Prebiotic effects of yeast mannan, which selectively promotes Bacteroides thetaiotaomicron and Bacteroides ovatus in a human colonic microbiota model
1.
Liu, H. Z., Liu, L., Hui, H. & Wang, Q. Structural characterization and antineoplastic activity of Saccharomyces cerevisiae mannoprotein. Int. J. Food Prop. 18, 359–371 (2015).
CAS Google Scholar
2.
Kocourek, J. & Ballou, C. E. Method for fingerprinting yeast cell wall mannans. J. Bacteriol. 100, 1175–1181 (1969).
CAS PubMed PubMed Central Google Scholar
3.
Scheller, H. V. & Ulvskov, P. Hemicelluloses. Annu. Rev. Plant Biol. 61, 263–289 (2010).
CAS PubMed Google Scholar
4.
Jin, X., Zhang, M., Cao, G. F. & Yang, Y. F. Saccharomyces cerevisiae mannan induces sheep beta-defensin-1 expression via Dectin-2-Syk-p38 pathways in ovine ruminal epithelial cells. Vet. Res. (Faisalabad) 50, 8 (2019).
Google Scholar
5.
Michael, C. F. et al. Airway epithelial repair by a prebiotic mannan derived from Saccharomyces cerevisiae. J. Immunol. Res. 2017, 8903982 (2017).
PubMed PubMed Central Google Scholar
6.
Lew, D. B. et al. Beneficial effects of prebiotic Saccharomyces cerevisiae mannan on allergic asthma mouse models. J. Immunol. Res. 2017, 3432701 (2017).
PubMed PubMed Central Google Scholar
7.
Cuskin, F. et al. Human gut Bacteroidetes can utilize yeast mannan through a selfish mechanism. Nature 517, 165–169 (2015).
ADS CAS PubMed PubMed Central Google Scholar
8.
Flint, H. J., Scott, K. P., Louis, P. & Duncan, S. H. The role of the gut microbiota in nutrition and health. Nat. Rev. Gastroenterol. Hepatol. 9, 577–589 (2012).
CAS PubMed Google Scholar
9.
Cani, P. D. et al. Microbial regulation of organismal energy homeostasis. Nat. Metab. 1, 34–46 (2019).
CAS PubMed Google Scholar
10.
Hooper, L. V. & Macpherson, A. J. Immune adaptations that maintain homeostasis with the intestinal microbiota. Nat. Rev. Immunol. 10, 159–169 (2010).
CAS PubMed Google Scholar
11.
Pickard, J. M., Zeng, M. Y., Caruso, R. & Núñez, G. Gut microbiota: Role in pathogen colonization, immune responses, and inflammatory disease. Immunol. Rev. 279, 70–89 (2017).
CAS PubMed PubMed Central Google Scholar
12.
Arora, T. & Bäckhed, F. The gut microbiota and metabolic disease: Current understanding and future perspectives. J. Intern. Med. 280, 339–349 (2016).
CAS PubMed Google Scholar
13.
Wang, Z. et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 472, 57–63 (2011).
ADS CAS PubMed PubMed Central Google Scholar
14.
Wong, S. H. & Yu, J. Gut microbiota in colorectal cancer: Mechanisms of action and clinical applications. Nat. Rev. Gastroenterol. Hepatol. 16, 690–704 (2019).
CAS PubMed PubMed Central Google Scholar
15.
Vogt, N. M. et al. Gut microbiome alterations in Alzheimer’s disease. Sci. Rep. 7, 13537 (2017).
ADS PubMed PubMed Central Google Scholar
16.
The Human Microbiome Project Consortium. Structure, function, and diversity of the healthy human microbiome. Nature 486, 207–214 (2012).
ADS PubMed Central Google Scholar
17.
Bolam, D. N. & Koropatkin, N. M. Glycan recognition by the Bacteroidetes Sus-like systems. Curr. Opin. Struct. Biol. 22, 563–569 (2012).
CAS PubMed Google Scholar
18.
Foley, M. H., Cockburn, D. W. & Koropatkin, N. M. The Sus operon: A model system for starch uptake by the human gut Bacteroidetes. Cell. Mol. Life. Sci. 73, 2603–2617 (2016).
CAS PubMed PubMed Central Google Scholar
19.
Bågenholm, V. et al. Galactomannan catabolism conferred by a polysaccharide utilization locus of Bacteroides ovatus. J. Biol. Chem. 292, 229–243 (2017).
PubMed Google Scholar
20.
Martens, E. C., Koropatkin, N. M., Smith, T. J. & Gordon, J. I. Complex glycan catabolism by the human gut microbiota: The Bacteroidetes Sus-like paradigm. J. Biol. Chem. 284, 24673–24677 (2009).
CAS PubMed PubMed Central Google Scholar
21.
