1.
FAO. The State of Mediterranean and Black Sea Fisheries (FAO, Rome, 2018).
Google Scholar
2.
Coll, M., Albo-Puigserver, M., Navarro, J., Palomera, I. & Dambacher, J. M. Who is to blame? Plausible pressures on small pelagic fish population changes in the northwestern Mediterranean Sea. Mar. Ecol. Prog. Ser. 617–618, 277–294 (2019).
ADS Article Google Scholar
3.
Palomera, I. et al. Small pelagic fish in the NW Mediterranean Sea: an ecological review. Prog. Oceanogr. 74, 377–396 (2007).
ADS Article Google Scholar
4.
Coll, M., Palomera, I., Tudela, S. & Dowd, M. Food-web dynamics in the South Catalan Sea ecosystem (NW Mediterranean) for 1978–2003. Ecol. Modell. 217, 95–116 (2008).
Article Google Scholar
5.
Cardona, L., Martínez-Iñigo, L., Mateo, R. & González-Solís, J. The role of sardine as prey for pelagic predators in the western Mediterranean Sea assessed using stable isotopes and fatty acids. Mar. Ecol. Prog. Ser. 531, 1–14 (2015).
ADS CAS Article Google Scholar
6.
Quattrocchi, F. Modelling the relationships of medium and long-term variations of the Anchovy and Sardine catches in the Catalan Sea (NW Mediterranean) with the environmental drivers. (Polytechnique University of Catalunya & Instituto de Ciencias del Mar (ICM), CSIC, 2017).
7.
Van Beveren, E. et al. The fisheries history of small pelagics in the Northern Mediterranean. ICES J. Mar. Sci. 73, 1474–1484 (2016).
Article Google Scholar
8.
SAC-WGSASP. Technical Report of the Working Group on Stock Assessment of Small Pelagic Species (WGSASP). (2018).
9.
Coll, M. & Bellido, J. M. Evaluation of the population status and specific management alternatives for the small pelagic fish stocks in the Northwestern Mediterranean Sea (SPELMED). (2018).
10.
Pennino, M. G. et al. Current and future influence of environmental factors on small pelagic fish distributions in the Northwestern Mediterranean Sea. Front. Mar. Sci. https://doi.org/10.3389/fmars.2020.00622 (2020).
Article Google Scholar
11.
Brosset, P. et al. Spatio-temporal patterns and environmental controls of small pelagic fish body condition from contrasted Mediterranean areas. Prog. Oceanogr. 151, 149–162 (2017).
ADS Article Google Scholar
12.
Saraux, C. et al. Small pelagic fish dynamics: a review of mechanisms in the Gulf of Lions. Deep. Res. Part II(159), 52–61 (2018).
Google Scholar
13.
Costalago, D. & Palomera, I. Feeding of European pilchard (Sardina pilchardus) in the northwestern Mediterranean: from late larvae to adults. Sci. Mar. 78, 41–54 (2014).
Article Google Scholar
14.
Le Bourg, B. et al. Trophic niche overlap of sprat and commercial small pelagic teleosts in the Gulf of Lions (NW Mediterranean Sea). J. Sea Res. 103, 138–146 (2015).
Article Google Scholar
15.
Nikolioudakis, N., Palomera, I., Machias, A. & Somarakis, S. Diel feeding intensity and daily ration of the sardine Sardina pilchardus. Mar. Ecol. Prog. Ser. 437, 215–228 (2011).
ADS Article Google Scholar
16.
Nikolioudakis, N., Isari, S., Pitta, P. & Somarakis, S. Diet of sardine Sardina pilchardus: an ‘end-to-end’ field study. Mar. Ecol. Prog. Ser. 453, 173–188 (2012).
ADS Article Google Scholar
17.
Nikolioudakis, N., Isari, S. & Somarakis, S. Trophodynamics of anchovy in a non-upwelling system: direct comparison with sardine. Mar. Ecol. Prog. Ser. 500, 215–229 (2014).
ADS Article Google Scholar
18.
Tudela, S. & Palomera, I. Diel feeding intensity and daily ration in the anchovy Engraulis encrasicolus in the northwest Mediterranean Sea during the spawning period. Mar. Ecol. Prog. Ser. 129, 55–61 (1995).
ADS Article Google Scholar
19.
Tudela, S. & Palomera, I. A Trophic ecology of the European anchovy Engraulis encrasicolus in the Catalan Sea (northwest Mediterranean). Mar. Ecol. Prog. Ser. 160, 121–134 (1997).
