On the robustness of an eastern boundary upwelling ecosystem exposed to multiple stressors
1.
Chavez, F. P. & Messié, M. A comparison of eastern boundary upwelling ecosystems. Prog. Oceanogr. 83, 80–96 (2009).
ADS Article Google Scholar
2.
Auger, P.-A., Gorgues, T., Machu, E., Aumont, O. & Brehmer, P. What drives the spatial variability of primary productivity and matter fluxes in the north-west African upwelling system? A modelling approach. Biogeosciences 13, 6419–6440 (2016).
ADS Article Google Scholar
3.
Benazzouz, A. et al. An improved coastal upwelling index from sea surface temperature using satellite-based approach—The case of the Canary Current upwelling system. Cont. Shelf Res. 81, 38–54 (2014).
ADS Article Google Scholar
4.
Citeau, J., Finaud, L., Cammas, J. & Demarcq, H. Questions relative to ITCZ migrations over the tropical Atlantic ocean, sea surface temperature and Senegal River runoff. Meteorol. Atmos. Phys. 41, 181–190 (1989).
ADS Article Google Scholar
5.
Maloney, E. & Shaman, J. Intraseasonal variability of the West African Monsoon and Atlantic ITCZ. J. Clim. 21, 2898–2918 (2008).
ADS Article Google Scholar
6.
Herbland, A. & Voituriez, B. L. production primaire dans l’upwelling mauritanien en mars 1973. Cahiers ORSTOM 12, 187–201 (1974).
CAS Google Scholar
7.
Poloczanska, E. S. et al. Responses of marine organisms to climate change across oceans. Front. Mar. Sci. 3, 62 (2016).
Article Google Scholar
8.
Hjermann, D. Ø., Ottersen, G. & Stenseth, N. C. Competition among fishermen and fish causes the collapse of Barents Sea capelin. PNAS 101, 11679–11684 (2004).
ADS CAS PubMed Article PubMed Central Google Scholar
9.
Fréon, P., Cury, P., Shannon, L. & Roy, C. Sustainable exploitation of small pelagic fish stocks challenged by environmental and ecosystem changes: A review. Bull. Mar. Sci. 76, 385–462 (2005).
Google Scholar
10.
Schwartzlose, R. A. et al. Worldwide large-scale fluctuations of sardine and anchovy populations. Afr. J. Mar. Sci. 21, 289–347 (1999).
Article Google Scholar
11.
Hofstede, R. T., Dickey-Collas, M., Mantingh, I. T. & Wague, A. The link between migration, the reproductive cycle and condition of Sardinella aurita off Mauritania, north-west Africa. J. Fish Biol. 71, 1293–1302 (2007).
Article Google Scholar
12.
Zeeberg, J., Corten, A., Tjoe-Awie, P., Coca, J. & Hamady, B. Climate modulates the effects of Sardinella aurita fisheries off Northwest Africa. Fish. Res. 1, 65–75 (2008).
Article Google Scholar
13.
Gibson, R. N., Atkinson, R. J. A. & Gordon, J. D. M. Oceanography and Marine Biology, Vol. 47 (2009).
14.
Hays, G. C., Richardson, A. J. & Robinson, C. Climate change and marine plankton. Trends Ecol. Evol. 20, 337–344 (2005).
PubMed Article PubMed Central Google Scholar
15.
Ndoye, S. et al. Dynamics of a “low-enrichment high-retention” upwelling center over the southern Senegal shelf. Geophys. Res. Lett. 44, 5034–5043 (2017).
ADS Article Google Scholar
16.
Behagle, N. et al. Acoustic distribution of discriminated micronektonic organisms from a bi-frequency processing: The case study of eastern Kerguelen oceanic waters. Prog. Oceanogr. 156, 276–289 (2017).
Article Google Scholar
17.
Benoit-Bird, K. & Au, W. Diel migration dynamics of an island-associated sound-scattering layer. Deep Sea Res. Part I 51, 707–719 (2004).
Article Google Scholar
18.
Sato, M. & Benoit-Bird, K. J. Spatial variability of deep scattering layers shapes the Bahamian mesopelagic ecosystem. Mar. Ecol. Prog. Ser. 580, 69–82 (2017).
ADS Article Google Scholar
19.
Algueró-Muñiz, M. et al. Ocean acidification effects on mesozooplankton community development: Results from a long-term mesocosm experiment. PLoS ONE 12, e0175851 (2017).
PubMed PubMed Central Article CAS Google Scholar
20.
Matlab R 2018a. The Math Works, Inc. (MATLAB & Simulink – MathWorks., 2018).
21.
Hegerl, G. C. et al. Causes of climate change over the historical record. Environ. Res. Lett. 14, 123006 (2019).
ADS CAS Article Google Scholar
22.
