).

    23.
    U.S. National Park Service. National Park Service Visitor Use Statistics, 2020).

    24.
    McCarthy, S. Bacterial Water Quality Monitoring as Citizen Science in Congaree National Park, South Carolina MSc thesis, University of South Carolina, (2020).

    25.
    DHEC. The State of South Carolina’s 2016 Integrated Report Part I: Listing of Impaired Waters, accessed Nov. 20, 2020 at https://scdhec.gov/sites/default/files/docs/HomeAndEnvironment/Docs/tmdl_16-303d.pdf (2016).

    26.
    Meays, C., Broersma, K., Nordin, R. & Mazumder, A. Source tracking fecal bacteria in water: a critical review of current methods. J. Environ. Manag. 73, 71–79 (2004).
    Article  Google Scholar 

    27.
    Bernhard, A. & Field, K. A PCR assay to discriminate human and ruminant feces on the basis of host differences in Bacteroides-Prevotella genes encoding 16S rRNA. Appl. Environ. Microbiol. 66, 4571–4574 (2000).
    CAS  Article  Google Scholar 

    28.
    Beversdorf, L. J., Bornstein-Forst, S. M. & McLellan, S. L. The potential for beach sand to serve as a reservoir for Escherichia coli and the physical influences on cell die-off. J. Appl. Microbiol. 102, 1372–1381. https://doi.org/10.1111/j.1365-2672.2006.03177.x (2007).
    CAS  Article  PubMed  Google Scholar 

    29.
    Byappanahalli, M. N., Nevers, M. B., Korajkic, A., Staley, Z. R. & Harwood, V. J. Enterococci in the Environment. Microbiol. Mol. Biol. Rev. 76, 685–706. https://doi.org/10.1128/MMBR.00023-12 (2012).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    30.
    Byappanahalli, M. N., Roll, B. M. & Fujioka, R. S. Evidence for occurrence, persistence, and growth potential of Escherichia coli and enterococci in Hawaii’s soil environments. Microbes Environ. 27, 164–170. https://doi.org/10.1264/jsme2.ME11305 (2012).
    Article  PubMed  Google Scholar 

    31.
    Bradshaw, J. K. et al. Characterizing relationships among fecal indicator bacteria, microbial source tracking markers, and associated waterborne pathogen occurrence in stream water and sediments in a mixed land use watershed. Water Res https://doi.org/10.1016/j.watres.2016.05.014 (2016).
    Article  PubMed  Google Scholar 

    32.
    Leray, M. et al. A new versatile primer set targeting a short fragment of the mitochondrial COI region for metabarcoding metazoan diversity: application for characterizing coral reef fish gut contents. Front. Zool. 10, 1 (2013).
    Article  Google Scholar 

    33.
    McKee, B. A., Molina, M., Cyterski, M. & Couch, A. Microbial source tracking (MST) in chattahoochee river national recreation area: seasonal and precipitation trends in MST marker concentrations, and associations with E. coli levels, pathogenic marker presence, and land use. Water Res. 171, 115435. https://doi.org/10.1016/j.watres.2019.115435 (2020).
    CAS  Article  PubMed  Google Scholar 

    34.
    Allsop, K. & Stickler, J. An assessment fo Bacteroides fragilis group organisms as indicators of human faecal pollution. J. Appl. Bacteriol. 58, 95–99 (1985).
    CAS  Article  Google Scholar 

    35.
    Kreader, C. A. Persistence of PCR-detectable Bacteroides distasonis from human feces in river water. Appl. Environ. Microbiol. 64, 4103–4105. https://doi.org/10.1128/aem.64.10.4103-4105.1998 (1998).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    36.
    Ballesté, E. & Blanch, A. R. Persistence of Bacteroides Species populations in a river as measured by molecular and culture techniques. Appl. Environ. Microbiol. 76, 7608–7616. https://doi.org/10.1128/aem.00883-10 (2010).
    Article  PubMed  PubMed Central  Google Scholar 

    37.
    USNPS. Foundation Document Congaree National Park South Carolina. 76 (U.S. National Park Servic (USNPS), 2014).

    38.
    Congaree River Keeper. Lower Richland Sewer Project (2014).

    39.
    McKee, A. M., Bradley, P. M. & Romanok, K. M. Microbial Source Tracking Marker Concentrations in Congaree National Park in 2017–2019, South Carolina, USA: U.S. Geological Survey data release. https://doi.org/10.5066/P9GFT8M7 (2020).

    40.
    U.S. Environmental Protection Agency. Method 1603: Escherichia coli (E. coli) in Water by Membrane Filtration Using Modified membrane-Thermotolerant Escherichia coli Agar (Modified mTEC). 42 (Washington, D.C., 2009).

    41.
    Bauer, L. & Alm, E. Escherichia coli toxin and attachment genes in sand at Great Lakes recreational beaches. J. Great Lakes Res. 38, 129–133. https://doi.org/10.1016/j.jglr.2011.10.004 (2012).
    CAS  Article  Google Scholar 

    42.
    Duris, J. W., Haack, S. K. & Fogarty, L. R. Gene and antigen markers of shiga-toxin producing E. coli from Michigan and Indiana River water: occurrence and relation to recreational water quality criteria. J. Environ. Qual. 38, 1878–1886 (2009).
    CAS  Article  Google Scholar 

    43.
    Myers, D. N., Stoeckel, D. M., Bushon, R. N., Francy, D. S. & Brady, A. M. G. in Book 9, chap. A7, section 7.1, May 2014 (2014).