ADS Article Google Scholar
20.
Brosset, P. et al. Linking small pelagic dietary shifts with ecosystem changes in the Gulf of Lions. Mar. Ecol. Prog. Ser. 554, 157–171 (2016).
ADS Article Google Scholar
21.
Albo-Puigserver, M. Ecological and functional role of small and medium pelagic fish in the northwestern Mediterranean Sea. (Polytechnique University of Catalunya & Instituto de Ciencias del Mar (ICM), CSIC, 2019).
22.
Amundsen, P. & Sánchez-Hernández, J. Feeding studies take guts: critical review and recommendations of methods for stomach contents analysis in fish. J. Fish Biol. 95, 1364–1373 (2019).
PubMed Article Google Scholar
23.
Jakubavičiūtė, E., Bergström, U., Eklöf, J. S., Haenel, Q. & Bourlat, S. J. DNA metabarcoding reveals diverse diet of the three-spined stickleback in a coastal ecosystem. PLoS ONE 12, e0186929 (2017).
PubMed PubMed Central Article CAS Google Scholar
24.
Nielsen, J. M., Clare, E. L., Hayden, B., Brett, M. T. & Kratina, P. Diet tracing in ecology: Method comparison and selection. Methods Ecol. Evol. 9, 278–291 (2018).
Article Google Scholar
25.
Leray, M. et al. A new versatile primer set targeting a short fragment of the mitochondrial COI region for metabarcoding metazoan diversity: application for characterizing coral reef fish gut contents. Front. Zool. 10, 34 (2013).
PubMed PubMed Central Article CAS Google Scholar
26.
Berry, O. et al. Comparison of morphological and DNA metabarcoding analyses of diets in exploited marine fishes. Mar. Ecol. Prog. Ser. 540, 167–181 (2015).
ADS CAS Article Google Scholar
27.
Casey, J. M. et al. Reconstructing hyperdiverse food webs: Gut content metabarcoding as a tool to disentangle trophic interactions on coral reefs. Methods Ecol. Evol. 10, 1157–1170 (2019).
Article Google Scholar
28.
Thomas, A. C., Deagle, B. E., Eveson, J. P., Harsch, C. H. & Trites, A. W. Quantitative DNA metabarcoding: improved estimates of species proportional biomass using correction factors derived from control material. Mol. Ecol. Resour. 16, 714–726 (2016).
CAS PubMed Article Google Scholar
29.
Baker, R., Buckland, A. & Sheaves, M. Fish gut content analysis: Robust measures of diet composition. Fish Fish 15, 170–177 (2014).
Article Google Scholar
30.
Pacella, S. R. et al. Incorporation of diet information derived from Bayesian stable isotope mixing models into mass-balanced marine ecosystem models: A case study from the Marennes-Oléron Estuary France. Ecol. Modell. 267, 127–137 (2013).
CAS Article Google Scholar
31.
Parnell, A. C. et al. Bayesian stable isotope mixing models. Environmetrics 24, 387–399 (2013).
MathSciNet Google Scholar
32.
Stock, B. C. et al. Analyzing mixing systems using a new generation of Bayesian tracer mixing models. PeerJ 6, e5096 (2018).
PubMed PubMed Central Article Google Scholar
33.
Carreon-Martinez, L., Johnson, T. B., Ludsin, S. A. & Heath, D. D. Utilization of stomach content DNA to determine diet diversity in piscivorous fishes. J. Fish Biol. 78, 1170–1182 (2011).
CAS PubMed Article Google Scholar
34.
Hunter, J. R. & Kimbrell, C. A. Egg cannibalism in the Northern anchovy Engraulis mordax. Fish. Bull. 78, 811–816 (1980).
Google Scholar
35.
Vander Zanden, M. J., Clayton, M. K., Moody, E. K., Solomon, C. T. & Weidel, B. C. Stable isotope turnover and half-life in animal tissues: a literature synthesis. PLoS ONE 10, e0116182 (2015).
PubMed PubMed Central Article CAS Google Scholar
36.
Bearhop, S., Adams, C. E., Waldron, S., Fuller, R. A. & MacLeod, H. Determining trophic niche width: a novel approach using stable isotope analysis. J. Anim. Ecol. 73, 1007–1012 (2004).
Article Google Scholar
37.
Jackson, A. L., Inger, R., Parnell, A. C. & Bearhop, S. Comparing isotopic niche widths among and within communities: SIBER—Stable Isotope Bayesian Ellipses in R. J. Anim. Ecol. 80, 595–602 (2011).