Belkin, I. M. Rapid warming of large marine ecosystems. Prog. Oceanogr. 81, 207–213 (2009).
ADS Article Google Scholar
23.
Valdés, L. & Déniz-González, I. Oceanographic and biological features in the Canary Current Large Marine Ecosystem, Vol. 115 (2015).
24.
Gómez-Letona, M., Ramos, A. G., Coca, J. & Arístegui, J. Trends in primary production in the canary current upwelling system—A regional perspective comparing remote sensing models. Front. Mar. Sci. 4, 370 (2017).
Article Google Scholar
25.
Bakun, A. Global climate change and intensification of coastal ocean upwelling. Science 247, 198–201 (1990).
ADS CAS PubMed Article Google Scholar
26.
Benazzouz, A., Demarcq, H. & González-Nuevo, G. Oceanographic and biological features in the Canary current large marine ecosystem. (2015).
27.
Behrenfeld, M. J. et al. Climate-driven trends in contemporary ocean productivity. Nature 444, 752–755 (2006).
ADS CAS PubMed Article Google Scholar
28.
Boyce, D. G., Lewis, M. R. & Worm, B. Global phytoplankton decline over the past century. Nature 466, 591–596 (2010).
ADS CAS PubMed Article Google Scholar
29.
Hofmann, M., Worm, B., Rahmstorf, S. & Schellnhuber, H. J. Declining ocean chlorophyll under unabated anthropogenic CO2 emissions. Environ. Res. Lett. 6, 034035 (2011).
ADS Article CAS Google Scholar
30.
Lewandowska, A. et al. Effects of sea surface warming on marine plankton. Ecol. Lett. 17, 614–623 (2014).
PubMed Article PubMed Central Google Scholar
31.
Arístegui, J. et al. Sub-regional ecosystem variability in the Canary Current upwelling. Prog. Oceanogr. 83, 33–48 (2009).
ADS Article Google Scholar
32.
Demarcq, H. Trends in primary production, sea surface temperature and wind in upwelling systems (1998–2007). Prog. Oceanogr. 83, 376–385 (2009).
ADS Article Google Scholar
33.
Barton, A. D., Irwin, A. J., Finkel, Z. V. & Stock, C. A. Anthropogenic climate change drives shift and shuffle in North Atlantic phytoplankton communities. PNAS 113, 2964–2969 (2016).
ADS CAS PubMed Article Google Scholar
34.
Jacob, B. G. et al. Major changes in diatom abundance, productivity, and net community metabolism in a windier and dryer coastal climate in the southern Humboldt Current. Prog. Oceanogr. 168, 196–209 (2018).
ADS Article Google Scholar
35.
Jacox, M. G., Hazen, E. L. & Bograd, S. J. optimal environmental conditions and anomalous ecosystem responses: Constraining bottom-up controls of phytoplankton biomass in the California current system. Sci. Rep. 6, 27612 (2016).
ADS CAS PubMed PubMed Central Article Google Scholar
36.
Botsford, L. W., Lawrence, C. A., Dever, E. P., Hastings, A. & Largier, J. Wind strength and biological productivity in upwelling systems: An idealized study. Fish. Oceanogr. 12, 245–259 (2003).
Article Google Scholar
37.
García-Reyes, M., Largier, J. L. & Sydeman, W. J. Synoptic-scale upwelling indices and predictions of phyto- and zooplankton populations. Prog. Oceanogr. 120, 177–188 (2014).
ADS Article Google Scholar
38.
Libralato, S., Coll, M., Tudela, S., Palomera, I. & Pranovi, F. Novel index for quantification of ecosystem effects of fishing as removal of secondary production. Mar. Ecol. Prog. Ser. https://doi.org/10.3354/meps07224 (2008).
Article Google Scholar
39.
Gasol, J. M., del Giorgio, P. A. & Duarte, C. M. Biomass distribution in marine planktonic communities. Limnol. Oceanogr. 42, 1353–1363 (1997).
ADS CAS Article Google Scholar
40.
Harfoot, M. B. J. et al. Emergent global patterns of ecosystem structure and function from a mechanistic general ecosystem model. PLoS Biol. 12, e1001841 (2014).
PubMed PubMed Central Article CAS Google Scholar
41.
Wang, H., Morrison, W., Singh, A. & Weiss, H. General Mechanisms for Inverted Biomass Pyramids in Ecosystems. arXiv:0811.3657. [q-bio] (2008).
42.
Benoit-Bird, K. J. & Lawson, G. L. Ecological insights from pelagic habitats acquired using active acoustic techniques. Ann. Rev. Mar. Sci. 8, 463–490 (2016).
PubMed Article PubMed Central Google Scholar
43.
Alcaraz, M., Felipe, J., Grote, U., Arashkevich, E. & Nikishina, A. Life in a warming ocean: Thermal thresholds and metabolic balance of arctic zooplankton. J. Plankton Res. 36, 3–10 (2014).