    44.
    Videnska, P. et al. Stool sampling and DNA isolation kits affect DNA quality and bacterial composition following 16S rRNA gene sequencing using MiSeq Illumina platform. Sci. Rep. 9, 1–14 (2019).
    CAS  Article  Google Scholar 

    45.
    Claassen, S. et al. A comparison of the efficiency of five different commercial DNA extraction kits for extraction of DNA from faecal samples. J. Microbiol. Methods 94, 103–110. https://doi.org/10.1016/j.mimet.2013.05.008 (2013).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    46.
    Bradshaw, J. K. et al. Characterizing relationships among fecal indicator bacteria, microbial source tracking markers, and associated waterborne pathogen occurrence in stream water and sediments in a mixed land use watershed. Water Res. 101, 498–509 (2016).
    CAS  Article  Google Scholar 

    47.
    Haugland, R. A. et al. Evaluation of genetic markers from the 16S rRNA gene V2 region for use in quantitative detection of selected Bacteroidales species and human fecal waste by qPCR. Syst. Appl. Microbiol. 33, 348–357. https://doi.org/10.1016/j.syapm.2010.06.001 (2010).
    CAS  Article  PubMed  Google Scholar 

    48.
    Green, H. C. et al. Improved HF183 quantitative real-time PCR assay for characterization of human fecal pollution in ambient surface water samples. Appl. Environ. Microbiol. 80, 3086–3094 (2014).
    Article  Google Scholar 

    49.
    Mieszkin, S., Yala, J. F., Joubrel, R. & Gourmelon, M. Phylogenetic analysis of Bacteroidales 16S rRNA gene sequences from human and animal effluents and assessment of ruminant faecal pollution by real-time PCR. J. Appl. Microbiol. 108, 974–984. https://doi.org/10.1111/j.1365-2672.2009.04499.x (2010).
    CAS  Article  PubMed  Google Scholar 

    50.
    Ryu, H. et al. Comparison of two poultry litter qPCR assays targeting the 16S rRNA gene of Brevibacterium sp. Water Res. 48, 613–621 (2014).
    CAS  Article  Google Scholar 

    51.
    Shanks, O. C. et al. Quantitative PCR for detection and enumeration of genetic markers of bovine fecal pollution. Appl. Environ. Microbiol. 74, 745–752 (2008).
    CAS  Article  Google Scholar 

    52.
    Imamovic, L., Serra-Moreno, R., Jofre, J. & Muniesa, M. Quantification of Shiga toxin 2-encoding bacteriophages, by real-time PCR and correlation with phage infectivity. J. Appl. Microbiol. 108, 1105–1114 (2010).
    CAS  Article  Google Scholar 

    53.
    Mieszkin, S., Furet, J.-P., Corthier, G. & Gourmelon, M. Estimation of pig fecal contamination in a river catchment by real-time PCR using two pig-specific Bacteroidales 16S rRNA genetic markers. Appl. Environ. Microbiol. 75, 3045–3054 (2009).
    CAS  Article  Google Scholar 

    54.
    Field, J. A. & Lettinga, G. in Plant Polyphenols. Basic Life Sciences, vol 59 (eds Hemingway R.W. & Laks P.E.) (Springer, 1992).

    55.
    Bradley, P. M. et al. Widespread occurrence and potential for biodegradation of bioactive contaminants in Congaree National Park, USA. Environ. Toxicol. Chem. 36, 3045–3056 (2017).
    CAS  Article  Google Scholar 

    56.
    Harestad, A. S. & Bunnel, F. Home range and body weight—a reevaluation. Ecology 60, 389–402 (1979).
    Article  Google Scholar 

    57.
    Sanderson, G. C. The study of mammal movements: a review. J. Wildl. Manag. 30, 215–235 (1966).
    Article  Google Scholar 

    58.
    Wood, G. W. & Brenneman, R. E. Feral hog movements and habitat use in coastal South Carolina. J. Wildl. Manag. 44, 420–427. https://doi.org/10.2307/3807973 (1980).
    Article  Google Scholar 

    59.
    Kurz, J. C. & Marchinton, R. L. Radiotelemetry studies of feral hogs in South Carolina. J. Wildl. Manag. 36, 1240–1248 (1972).
    Article  Google Scholar 

    60.
    Johnston, M. A., Porter, D. E., Scott, G. I., Rhodes, W. E. & Webster, L. F. Isolation of faecal coliform bacteria from the American alligator (Alligator mississippiensis). J. Appl. Microbiol. 108, 965–973. https://doi.org/10.1111/j.1365-2672.2009.04498.x (2010).
    CAS  Article  PubMed  Google Scholar 

    61.
    Ramos, C. P. et al. Identification and characterization of Escherichia coli, Salmonella spp., Clostridium perfringens, and C. difficile Isolates from reptiles in Brazil. BioMed Res. Int. 2019, 9530732. https://doi.org/10.1155/2019/9530732 (2019).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    62.
    Ballesté, E., García-Aljaro, C. & Blanch, A. R. Assessment of the decay rates of microbial source tracking molecular markers and faecal indicator bacteria from different sources. J. Appl. Microbiol. 125, 1938–1949. https://doi.org/10.1111/jam.14058 (2018).
    Article  Google Scholar 