PubMed Article Google Scholar
38.
Cannas, R. et al. Report on bioinformatic analyses of the GBS data and report of the population genetic analyses. Evaluation of the population status and specific management alternatives for the small pelagic fish stocks in the Northwestern Mediterranean Sea (SPELMED). (2018).
39.
Koleff, P., Gaston, K. J. & Lennon, J. J. Measuring beta diversity for presence-absence data. J. Anim. Ecol. 72, 367–382 (2003).
Article Google Scholar
40.
Southwood, T. R. E. & Henderson, P. A. Ecological Methods (Backwell Science, USA, 2000).
Google Scholar
41.
Pianka, E. R. Niche Overlap and Diffuse Competition. Proc. Natl. Acad. Sci. U. S. A. 71, 2141–2145 (1974).
ADS CAS PubMed PubMed Central Article Google Scholar
42.
Bachiller, E. & Irigoien, X. Allometric relations and consequences for feeding in small pelagic fish in the Bay of Biscay. ICES J. Mar. Sci. 70, 232–243 (2013).
Article Google Scholar
43.
Bachiller, E. & Irigoien, X. Trophodynamics and diet overlap of small pelagic fish species in the Bay of Biscay. Mar. Ecol. Prog. Ser. 534, 179–198 (2015).
ADS Article Google Scholar
44.
Raab, K. et al. Anchovy Engraulis encrasicolus diet in the North and Baltic Seas. J. Sea Res. 65, 131–140 (2011).
ADS Article Google Scholar
45.
Karachle, P. K. & Stergiou, K. I. Feeding and ecomorphology of three clupeoids in the N Aegean Sea. Mediterr. Mar. Sci. 15, 9 (2013).
Article Google Scholar
46.
Costalago, D., Garrido, S. & Palomera, I. Comparison of the feeding apparatus and diet of European sardines Sardina pilchardus of Atlantic and Mediterranean waters: ecological implications. J. Fish Biol. 86, 1348–1362 (2015).
CAS PubMed Article Google Scholar
47.
Costalago, D., Navarro, J., Álvarez-Calleja, I. & Palomera, I. Ontogenetic and seasonal changes in the feeding habits and trophic levels of two small pelagic fish species. Mar. Ecol. Prog. Ser. 460, 169–181 (2012).
ADS Article Google Scholar
48.
Garrido, S. et al. Trophic ecology of pelagic fish species off the Iberian coast: diet overlap, cannibalism and intraguild predation. Mar. Ecol. Prog. Ser. 539, 271–285 (2015).
ADS Article Google Scholar
49.
Bacha, M. & Amara, R. Spatial, temporal and ontogenetic variation in diet of anchovy (Engraulis encrasicolus) on the Algerian coast (SW Mediterranean). Estuar. Coast. Shelf Sci. 85, 257–264 (2009).
ADS CAS Article Google Scholar
50.
Brosset, P. et al. Body reserves mediate trade-offs between life-history traits: New insights from small pelagic fish reproduction. R. Soc. Open Sci. 3, 160202 (2016).
ADS PubMed PubMed Central Article Google Scholar
51.
Bachiller, E., Cotano, U., Boyra, G. & Irigoien, X. Spatial distribution of the stomach weights of juvenile anchovy (Engraulis encrasicolus L.) in the Bay of Biscay. ICES J. Mar. Sci. 70, 362–378 (2013).
Article Google Scholar
52.
Ventero, A., Iglesias, M. & Villamor, B. Anchovy (Engraulis encrasicolus) otoliths reveal growth differences between two areas of the Spanish Mediterranean Sea. Sci. Mar. 81, 327 (2017).
Article Google Scholar
53.
Costalago, D., Palomera, I. & Tirelli, V. Seasonal comparison of the diets of juvenile European anchovy Engraulis encrasicolus and sardine Sardina pilchardus in the Gulf of Lions. J. Sea Res. 89, 64–72 (2014).
ADS Article Google Scholar
54.
Borme, D., Tirelli, V., Brandt, S. B., Umani, S. F. & Arneri, E. Diet of Engraulis encrasicolus in the northern Adriatic Sea (Mediterranean): ontogenetic changes and feeding selectivity. Mar. Ecol. Prog. Ser. 392, 193–209 (2009).
ADS Article Google Scholar
55.
Layman, C. A. et al. Applying stable isotopes to examine food-web structure: an overview of analytical tools. Biol. Rev. 87, 545–562 (2012).
PubMed Article Google Scholar
56.