Article Google Scholar
44.
Brochier, T. et al. Complex small pelagic fish population patterns arising from individual behavioral responses to their environment. Prog. Oceanogr. 164, 12–27 (2018).
ADS Article Google Scholar
45.
Richardson, A., Schoeman, D., Richardson, A. J. & Schoeman, D. S. Climate impact on plankton ecosystems in the Northeast Atlantic. Science 305, 1609–1612 (2004).
ADS CAS PubMed Article PubMed Central Google Scholar
46.
Braham, C.-B. & Corten, A. Pelagic fish stocks and their response to fisheries and environmental variation in the Canary Current large marine ecosystem. Oceanographic and biological features in the Canary Current Large Marine Ecosystem 197–213 (2015).
47.
Ba, K. et al. Resilience of key biological parameters of the Senegalese flat sardinella to overfishing and climate change. PLoS ONE 11, e0156143 (2016).
PubMed PubMed Central Article CAS Google Scholar
48.
Thiaw, M. et al. Effect of environmental conditions on the seasonal and inter-annual variability of small pelagic fish abundance off North-West Africa: The case of both Senegalese sardinella. Fish. Oceanogr. https://doi.org/10.1111/fog.12218 (2017).
Article Google Scholar
49.
Sarré, A. et al. Climate-driven shift of Sardinella aurita stock in Northwest Africa ecosystem as evidenced by robust spatial indicators [résumé]. In International conference ICAWA 2016 : extended book of abstract : the AWA project : ecosystem approach to the management of fisheries and the marine environment in West African waters (eds. Brehmer, P. et al.) 67–68 (SRFC/CSRP, 2017).
50.
Richardson, A. J. In hot water: Zooplankton and climate change. ICES J. Mar. Sci. 65, 279–295 (2008).
Article Google Scholar
51.
Beaugrand, G., Reid, P., Ibañez, F., Lindley, J. & Edwards, M. Reorganization of North Atlantic marine copepod biodiversity and climate. Science 296, 1692–1694 (2002).
ADS CAS PubMed Article Google Scholar
52.
Lindley, J. A. & Daykin, S. Variations in the distributions of Centropages chierchiae and Temora stylifera (Copepoda: Calanoida) in the north-eastern Atlantic Ocean and western European shelf waters. ICES J. Mar. Sci. 62, 869–877 (2005).
Article Google Scholar
53.
Chassot, E. et al. Global marine primary production constrains fisheries catches. Ecol. Lett. 13, 495–505 (2010).
PubMed Article Google Scholar
54.
Diogoul, N. et al. Fine-scale vertical structure of sound-scattering layers over an east border upwelling system and its relationship to pelagic habitat characteristics. Ocean Sci. 16, 65–81 (2020).
ADS CAS Article Google Scholar
55.
Brehmer, P. et al. Schooling behaviour of small pelagic fish: Phenotypic expression of independent stimuli. Mar. Ecol. Prog. Ser. 334, 263–272 (2007).
ADS Article Google Scholar
56.
Munday, P. L., Jones, G. P., Pratchett, M. S. & Williams, A. J. Climate change and the future for coral reef fishes. Fish Fish. 9, 261–285 (2008).
Article Google Scholar
57.
Costello, J. H., Sullivan, B. K. & Gifford, D. J. A physical–biological interaction underlying variable phenological responses to climate change by coastal zooplankton. J. Plankton Res. 28, 1099–1105 (2006).
Article Google Scholar
58.
Garzke, J., Ismar, S. M. H. & Sommer, U. Climate change affects low trophic level marine consumers: Warming decreases copepod size and abundance. Oecologia 177, 849–860 (2015).
ADS PubMed Article PubMed Central Google Scholar
59.
Horne, C. R., Hirst, A. G., Atkinson, D., Neves, A. & Kiørboe, T. A global synthesis of seasonal temperature–size responses in copepods. Glob. Ecol. Biogeogr. 25, 988–999 (2016).
Article Google Scholar
60.
Clark, C. W. & Levy, D. A. Diel vertical migrations by juvenile sockeye salmon and the antipredation window. Am. Nat. 131, 271–290 (1988).
Article Google Scholar
61.
Lampert, W. The adaptive significance of diel vertical migration of zooplankton. Funct. Ecol. 3, 21–27 (1989).
Article Google Scholar
62.
Hansson, S. Variation in hydroacoustic abundance of pelagic fish. Fish. Res. 16, 203–222 (1993).
Article Google Scholar
63.
Tiedemann, M. & Brehmer, P. Larval fish assemblages across an upwelling front: Indication for active and passive retention. Estuar. Coast. Shelf Sci. 187, 118–133 (2017).
ADS Article Google Scholar
64.