Larsbrink, J. et al. A discrete genetic locus confers xyloglucan metabolism in select human gut Bacteroidetes. Nature 506, 498–502 (2014).
ADS CAS PubMed PubMed Central Google Scholar
22.
Martens, E. C. et al. Recognition and degradation of plant cell wall polysaccharides by two human gut symbionts. PLoS Biol. 9, e1001221 (2011).
CAS PubMed PubMed Central Google Scholar
23.
Rakoff-Nahoum, S., Foster, K. R. & Comstock, L. E. The evolution of cooperation within the gut microbiota. Nature 533, 255–259 (2016).
ADS CAS PubMed PubMed Central Google Scholar
24.
Flint, H. J., Bayer, E. A., Rincon, M. T., Lamed, R. & White, B. A. Polysaccharide utilization by gut bacteria: Potential for new insights from genomic analysis. Nat. Rev. Microbiol. 6, 121–131 (2008).
CAS PubMed Google Scholar
25.
Koropatkin, N. M., Cameron, E. A. & Martens, E. C. How glycan metabolism shapes the human gut microbiota. Nat. Rev. Microbiol. 10, 323–335 (2012).
CAS PubMed PubMed Central Google Scholar
26.
Varyukhina, S. et al. Glycan-modifying bacteria-derived soluble factors from Bacteroides thetaiotaomicron and Lactobacillus casei inhibit rotavirus infection in human intestinal cells. Microbes Infect. 14, 273–278 (2012).
CAS PubMed Google Scholar
27.
López-Boado, Y. S. et al. Bacterial exposure induces and activates matrilysin in mucosal epithelial cells. J. Cell Biol. 148, 1305–1315 (2000).
PubMed PubMed Central Google Scholar
28.
Delday, M., Mulder, I., Logan, E. T. & Grant, G. Bacteroides thetaiotaomicron ameliorates colon inflammation in preclinical models of Crohn’s disease. Inflamm. Bowel Dis. 25, 85–96 (2019).
PubMed Google Scholar
29.
Hansen, R. et al. A phase I randomized, double-blind, placebo-controlled study to assess the safety and tolerability of (Thetanix) Bacteroides thetaiotaomicron in adolescents with stable Crohn’s disease. https://www.4dpharmaplc.com/application/files/1815/5824/8886/Thetanix_DDW_poster_2019.pdf. Accessed 15 July 2020 (2019).
30.
Salyers, A. A., Vercellotti, J. R., West, S. E. & Wilkins, T. D. Fermentation of mucin and plant polysaccharides by strains of Bacteroides from the human colon. Appl. Environ. Microbiol. 33, 319–322 (1977).
CAS PubMed PubMed Central Google Scholar
31.
Rawi, M. H., Zaman, S. A., Pa’ee, K. F., Leong, S. S. & Sarbini, S. R. Prebiotics metabolism by gut-isolated probiotics. J. Food Sci. Technol. 57, 1–14 (2020).
Google Scholar
32.
Oba, S. et al. Yeast mannan increases Bacteroides thetaiotaomicron abundance and suppresses putrefactive compound production in in vitro fecal microbiota fermentation. Biosci. Biotechnol. Biochem. 84, 2174–2178 (2020).
CAS PubMed Google Scholar
33.
Sasaki, D. et al. Low amounts of dietary fibre increase in vitro production of short-chain fatty acids without changing human colonic microbiota structure. Sci. Rep. 8, 435 (2018).
ADS PubMed PubMed Central Google Scholar
34.
Takagi, R. et al. A single-batch fermentation system to simulate human colonic microbiota for high-throughput evaluation of prebiotics. PLoS ONE 11, e0160533 (2016).
PubMed PubMed Central Google Scholar
35.
Sender, R., Fuchs, S. & Milo, R. Revised estimates for the number of human and bacteria cells in the body. PLoS Biol. 14, e1002533 (2016).
PubMed PubMed Central Google Scholar
36.
Wexler, H. M. Bacteroides: The good, the bad, and the nitty-gritty. Clin. Microbiol. Rev. 20, 593–621 (2007).
CAS PubMed PubMed Central Google Scholar
37.
Tong, J., Liu, C., Summanen, P., Xu, H. & Finegold, S. M. Application of quantitative real-time PCR for rapid identification of Bacteroides fragilis group and related organisms in human wound samples. Anaerobe 17, 64–68 (2011).
CAS PubMed Google Scholar
38.
Slavin, J. Fiber and prebiotics: Mechanisms and health benefits. Nutrients 5, 1417–1435 (2013).
CAS PubMed PubMed Central Google Scholar
39.
Koh, A., De Vadder, F., Kovatcheva-Datchary, P. & Bäckhed, F. From dietary fiber to host physiology: Short-chain fatty acids as key bacterial metabolites. Cell 165, 1332–1345 (2016).
CAS PubMed Google Scholar
40.
den Besten, G. et al. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J. Lipid Res. 54, 2325–2340 (2013).