    63.
    Hadler, J. L. et al. Ten-year trends and risk factors for non-O157 Shiga Toxin-producing Escherichia coli found through Shiga Toxin testing, Connecticut, 2000–2009. Clin. Infect. Dis. 53, 269–276. https://doi.org/10.1093/cid/cir377 (2011).
    Article  PubMed  Google Scholar 

    64.
    Doyle, M. P. & Schoeni, J. L. Survival and growth characteristics of Escherichia coli associated with hemorrhagic colitis. Appl. Environ. Microbiol. 48, 855–856 (1984).
    CAS  Article  Google Scholar 

    65.
    Raghubeer, E. V. & Matches, J. R. Temperature range for growth of Escherichia coli serotype O157:H7 and selected coliforms in E. coli medium. J. Clin. Microbiol. 28, 803–805 (1990).
    CAS  Article  Google Scholar 

    66.
    Soller, J. A., Schoen, M. E., Bartrand, T., Ravenscroft, J. E. & Ashbolt, N. J. Estimated human health risks from exposure to recreational waters impacted by human and non-human sources of faecal contamination. Water Res. 44, 4674–4691 (2010).
    CAS  Article  Google Scholar 

    67.
    Schoen, M. E. & Ashbolt, N. J. Assessing pathogen risk to swimmers at non-sewage impacted recreational beaches. Environ. Sci. Technol. 44, 2286–2291 (2010).
    ADS  CAS  Article  Google Scholar 

    68.
    Sedmak, G., Bina, D., MacDonald, J. & Couillard, L. Nine-year study of the occurrence of culturable viruses in source water for two drinking water treatment plants and the influent and effluent of a wastewater treatment plant in Milwaukee, Wisconsin (August 1994 through July 2003). Appl. Environ. Microbiol. 71, 1042–1050 (2005).
    CAS  Article  Google Scholar 

    69.
    Medina, R. A. & García-Sastre, A. Influenza A viruses: new research developments. Nat. Rev. Microbiol. 9, 590–603. https://doi.org/10.1038/nrmicro2613 (2011).
    CAS  Article  PubMed  Google Scholar 

    70.
    Soller, J. A., Bartrand, T., Ashbolt, N. J., Ravenscroft, J. & Wade, T. J. Estimating the primary etiologic agents in recreational freshwaters impacted by human sources of faecal contamination. Water Res. 44, 4736–4747 (2010).
    CAS  Article  Google Scholar 

    71.
    U.S. Environmental Protection Agency. in EPA 822-R-10-005. (US EPA Office of Water, Washington, DC, 2010).

    72.
    Fredriksson-Ahomaa, M., Wacheck, S., Bonke, R. & Stephan, R. Different enteropathogenic Yersinia strains found in wild boars and domestic pigs. Foodborne Pathogens Dis. 8, 733–737 (2011).
    CAS  Article  Google Scholar 

    73.
    Lara, G. H. B. et al. Occurrence of Mycobacterium spp. and other pathogens in lymph nodes of slaughtered swine and wild boars (Sus scrofa). Res. Vet. Sci. 90, 185–188. https://doi.org/10.1016/j.rvsc.2010.06.009 (2011).
    Article  PubMed  Google Scholar 

    74.
    Pond, K. Water recreation and disease, plausibility of associated infections: acute effects, sequelae, and mortality (World Health Organization, London, 2005).
    Google Scholar 

    75.
    Soller, J. et al. Estimated human health risks from recreational exposures to stormwater runoff containing animal faecal material. Environ. Model. Softw. 72, 21–32. https://doi.org/10.1016/j.envsoft.2015.05.018 (2015).
    Article  Google Scholar 

    76.
    Nguyen, K. et al. Determination of wild animal sources of fecal indicator bacteria by microbial source tracking (MST) influences regulatory decisions. Water Res. 144, 424–434 (2018).
    CAS  Article  Google Scholar 

    77.
    Balanson, S. Holding nature responsible: the natural conditions exception to water quality standards of the clean water act. Clev. St. L. Rev. 56, 1057 (2008).
    Google Scholar  More

  • in

    Insecticidal and oviposition deterrent effects of essential oils of Baccharis spp. and histological assessment against Drosophila suzukii (Diptera: Drosophilidae)

    1.
    Budel, J. et al. Essential oils of five Baccharis species: Investigations on the chemical composition and biological activities. Molecules 23, 1–19 (2018).
    Article  CAS  Google Scholar 
    2.
    Heiden, G. & Schneider, A. Baccharis in Lista de Espécies da Flora do Brasil, Jardim Botânico do Rio de Janeiro (2015). http://floradobrasil.jbrj.gov.br/jabot/floradobrasil/FB5255. Accessed 10 September 2020.