CCLME. Analyse diagnostique transfrontalière du Grand écosystème marin du courant des Canaries 144 (2016).
65.
Bernhardt, J. R. & Leslie, H. M. Resilience to climate change in coastal marine ecosystems. Annu. Rev. Mar. Sci. 5, 371–392 (2013).
Article Google Scholar
66.
Baldé, B. S. et al. Variability of key biological parameters of round sardinella Sardinella aurita and the effects of environmental changes. J. Fish Biol. 94, 391–401 (2019).
PubMed Article PubMed Central Google Scholar
67.
Binet, D. Rôle possible d’une intensification des alizés sur le changement de répartition des sardines et sardinelles le long de la côte Ouest africaine. Aquat. Living Resour. 1, 115–132 (1988).
Article Google Scholar
68.
Berraho, A., Somoue, L., Hernández‐León, S. & Valdés, L. Zooplankton in the canary current large marine ecosystem. In Oceanographic and biological features in the Canary Current Large Marine Ecosystem Vol. 115, 183‐195 (IOC Technical Series, 2015).
69.
Ndour, I., Berraho, A., Fall, M., Ettahiri, O. & Sambe, B. Composition, distribution and abundance of zooplankton and ichthyoplankton along the Senegal-Guinea maritime zone (West Africa). Egypt. J. Aquat. Res. 44, 109–124 (2018).
Article Google Scholar
70.
Sarré, A., Krakstad, J.-O., Brehmer, P. & Mbye, E. M. Spatial distribution of main clupeid species in relation to acoustic assessment surveys in the continental shelves of Senegal and The Gambia. Aquat. Living Resour. 31, 9 (2018).
Article Google Scholar
71.
Foote, K. G., Knudsen, H. P., Vestnes, G., MacLennan, D. N. & Simmonds, E. J. Technical Report: ‘“Calibration of acoustic instruments for fish density estimation: A practical guide”’. J. Acoust. Soc. Am. 83, 831–832 (1987).
Google Scholar
72.
Perrot, Y. et al. Matecho: An open-source tool for processing fisheries acoustics data. Acoust. Aust. 46, 241–248 (2018).
Article Google Scholar
73.
MacLennan, D. N., Fernandes, P. G. & Dalen, J. A consistent approach to definitions and symbols in fisheries acoustics. ICES J. Mar. Sci. 59, 365–369 (2002).
Article Google Scholar
74.
Jech, J. M., Lawson, G. L. & Lavery, A. C. Wideband (15–260 kHz) acoustic volume backscattering spectra of Northern krill (Meganyctiphanes norvegica) and butterfish (Peprilus triacanthus). ICES J. Mar. Sci. 74, 2249–2261 (2017).
Article Google Scholar
75.
Madureira, L. S. P., Everson, I. & Murphy, E. J. Interpretation of acoustic data at two frequencies to discriminate between Antarctic krill (Euphausia superba Dana) and other scatterers. J. Plankton Res. 15, 787–802 (1993).
Article Google Scholar
76.
Brehmer, P., Georgakarakos, S., Josse, E., Trygonis, V. & Dalen, J. Adaptation of fisheries sonar for monitoring schools of large pelagic fish: Dependence of schooling behaviour on fish finding efficiency. Aquat. Living Resour. 20, 377–384 (2007).
Article Google Scholar
77.
D’Elia, L. et al. A longitudinal study of the teacch program in different settings: The potential benefits of low intensity intervention in preschool children with autism spectrum disorder. J. Autism Dev. Disord. 44, 615–626 (2014).
PubMed Article Google Scholar
78.
Zwolinski, J., Morais, A., Marques, V., Stratoudakis, Y. & Fernandes, P. G. Diel variation in the vertical distribution and schooling behaviour of sardine (Sardina pilchardus) off Portugal. ICES J. Mar. Sci. 64, 963–972 (2007).
Article Google Scholar
79.
Ayoubi, S. E. et al. Estimation of target strength of Sardina pilchardus and Sardinella aurita by theoretical approach. Fish. Sci. 82, 417–423 (2016).
Article CAS Google Scholar
80.
Saunders, R. A., Fielding, S., Thorpe, S. E. & Tarling, G. A. School characteristics of mesopelagic fish at South Georgia. Deep Sea Res. Part I 81, 62–77 (2013).
Article Google Scholar
81.
R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2016).
82.
Suppiah, R. & Hennessy, K. J. Trends in total rainfall, heavy rain events and number of dry days in Australia, 1910–1990. Int. J. Climatol. 18, 1141–1164 (1998).
Article Google Scholar
83.
Cotter, J. A selection of nonparametric statistical methods for assessing trends in trawl survey indicators as part of an ecosystem approach to fisheries management (EAFM). Aquat. Living Resour. 22, 173–185 (2009).
Article Google Scholar More