Google Scholar
41.
Gibson, G. R. et al. The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat. Rev. Gastroenterol. Hepatol. 14, 491–502 (2017).
PubMed Google Scholar
42.
Holscher, H. D. Dietary fiber and prebiotics and the gastrointestinal microbiota. Gut Microbes 8, 172–184 (2017).
CAS PubMed PubMed Central Google Scholar
43.
Chang, C. J. et al. Next generation probiotics in disease amelioration. J. Food Drug Anal. 27, 615–622 (2019).
CAS PubMed Google Scholar
44.
Tan, H. et al. Pilot safety evaluation of a novel strain of Bacteroides ovatus. Front. Genet. 9, 539 (2018).
CAS PubMed PubMed Central Google Scholar
45.
Tzianabos, A. O., Onderdonk, A. B., Rosner, B., Cisneros, R. L. & Kasper, D. L. Structural features of polysaccharides that induce intra-abdominal abscesses. Science 262, 416–419 (1993).
ADS CAS PubMed Google Scholar
46.
Bamba, T., Matsuda, H., Endo, M. & Fujiyama, Y. The pathogenic role of Bacteroides vulgatus in patients with ulcerative colitis. J Gastroenterol. 30(Suppl 8), 45–47 (1995).
PubMed Google Scholar
47.
Ulsemer, P. et al. Specific humoral immune response to the Thomsen-Friedenreich tumor antigen (CD176) in mice after vaccination with the commensal bacterium Bacteroides ovatus D-6. Cancer Immunol. Immunother. 62, 875–887 (2013).
CAS PubMed Google Scholar
48.
Tan, H., Zhao, J., Zhang, H., Zhai, Q. & Chen, W. Novel strains of Bacteroides fragilis and Bacteroides ovatus alleviate the LPS-induced inflammation in mice. Appl. Microbiol. Biotechnol. 103, 2353–2365 (2019).
CAS PubMed Google Scholar
49.
Luis, A. S. et al. Dietary pectic glycans are degraded by coordinated enzyme pathways in human colonic Bacteroides. Nat. Microbiol. 3, 210–219 (2018).
CAS PubMed Google Scholar
50.
Rakoff-Nahoum, S., Coyne, M. J. & Comstock, L. E. An ecological network of polysaccharide utilization among human intestinal symbionts. Curr. Biol. 24, 40–49 (2014).
CAS PubMed Google Scholar
51.
Rogowski, A. et al. Glycan complexity dictates microbial resource allocation in the large intestine. Nat. Commun. 6, 7481 (2015).
ADS CAS PubMed PubMed Central Google Scholar
52.
Le Poul, E. et al. Functional characterization of human receptors for short chain fatty acids and their role in polymorphonuclear cell activation. J. Biol. Chem. 278, 25481–25489 (2003).
PubMed Google Scholar
53.
Okubo, T. et al. Effects of partially hydrolyzed guar gum intake on human intestinal microflora and its metabolism. Biosci. Biotechnol. Biochem. 58, 1364–1369 (1994).
CAS Google Scholar
54.
Klindworth, A. et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 41, e1 (2013).
CAS PubMed Google Scholar
55.
Magoč, T. & Salzberg, S. L. FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27, 2957–2963 (2011).
PubMed PubMed Central Google Scholar
56.
Li, W., Fu, L., Niu, B., Wu, S. & Wooley, J. Ultrafast clustering algorithms for metagenomic sequence analysis. Brief. Bioinform. 13, 656–668 (2012).
PubMed PubMed Central Google Scholar
57.
Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461 (2010).
CAS Google Scholar
58.
Maidak, B. L. et al. The RDP-II (ribosomal database project). Nucleic Acids Res. 29, 173–174 (2001).
ADS CAS PubMed PubMed Central Google Scholar
59.
Lozupone, C. & Knight, R. UniFrac: A new phylogenetic method for comparing microbial communities. Appl. Environ. Microbiol. 71, 8228–8235 (2005).
CAS PubMed PubMed Central Google Scholar
60.
Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336 (2010).
CAS PubMed PubMed Central Google Scholar
61.
Furet, J. P. et al. Comparative assessment of human and farm animal faecal microbiota using real-time quantitative PCR. FEMS Microbiol. Ecol. 68, 351–362 (2009).
CAS PubMed Google Scholar
62.
Goubet, F., Jackson, P., Deery, M. J. & Dupree, P. Polysaccharide analysis using carbohydrate gel electrophoresis: A method to study plant cell wall polysaccharides and polysaccharide hydrolases. Anal. Biochem. 300, 53–68 (2002).
CAS PubMed Google Scholar
63.
Terrapon, N. et al. PULDB: The expanded database of polysaccharide utilization loci. Nucleic Acids Res. 46, D677–D683 (2018).
CAS PubMed Google Scholar More