    3.
    Forzza, R. C. et al. New Brazilian floristic list highlights conservation challenges. Bioscience 62, 39–45 (2012).
    Article  Google Scholar 

    4.
    Ramos Campos, F., Bressan, J. & Jasinski, V. C. G. Baccharis (Asteraceae): Chemical constituents and biological activities. Chem. Biodivers. 13, 1–17 (2016).
    CAS  PubMed  Article  Google Scholar 

    5.
    Trombin-Souza, M. et al. Chemical composition of the essential oils of Baccharis species from southern Brazil: A comparative study using multivariate statistical analysis. J. Essent. Oil Res. 29, 400–406 (2017).
    CAS  Article  Google Scholar 

    6.
    Alves, K. F. et al. Baccharis dracunculifolia (Asteraceae) essential oil toxicity to Culex quinquefasciatus (Culicidae). Environ. Sci. Pollut. Res. 25, 31718–31726 (2018).
    CAS  Article  Google Scholar 

    7.
    García, M., Donadel, O. J., Ardanaz, C. E., Tonn, C. E. & Sosa, M. E. Toxic and repellent effects of Baccharis salicifolia essential oil on Tribolium castaneum. Pest Manage. Sci. 61, 612–618 (2005).
    Article  CAS  Google Scholar 

    8.
    Buss, E.A. & Park-Brown, S.G. Natural Products for Insect Pest Management. Preprint at https://edis.ifas.ufl.edu/in197 (2002).

    9.
    Park, C. G., Jang, M., Yoon, K. A. & Kim, J. Insecticidal and acetylcholinesterase inhibitory activities of Lamiaceae plant essential oils and their major components against Drosophila suzukii (Diptera: Drosophilidae). Ind. Crop Prod. 89, 507–513 (2016).
    CAS  Article  Google Scholar 

    10.
    Asplen, M. K. et al. Invasion biology of Spotted Wing Drosophila (Drosophila suzukii): A global perspective and future priorities. J. Pest Sci. 88, 469–494 (2015).
    Article  Google Scholar 

    11.
    De La Veja, G. J., Corley, J. C. & Soliani, C. Genetic assessment of the invasion history of Drosophila suzukii in Argentina. J. Pest Sci. 93, 63–75 (2020).
    Article  Google Scholar 

    12.
    Rota-Stabelli, O. et al. Distinct genotypes and phenotypes in European and American strains of Drosophila suzukii: Implications for biology and management of an invasive organism. J. Pest Sci. 93, 77–89 (2020).
    Article  Google Scholar 

    13.
    Bernardi, D. et al. Potential use of Annona by products to control Drosophila suzukii and toxicity to its parasitoid Trichopria anastrephae. Ind. Crop Prod. 110, 30–35 (2017).
    CAS  Article  Google Scholar 

    14.
    Kienzle, R., Groß, L. B., Caughman, S. & Rohlfs, M. Resource use by individual Drosophila suzukii reveals a flexible preference for oviposition into healthy fruits. Sci. Rep. 10, 3132 (2020).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    15.
    Souza, M. T. et al. Physicochemical characteristics and superficial damage modulate persimmon infestation by Drosophila suzukii and Zaprionus indianus (Diptera: Drosophilidae). Environ. Entomol. 49, 1290–1299 (2020).
    Article  Google Scholar 

    16.
    Hamby, K. A. et al. Biotic and abiotic factors impacting development, behavior, phenology, and reproductive biology of Drosophila suzukii. J. Pest Sci. 89, 605–619 (2016).
    Article  Google Scholar 

    17.
    Sánchez-Ramos, I., Gómez-Casado, E., Fernández, C. E. & González-Núñez, M. Reproductive potential and population increase of Drosophila suzukii at constant temperatures. Entomol. Gen. 39, 103–115 (2019).
    Article  Google Scholar 

    18.
    Spitaler, U. et al. Yeast species affects feeding and fitness of Drosophila suzukii adults. J. Pest Sci. 93, 1295–1309 (2020).
    Article  Google Scholar 

    19.
    Santoiemma, G. et al. Habitat preference of Drosophila suzukii across heterogeneous landscapes. J. Pest Sci. 92, 485–494 (2019).
    Article  Google Scholar 

    20.
    Tait, G. et al. Drosophila suzukii daily dispersal between distinctly different habitats. Entomol. Gen. 40, 25–37 (2020).
    Article  Google Scholar 

    21.
    Delbac, L., Rusch, A. & Thiéry, D. Temporal dynamics of Drosophila suzukii in vineyard landscapes. Entomol. Gen. 40, 285–295 (2020).
    Article  Google Scholar 

    22.
    Renkema, J. M., Wright, D., Buitenhuis, R. & Hallett, R. H. Plant essential oils and potassium metabisulfite as repellents for Drosophila suzukii (Diptera: Drosophilidae). Sci. Rep. 6, 21432 (2016).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    23.
    Wiman, N. G. et al. Drosophila suzukii population response to environment and management strategies. J. Pest Sci. 89, 653–665 (2016).
    Article  Google Scholar 

    24.
    Santoiemma, G. et al. Integrated management of Drosophila suzukii in sweet cherry orchards. Entomol. Gen. 40, 297–305 (2020).
    Article  Google Scholar 

    25.
    Mermer, S. et al. Timing and order of different insecticide classes drive control of Drosophila suzukii; a modeling approach. J. Pest Sci. https://doi.org/10.1007/s10340-020-01292-w (2020).
    Article  Google Scholar 