Albo-Puigserver, M., Navarro, J., Coll, M., Layman, C. A. & Palomera, I. Trophic structure of pelagic species in the northwestern Mediterranean Sea. J. Sea Res. 117, 27–35 (2016).
ADS Article Google Scholar
57.
Petta, J. C. et al. Are you really what you eat? Stomach content analysis and stable isotope ratios do not uniformly estimate dietary niche characteristics in three marine predators. Oecologia 192, 1111–1126 (2020).
ADS PubMed Article Google Scholar
58.
Demestre, M. Growth and distribution of Solenocera membranacea (Risso, 1816) (Decapoda, Dendrobranchiata) in the northwestern Mediterranean Sea. Sci. Mar. 57, 161–166 (1993).
Google Scholar
59.
Tsagarakis, K., Giannoulaki, M., Somarakis, S. & Machias, A. Variability in positional, energetic and morphometric descriptors of European anchovy Engraulis encrasicolus schools related to patterns of diurnal vertical migration. Mar. Ecol. Prog. Ser. 446, 243–258 (2012).
ADS Article Google Scholar
60.
Coll, M., Shannon, L. J., Moloney, C. L., Palomera, I. & Tudela, S. Comparing trophic flows and fishing impacts of a NW Mediterranean ecosystem with coastal upwelling systems by means of standardized models and indicators. Ecol. Modell. 198, 53–70 (2006).
Article Google Scholar
61.
Checkley, D. M., Asch, R. G. & Rykaczewski, R. R. Climate, Anchovy, and Sardine. Ann. Rev. Mar. Sci. 9, 469–493 (2017).
PubMed Article Google Scholar
62.
Irigoien, X. & De Roos, A. The role of intraguild predation in the population dynamics of small pelagic fish. Mar. Biol. 158, 1683–1690 (2011).
Article Google Scholar
63.
Bachiller, E., Cotano, U., Ibaibarriaga, L., Santos, M. & Irigoien, X. Intraguild predation between small pelagic fish in the Bay of Biscay: impact on anchovy (Engraulis encrasicolus L.) egg mortality. Mar. Biol. 162, 1351–1369 (2015).
Article Google Scholar
64.
Purcell, J. E. Jellyfish and ctenophore blooms coincide with human proliferations and environmental perturbations. Ann. Rev. Mar. Sci. 4, 209–235 (2012).
PubMed Article Google Scholar
65.
Naman, S. M. et al. Stable isotope-based trophic structure of pelagic fish and jellyfish across natural and anthropogenic landscape gradients in a fjord estuary. Ecol. Evol. 6, 8159–8173 (2016).
PubMed PubMed Central Article Google Scholar
66.
Albo-Puigserver, M. et al. Trophic ecology of range-expanding round sardinella and resident sympatric species in the NW Mediterranean. Mar. Ecol. Prog. Ser. 620, 139–154 (2019).
ADS CAS Article Google Scholar
67.
Morote, E., Olivar, M. P., Villate, F. & Uriarte, I. A comparison of anchovy (Engraulis encrasicolus) and sardine (Sardina pilchardus) larvae feeding in the Northwest Mediterranean: influence of prey availability and ontogeny. ICES J. Mar. Sci. 67, 897–908 (2010).
Article Google Scholar
68.
Robinson, M. L., Gomez-Raya, L., Rauw, W. M. & Peacock, M. M. Fulton’s body condition factor K correlates with survival time in a thermal challenge experiment in juvenile Lahontan cutthroat trout (Oncorhynchus clarki henshawi). J. Therm. Biol. 33, 363–368 (2008).
Article Google Scholar
69.
Siokou-Frangou, I. et al. Plankton in the open Mediterranean Sea: a review. Biogeosciences 7, 1543–1586 (2010).
ADS Article Google Scholar
70.
Vila, M. & Masó, M. Phytoplankton functional groups and harmful algal species in anthropogenically impacted waters of the NW Mediterranean Sea. Sci. Mar. 69, 31–45 (2005).
Article Google Scholar
71.
Percopo, I., Siano, R., Cerino, F., Sarno, D. & Zingone, A. Phytoplankton diversity during the spring bloom in the northwestern Mediterranean Sea. Bot. Mar. 54, 243–267 (2011).
Article Google Scholar
72.
Devloo-Delva, F. et al. How does marker choice affect your diet analysis: comparing genetic markers and digestion levels for diet metabarcoding of tropical-reef piscivores. Mar. Freshw. Res. 70, 8–18 (2019).