    26.
    Gress, B. E. & Zalom, F. G. Identification and risk assessment of spinosad resistance in a California population of Drosophila suzukii. Pest Manage. Sci. 75, 1270–1276 (2018).
    Article  CAS  Google Scholar 

    27.
    Van Timmeren, S., Sial, A. A., Lanka, S. K., Spaulding, N. R. & Isaacs, R. Development of a rapid assessment method for detecting insecticide resistance in Spotted Wing Drosophila (Drosophila suzukii Matsumura). Pest Manage. Sci. 75, 1782–1793 (2019).
    Article  CAS  Google Scholar 

    28.
    Zanardi, O. Z. et al. Bioactivity of a matrine-based biopesticide against four pest species of agricultural importance. Crop Prot. 67, 160–167 (2015).
    Article  Google Scholar 

    29.
    Souza, M. T. et al. Chemical composition of essential oils of selected species of Piper and their insecticidal activity against Drosophila suzukii and Trichopria anastrephae. Environ. Sci. Pollut. Res. 27, 13056–13065 (2020).
    Article  CAS  Google Scholar 

    30.
    Kostyukovsky, M., Rafaeli, A., Gileadi, C., Demchenko, N. & Shaaya, E. Activation of octopaminergic receptors by essential oil constituents isolated from aromatic plants: Possible mode of action against insect pests. Pest Manage. Sci. 58, 1101–1106 (2002).
    CAS  Article  Google Scholar 

    31.
    Chaaban, A. et al. Insecticide activity of Baccharis dracunculifolia essential oil against Cochliomyia macellaria (Diptera: calliphoridae). Nat. Prod. Res. 32, 2854–2958 (2017).
    Google Scholar 

    32.
    Charlie-Silva, I., Souza, L. M., Pereira, C. C., Mazzonetto, F. & Belo, M. A. A. Insecticidal efficacy of aqueous extracts of Ricinus communis, Baccharis trimera and Chenopodium ambrosioides on adults of Alphitobius diaperinus. Ars. Vet. 35, 7–11 (2019).
    CAS  Article  Google Scholar 

    33.
    Khorram, M. S., Nasabi, N. T., Jafarnia, S. & Khosroshahi, S. The toxicity of selected monoterpene hydrocarbons as singles compounds and mixtures against different developmental stages of colorado potato beetle, Leptinotarsa decemlineata Say (Coleoptera: Chrysomelidae). J. Entomol. 8, 404–416 (2011).
    CAS  Article  Google Scholar 

    34.
    Fang, R. et al. Insecticidal activity of essential oil of carum carvi fruits from China and its main components against two grain storage insects. Molecules 15, 9391–9402 (2010).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    35.
    Malacrinò, A., Campolo, O. & Laudani, F. Fumigant and repellent activity of limonene enantiomers against Tribolium confusum du Val. Neotrop. Entomol. 45, 597–603 (2016).
    PubMed  Article  Google Scholar 

    36.
    Macchioni, F. et al. Acaricidal activity of pine essential oils and their main components against Tyrophagus putrescentiae, a stored food mite. J. Agric. Food Chem. 50, 4586–4588 (2002).
    CAS  PubMed  Article  Google Scholar 

    37.
    Tiberi, R. et al. The role of the monoterpene composition in Pinus spp. needles, in host selection by the pine processionary caterpillar, Thaumetopoea pityocampa. Phytoparas. 27, 263–272 (1999).
    CAS  Article  Google Scholar 

    38.
    Schuster, D. J., Thompson, S., Ortega, L. D. & Polston, J. E. Laboratory evaluation of products to reduce settling of sweet potato whitefly adults. J. Econ. Entomol. 102, 1482–1489 (2009).
    CAS  PubMed  Article  Google Scholar 

    39.
    Raina, A. et al. Effects of orange oil extract on the Formosan Subterranean Termite (Isoptera: Rhinotermitidae). J. Econ. Entomol. 100, 880–885 (2010).
    Article  Google Scholar 

    40.
    Andreazza, F. et al. Toxicities and effects of insecticidal toxic baits to control Drosophila suzukii and Zaprionus indianus (Diptera: Drosophilidae). Pest Manage. Sci. 73, 146–152 (2017).
    CAS  Article  Google Scholar 

    41.
    Bruck, D. J. et al. Laboratory and field comparisons of insecticides to reduce infestation of Drosophila suzukii in berry crops. Pest Manage. Sci. 67, 1375–1385 (2011).
    CAS  Article  Google Scholar 

    42.
    Beers, E. H. et al. Developing Drosophila suzukii management programs for sweet cherry in the western United States. Pest Manage. Sci. 67, 1386–1395 (2011).
    CAS  Article  Google Scholar 

    43.
    Van Timmeren, S. & Isaacs, R. Control of spotted wing drosophila, Drosophila suzukii, by specific insecticides and by conventional and organic crop protection programs. Crop Prot. 54, 126–133 (2013).
    Article  CAS  Google Scholar 

    44.
    Pavela, R. Acute, synergistic and antagonistic effects of some aromatic compounds on the Spodoptera littoralis Boisd. (Lep., Noctuidae) larvae. Ind. Crop Prod. 60, 247–258 (2014).
    CAS  Article  Google Scholar 

    45.
    Dias, C. N. & Moraes, D. F. C. Essential oils and their compounds as Aedes aegypti L. (Diptera: Culicidae) larvicides: A review. Parasitol. Res. 113, 565–592 (2014).
    PubMed  Article  PubMed Central  Google Scholar 

    46.
    Jankowska, M., Rogalska, J., Wyszkowska, J. & Stankiewicz, M. Molecular targets for components of essential oils in the insect nervous system–A review. Molecules https://doi.org/10.3390/molecules23010034 (2017).
    Article  PubMed  PubMed Central  Google Scholar 

    47.
    Trombetta, D. et al. Mechanisms of antibacterial action of three monoterpenes. Antimicrob. Agents Chemother. 49, 2474–2478 (2005).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    48.
    Holley, R. A. & Patel, D. Improvement in shelf-life and safety of perishable foods by plant essential oils and smoke antimicrobials. Food Microbiol. 22, 273–292 (2005).
    CAS  Article  Google Scholar 

    49.
    Oussalah, M., Caillet, S., Saucier, L. & Lacroix, M. Inhibitory effects of selected plant essential oils on the growth of four pathogenic bacteria: E. coli O157:H7, Salmonella Typhimurium, Staphylococcus aureus and Listeria monocytogenes. Food Control 18, 414–420 (2007).
    CAS  Article  Google Scholar 

    50.
    Abdelgaleil, S., Badawy, M., Shawir, M. & Mohamed, M. Chemical composition, fumigant and contact toxicities of essential oils isolated from egyptian plants against the stored grain insects; Sitophilus oryzae L. and Tribolium castaneum (Herbst). Egypt J. Biol. Pest Co 25, 639–647 (2015).
    Google Scholar 

    51.
    Badawy, M. E. I., El-Arami, S. A. A. & Abdelgaleil, S. A. M. Acaricidal and quantitative structure activity relationship of monoterpenes against the two-spotted spider mite, Tetranychus urticae. Exp. Appl. Acarol. 52, 261–274 (2010).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    52.
    Chaaban, A. et al. Essential oil from Curcuma longa leaves: Can an overlooked by-product from turmeric industry be effective for myiasis control?. Ind. Crop Prod. 132, 352–364 (2019).
    CAS  Article  Google Scholar 

    53.
    Kumar, P., Mishra, S., Malik, A. & Satya, S. Biocontrol potential of essential oil monoterpenes against housefly, Musca domestica (Diptera: muscidae). Ecotoxicol. Environ. Safe 100, 1–6 (2014).
    CAS  Article  Google Scholar 

    54.
    Benelli, G. et al. Acute and sub-lethal toxicity of eight essential oils of commercial interest against the filariasis mosquito Culex quinquefasciatus and the housefly Musca domestica. Ind. Crop Prod. 112, 668–680 (2018).
    CAS  Article  Google Scholar 

    55.
    Pavela, R. et al. Outstanding insecticidal activity and sublethal effects of Carlina acaulis root essential oil on the housefly, Musca domestica, with insights on its toxicity on human cells. Food Chem. Toxicol. 136, 111037 (2020).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    56.
    Pavela, R. Lethal and sublethal effects of thyme oil (Thymus vulgaris L.) on the house fly (Musca domestica Lin.). J. Essent. Oil-Bear. Plants 10, 346–356 (2007).
    CAS  Article  Google Scholar 

    57.
    Haviland, D. R. & Beers, E. H. Chemical control programs for Drosophila suzukii that comply with international limitations on pesticide residues for exported sweet cherries. J. Integr. Pest Manage. 3, 1–6 (2012).
    Article  Google Scholar 

    58.
    Shaw, B., Brain, P., Wijnen, H. & Fountain, M. T. Implications of sub-lethal rates of insecticides and daily time of application on Drosophila suzukii lifecycle. Crop Prot. 121, 182–194 (2019).
    CAS  Article  Google Scholar 

    59.
    Richards, O. W. & Davies, R. G. Imms’ General Textbook of Entomology: Structure, Physiology and Development 101–263 (Chapman and Hall, London, 1977).
    Google Scholar 

    60.
    Alves, S. N., Serrão, J. E. & Melo, A. L. Alterations in the fat body and midgut of Culex quinquefasciatus larvae following exposure to different insecticides. Micron 41, 592–597 (2010).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    61.
    Rossi, C. A., Roat, T. C., Tavares, D. A., Cintra-Socolowski, P. & Malaspina, O. Effects of sublethal doses of imidacloprid in malpighian tubules of africanized Apis melífera (Hymenoptera, Apidae). Microsc. Res. Techniq. 76, 552–558 (2013).
    CAS  Article  Google Scholar 

    62.
    Kerr, J. F. R. History of the events leading to the formulation of the apoptosis concept. Toxicology 181–182, 471–474 (2002).
    PubMed  Article  PubMed Central  Google Scholar 

    63.
    Rossi-Stacconi, M. V. et al. Host location and dispersal ability of the cosmopolitan parasitoid Trichopria drosophilae released to control the invasive Spotted Wing Drosophila. Biol. Control 117, 188–196 (2018).
    Article  Google Scholar 