Article Google Scholar
73.
Forin-Wiart, M.-A. et al. Evaluating metabarcoding to analyse diet composition of species foraging in anthropogenic landscapes using Ion Torrent and Illumina sequencing. Sci. Rep. 8, 17091 (2018).
ADS PubMed PubMed Central Article CAS Google Scholar
74.
Thuo, D. et al. Food from faeces: evaluating the efficacy of scat DNA metabarcoding in dietary analyses. PLoS ONE 14, e0225805 (2019).
CAS PubMed PubMed Central Article Google Scholar
75.
Coll, M., Pennino, M. G., Steenbeek, J., Sole, J. & Bellido, J. M. Predicting marine species distributions: complementarity of food-web and Bayesian hierarchical modelling approaches. Ecol. Modell. 405, 86–101 (2019).
Article Google Scholar
76.
Feuilloley, G. et al. Concomitant changes in the environment and small pelagic fish community of the Gulf of Lions. Prog. Oceanogr. 186, 102375 (2020).
Article Google Scholar
77.
Pennino, M. G. et al. Ingestion of microplastics and occurrence of parasite association in Mediterranean anchovy and sardine. Mar. Pollut. Bull. 158, 111399 (2020).
CAS PubMed Article Google Scholar
78.
Compa, M., Ventero, A., Iglesias, M. & Deudero, S. Ingestion of microplastics and natural fibres in Sardina pilchardus (Walbaum, 1792) and Engraulis encrasicolus (Linnaeus, 1758) along the Spanish Mediterranean coast. Mar. Pollut. Bull. 128, 89–96 (2018).
CAS PubMed Article Google Scholar
79.
Bertrand, J., Leonori, I., Dremière, P. Y. & Cosimi, G. The general specifications of the MEDITS surveys. Sci. Mar. 66, 9–17 (2002).
Article Google Scholar
80.
Bertrand, J. A., De Sola, L. G., Papaconstantinou, C., Relini, G. & Souplet, A. The general specifications of the MEDITS surveys. Sci. Mar. 66, 9–17 (2002).
Article Google Scholar
81.
Cole, M. et al. Isolation of microplastics in biota-rich seawater samples and marine organisms. Sci. Rep. 4, 4528 (2014).
PubMed PubMed Central Article CAS Google Scholar
82.
Hyslop, E. J. Stomach contents analysis-a review of methods and their application. J. Fish Biol. 17, 411–429 (1980).
Article Google Scholar
83.
Bachiller, E., Skaret, G., Nøttestad, L. & Slotte, A. Feeding ecology of Northeast Atlantic mackerel, Norwegian spring-spawning herring and blue whiting in the Norwegian Sea. PLoS ONE 11, e0149238 (2016).
PubMed PubMed Central Article CAS Google Scholar
84.
Somarakis, S. et al. Daily egg production of anchovy in European waters. ICES J. Mar. Sci. 61, 944–958 (2004).
Article Google Scholar
85.
Palomera, I., Tejeiro, B. & Alemany, F. Size at first maturity of the NW Mediterranean anchovy. (2003).
86.
Silva, A. et al. Temporal and geographic variability of sardine maturity at length in the northeastern Atlantic and the western Mediterranean. ICES J. Mar. Sci. 63, 663–676 (2006).
Article Google Scholar
87.
Lawlor, L. R. Overlap, similarity, and competition coefficients. Ecology 61, 245–251 (1980).
Article Google Scholar
88.
Barroeta, Z., Olivar, M. P. & Palomera, I. Energy density of zooplankton and fish larvae in the southern Catalan Sea (NW Mediterranean). J. Sea Res. 124, 1–9 (2017).
ADS Article Google Scholar
89.
Sabatés, A. Distribution pattern of larval fish populations in the Northwestern Mediterranean. Mar. Ecol. Prog. Ser. 59, 75–82 (1990).
ADS Article Google Scholar
90.
Wangensteen, O. S., Palacín, C., Guardiola, M. & Turon, X. DNA metabarcoding of littoral hard-bottom communities: high diversity and database gaps revealed by two molecular markers. PeerJ 6, e4705 (2018).
PubMed PubMed Central Article CAS Google Scholar
91.
Leray, M. et al. A new versatile primer set targeting a short fragment of the mitochondrial COI region for metabarcoding metazoan diversity: application for characterizing coral reef fish gut contents. Front. Zool. 10, 34 (2013).
PubMed PubMed Central Article CAS Google Scholar
92.