    64.
    Giorgini, M. et al. Exploration for native parasitoids of Drosophila suzukii in China reveals a diversity of parasitoid species and narrow host range of the dominant parasitoid. J. Pest Sci. 92, 509–522 (2018).
    Article  Google Scholar 

    65.
    Garriga, A. et al. Soil emergence of Drosophila suzukii adults: A susceptible period for entomopathogenic nematodes infection. J. Pest Sci. 93, 639–646 (2020).
    Article  Google Scholar 

    66.
    Wolf, S., Boycheva-Woltering, S., Romeis, J. & Collatz, J. Trichopria drosophilae parasitizes Drosophila suzukii in seven common non-crop fruits. J. Pest Sci. 93, 627–638 (2020).
    Article  Google Scholar 

    67.
    Pavela, R. & Benelli, G. Essential oils as ecofriendly biopesticides? Challenges and constraints. Trends Plant Sci. 21, 1000–1007 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    68.
    Krzyzowski, M., Baran, B. & Łozowski, B. The role of dilution mediums in studies of fumigant insecticidal activity of essential oils. J. Pest Sci. 93, 1119–1124 (2020).
    Article  Google Scholar 

    69.
    Campolo, O. et al. Essential oil-based nano-emulsions: Effect of different surfactants, sonication and plant species on physicochemical characteristics. Ind. Crop Prod 157, 112935 (2020).
    CAS  Article  Google Scholar 

    70.
    McLafferty, F. W., Stauffer, D. A., Loh, S. Y. & Wesdemiotis, C. Unknown identification using reference mass spectra. Quality evaluation of databases. J. Am. Soc. Mass Spectr. 10, 1229–1240 (1999).
    CAS  Article  Google Scholar 

    71.
    Van Den Dool, H. & Kratz, P. D. J. A. A generalization of the retention index system including linear temperature programmed gas-liquid partition chromatography. J. Chromatogr. A 11, 463–471 (1963).
    Article  Google Scholar 

    72.
    Adams, R. P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectorscopy 5th edn. (Texensis Publishing, New York, 2017).
    Google Scholar 

    73.
    Schlesener, D. C. H. et al. Biology and fertility life table of Drosophila suzukii on artificial diets. Entomol. Exp. Appl. 166, 932–936 (2018).
    Google Scholar 

    74.
    Abbott, W. S. A method of computing the effectiveness of an insecticide. J. Am. Mosquito Contr. 3, 302–303 (1925).
    Google Scholar 

    75.
    Finney, D. J. Statistical Method in Biological Assay (Charles Griffin & Company, London, 1978).
    Google Scholar 

    76.
    Nelder, J. A. & Wedderburn, R. W. M. Generalized linear models. J. R. Stat. Soc. B 135, 370–384 (1972).
    Google Scholar 

    77.
    Hinde, J. & Demétrio, C. G. B. Overdispersion: Models and estimation. Comput. Stat. Data Anal. 27, 151–170 (1998).
    MATH  Article  Google Scholar 

    78.
    R Development Core Team R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0 (2012). http://www.R-project.org. Accessed 2 September 2020.

    79.
    Institute, S. A. S. SAS System–SAS/STAT. Computer Program, Version 9.2 84 (SAS Institute, Cary, 2011).
    Google Scholar 

    80.
    Throne, J. E., Weaver, D. K., Chew, V. B. & James, E. Probit analysis of correlated data: Multiple observations over time at one concentration. J. Econ. Entomol. 88, 1510–1512 (1995).
    Article  Google Scholar 

    81.
    Obeng-Ofori, D. Plant oils as grain protectants against infestations of Cryptolestes pusillus and Rhyzopertha dominica in stored grain. Entomol. Exp. Appl. 77, 133–139 (1995).
    Article  Google Scholar  More

  • in

    Mapping ticks and tick-borne pathogens in China

    Distribution of tick species in mainland China
    We compiled a database comprising 7344 unique records on geographic distributions of 124 known tick species, including 113 hard tick species in seven genera and 11 soft tick species in two genera, together with 103 tick-associated agents detected in either ticks or humans, which were recorded in 1134 counties (39% of all counties in the mainland of China) (Supplementary Fig. 1 and Supplementary Note 1). The most widely distributed tick genus was Dermacentor (in 574 counties), followed by Heamaphysalis (570), Ixodes (432), Rhipicephalus (431), Hyalomma (298), Argas (90), Ornithodoros (38), Amblyomma (37), and Anomalohimalaya (5) (Supplementary Data 1 and Supplementary Figs. 2‒10). At the species level, D. nuttalli, Ha. longicornis, D. silvarum, Hy. scupense, and R. sanguineus were each found in >200 counties, followed by R. microplus, I. persulcatus, I. sinensis, I. granulatus, and Hy. asiaticum that were each detected in 100‒200 counties (Supplementary Data 1). We identified 19 predominant ticks that were detected in more than 40 counties, including five Ixodes species, four Heamaphysalis, four Dermacentor, three Rhipicephalus, two Hyalomma, and one Argas tick species. Forest and meadowlands are the major vegetation types for these 19 tick species, accounting for a median of 46.4% (IQR: 40.0%‒68.9%) of their habitats (Supplementary Data 1).
    The abundance of tick species varies substantially across the seven biogeographic zones which are defined by climatic and ecological characteristics (Fig. 1)18,19. Tick species are most abundant in Central China, South China, and Inner Mongolia–Xinjiang districts, hosting 61, 57, and 50 tick species, respectively (Supplementary Data 2). Eight prefectures reported ≥20 tick species, three in Xinjiang Autonomous Region of northwestern China, two in Yunnan Province of southwestern China, and one in each of Gansu, Hubei, and Fujian provinces of northwestern, central, and southeastern China, respectively (Fig. 1). Most genera except for Amblyomma were found in northwestern China, particularly in Xinjiang Autonomous Region. In contrast, less tick diversity was observed in northeastern China, which only harbors Ixodes, Heamaphysalis, and Dermacentor (Supplementary Figs. 2‒10).
    Fig. 1: Tick species richness (circles) at the prefecture level in seven biogeographic zones in mainland China from 1950 to 2018.

    I = Northeast district (NE), II = North China district (N), III = Inner Mongolia–Xinjiang district (IMX), IV = Qinghai–Tibet district (QT), V = Southwest district (SW), VI = Central China district (C), and VII = South China district (S). Source data are provided as a Source Data file.

    Full size image

    Risk mapping and risk factors for 19 predominant tick species
    The ecological modeling results for the 19 predominant tick species showed highly accurate predictions, with the average testing area-under-curve (AUC) ranging from 0.83 to 0.97 (Table 1) and the testing partial AUC ratio ranging from 1.30 to 1.78 (Supplementary Tables 1‒5), indicating decent predictive power. The ecoclimatic and environmental variables that were predictive of the geographic distribution of the ticks differed among the species, even for those in the same genus (Fig. 2f, Supplementary Tables 1‒5). Temperature seasonality and mean temperature in the driest quarter were the two most important drivers, contributing ≥5% to the ensemble of models for 14- and 12- tick species, respectively, followed by elevation contributing ≥5% to the models for seven tick species (Fig. 2f, Supplementary Tables 1‒5). The same predictor, however, may drive the risk in different directions for different tick species (Supplementary Figs. 11‒29). For example, a high temperature in the driest quarter was associated with a high probability of presence for I. granulatus and R. haemaphysaloide but with a low probability for I. persulcatus and Ha. longicornis (Supplementary Figs. 11, 13, 16, 22).
    Table 1 The average testing areas under the curve (AUC) of the BRT models at the county level and model-predicted numbers, areas and population sizes of affected counties for the 19 most prevalent tick species in China.
    Full size table

    Fig. 2: Clustering of tick species based on their ecological features and spatial distributions at the county level.

    Panels a‒e indicate the spatial distribution of the five clusters (clusters I‒V). The boundaries of the seven biogeographic zones are shown as black solid lines. The dendrogram in panel f displays the clusters I‒V of tick species. The features used for clustering are three quantities associated with each predictor in the BRT models. Two of the three quantities were displayed in panel f to indicate the possible level of ecological suitability: relative contributions (colors in ascending order from yellow to red) and the standardized median value of the predictor (numbers in the heatmap) among counties with tick occurrence (numbers 1‒4 indicate the position of this median in reference to the quartiles of this predictor among all counties). Source data are provided as a Source Data file.

    Full size image

    The model-predicted high-risk areas of the 19 tick species were much more extensive than have been observed, 31‒520% greater in the number of affected counties, 14‒476% larger in the size of affected geographic area, and 25‒556% larger in the affected population size (Table 1, Supplementary Figs. 30‒34). Ha. longicornis was predicted to have the widest distribution that potentially affected 588 million people in 1140 counties, followed by I. sinensis and R. microplus that affected 363 and 350 million people in 630 and 678 counties, respectively (Table 1). High-risk areas of these three tick species collectively covered nearly all densely populated areas in China, mainly provinces in the central, eastern, southern, and southwestern China (Supplementary Figs. 30(b), 31(a), and 32(b)). R. sanguineus, and R. haemaphysaloides each affected more than 200 million people. D. nuttalli, I. crenulatus, Hy. asiaticum, Ar. persicus, and D. daghestanicus ticks were the top five tick species affecting the largest areas at the scale of 2.0‒3.8 million km2 (Table 1).
    Ecological clustering of tick species
    Based on the ecological similarity represented by the environmental and ecoclimatic predictors, the 19 tick species were grouped into five clusters with clear patterns of spatial aggregation (Fig. 2). D. nuttalli and D. silvarum constituted cluster I that covered the vast region in northern (including northeastern and northwestern) China. This cluster stretches over biogeographic zones I‒IV characterized by middle to high elevations, shrub grassland, strong seasonality in temperature, relatively low temperature in the wettest quarter (often also the warmest quarter), and low precipitation in the driest month (Fig. 2 and Supplementary Figs. 23, 24). Ha. longicornis, Hy. scupense, and R. sanguineus were grouped into Cluster II which was mainly found in biogeographic zones II, III, and VI, featuring the landscape of shrub grassland and irrigated or rainfed croplands at low-middle elevations (7% (Table 2). SFTSV ecologically prefers regions at low to moderate elevations ( 7%). High risks of TBEV were flagged by low to medium elevations ( More