Vasselon, V., Rimet, F., Tapolczai, K. & Bouchez, A. Assessing ecological status with diatoms DNA metabarcoding: Scaling-up on a WFD monitoring network (Mayotte island, France). Ecol. Indic. 82, 1–12 (2017).
CAS Article Google Scholar
93.
Vierna, J., Doña, J., Vizcaíno, A., Serrano, D. & Jovani, R. PCR cycles above routine numbers do not compromise high-throughput DNA barcoding results. Genome 60, 868–873 (2017).
CAS PubMed Article Google Scholar
94.
Magoc, T. & Salzberg, S. L. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27, 2957–2963 (2011).
CAS PubMed PubMed Central Article Google Scholar
95.
Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMB net.journal 17, 10 (2011).
Article Google Scholar
96.
Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336 (2010).
CAS PubMed PubMed Central Article Google Scholar
97.
Rognes, T., Flouri, T., Nichols, B., Quince, C. & Mahé, F. VSEARCH: a versatile open source tool for metagenomics. PeerJ 4, e2584 (2016).
PubMed PubMed Central Article Google Scholar
98.
Mahé, F., Rognes, T., Quince, C., de Vargas, C. & Dunthorn, M. Swarm v2: highly-scalable and high-resolution amplicon clustering. PeerJ 3, e1420 (2015).
PubMed PubMed Central Article Google Scholar
99.
Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C. & Knight, R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27, 2194–2200 (2011).
CAS PubMed PubMed Central Article Google Scholar
100.
Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461 (2010).
CAS PubMed PubMed Central Article Google Scholar
101.
Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naive bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261–5267 (2007).
CAS PubMed PubMed Central Article Google Scholar
102.
Bokulich, N. A. et al. Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nat. Methods 10, 57–59 (2013).
CAS PubMed Article Google Scholar
103.
Esling, P., Lejzerowicz, F. & Pawlowski, J. Accurate multiplexing and filtering for high-throughput amplicon-sequencing. Nucleic Acids Res. 43, 2513–2524 (2015).
CAS PubMed PubMed Central Article Google Scholar
104.
Illumina, Inc [internet]. Effects of index Misassignment on multiplexing and downstream analysis (2017). Available from: https://www.illumina.com/. Accessed October 2020.
105.
National Center for Biotechnology Information (NCBI) [internet]. Bethesda (MD): National Library of Medicine (US), National Center for Biotechnology Information (2018). Available from: https://www.ncbi.nlm.nih.gov/. Accessed August 2020.
106.
Coplen, T. B. Guidelines and recommended terms for expression of stable-isotope-ratio and gas-ratio measurement results. Rapid Commun. Mass Spectrom. 25, 2538–2560 (2011).
ADS CAS PubMed Article Google Scholar
107.
Post, D. M. et al. Getting to the fat of the matter: models, methods and assumptions for dealing with lipids in stable isotope analyses. Oecologia 152, 179–189 (2007).
ADS PubMed PubMed Central Article Google Scholar
108.
Hastie, T. & Tibshirani, R. Generalized Additive Models. Stat. Sci. 1, 297–318 (1986).
MathSciNet MATH Article Google Scholar
109.
Zuur, A. F., Ieno, E. N. & Elphick, C. S. A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evol. 1, 3–14 (2010).
Article Google Scholar
110.
Fox, J. & Weisberg, S. An R Companion to Applied Regression (Sage, Thousand Oaks, 2011).
Google Scholar
111.
Wood, S. N. Generalized additive models: an introduction with R. J. Stat. Softw. 16, 2 (2006).
Google Scholar
112.
R Core Team. R: A Language and Environment for Statistical Computing. (2019).
113.
Wickham, H. ggplot2: elegant graphics for data analysis. Springer (Springer, 2009).
114.
Gotelli, N. J., Hart, E. M. & Ellison, A. M. EcoSimR: Null model analysis for ecological data. (2015). doi:https://doi.org/10.5281/zenodo.16522
115.
Wood, S. N. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. R. Stat. Soc. Ser. B (Statistical Methodol).73, 3–36 (2011).
116.
Wei, T. et al. Package ‘corrplot’. Am. Stat. 56, 316–324 (2017).
Google Scholar
117.
QGIS Development Team. QGIS (Version 3.2.1-Bonn). (2018).
118.
Hsieh, T. C., Ma, K. H., Chao, A. & McInerny, G. iNEXT: an R package for rarefaction and extrapolation of species diversity (ill numbers). Methods Ecol. Evol. 7(12), 1451–1456 (2016).
Article Google Scholar More