Ecological niche modeling of the pantropical orchid Polystachya concreta (Orchidaceae) and its response to climate change
1.
Dressler, R. L. In Phylogeny and Classification of the Orchid Family (ed. Dressler, R. L.) 7–13 (Cambridge University Press, Cambridge, 1994).
Google Scholar
2.
Delforge, P. In Orchids of Europe, Nord Africa and the Middle East (ed. Delforge, P.) 67–68 (A & C Black Publishers, London, 2001).
Google Scholar
3.
Barman, D. & Devadas, R. Climate change on orchid population and conservation strategies: a review. J. Crop Weed. 9(12), 1–12 (2013).
Google Scholar
4.
Fay, M. F. Orchid conservation: how can we meet the challenges in the twenty-first century. Bot. Stud. 5, 1–6 (2018).
Google Scholar
5.
Brovkin, V. Climate–vegetation interaction. J. Phys. IV FRANCE 12, 57–72 (2002).
Google Scholar
6.
Thomas, C. D. et al. Extinction risk from climate change. Nature 427, 145–148. https://doi.org/10.1038/nature02121 (2004).
ADS CAS Article PubMed PubMed Central Google Scholar
7.
Anderson, M. G. & Ferree, C. E. Conserving the stage: climate change and the geophysical underpinnings of species diversity. PLoS ONE 5(7), e11554 (2010).
ADS PubMed PubMed Central Google Scholar
8.
Bálint, M. et al. Cryptic biodiversity loss linked to global climate change. Nat. Clim. Change. 1, 313–318. https://doi.org/10.1038/nclimate1191 (2011).
ADS Article Google Scholar
9.
Kolanowska, M. Niche conservatism and the future potential range of Epipactis helleborine (Orchidaceae). PLoS ONE 8(10), e77352. https://doi.org/10.1371/journal.pone.0077352 (2013).
ADS CAS Article PubMed PubMed Central Google Scholar
10.
Kolanowska, M. The naturalization status of African Spotted Orchid (Oeceoclades maculata) in Neotropics. Plant Biosyst. 148(5), 1049–1055. https://doi.org/10.1080/11263504.2013.824042 (2014).
Article Google Scholar
11.
Kolanowska, M. & Konowalik, K. Niche conservatism and future changes in the potential area coverage of Arundina graminifolia, an invasive orchid species from Southeast Asia. Biotropica 46(2), 157–165. https://doi.org/10.1111/btp.12089 (2014).
Article Google Scholar
12.
Konowalik, K. & Kolanowska, M. Climatic niche shift and possible future spread of the invasive South African Orchid Disa bracteata in Australia and adjacent areas. PeerJ. 6, e6107. https://doi.org/10.7717/peerj.6107 (2018).
Article PubMed PubMed Central Google Scholar
13.
Kolanowska, M. et al. Global warming not so harmful for all plants – response of holomycotrophic orchid species for the future climate change. Sci. Rep. 7, 12704. https://doi.org/10.1038/s41598-017-13088-7 (2017).
ADS CAS Article PubMed PubMed Central Google Scholar
14.
Naczk, A. & Kolanowska, M. Glacial refugia and future habitat coverage of selected Dactylorhiza representatives (Orchidaceae). PLoS ONE 10(11), e0143478. https://doi.org/10.1371/journal.pone.0143478 (2015).
CAS Article PubMed PubMed Central Google Scholar
15.
Kolanowska, M. & Rykaczewski, M. From the past to the future – glacial refugia, current distribution patterns and future potential range changes of Diodonopsis (Orchidaceae) representatives. Lankesteriana. 17(2), 315–327 (2017).
Google Scholar
16.
Wang, H. H. et al. Species distribution modelling for conservation of an endangered endemic orchid. AoB Plants 7, plv039 (2015).
PubMed PubMed Central Google Scholar
17.
Tsiftsis, S., Djordjević, V. & Tsiripidis, I. Neottia cordata (Orchidaceae) at its southernmost distribution border in Europe: threat status and effectiveness of Natura 2000 Network for its conservation. J. Nat. Conserv. 48, 27–35 (2019).
Google Scholar
18.
Vollering, J., Schuiteman, A., de Vogel, E., van Vugt, R. & Raes, N. Phytogeography of New Guinean orchids: patterns of species richness and turnover. J. Biogeogr. 43(1), 204–214 (2016).
Google Scholar
19.
Reina-Rodríguez, G. A., Rubiano Mejía, J. E., Castro Llanos, F. A. & Soriano, I. Orchid distribution and bioclimatic niches as a strategy to climate change in areas of tropical dry forest in Colombia. Lankesteriana 17(1), 17–47 (2017).
Google Scholar
20.
Gogol-Prokurat, M. Predicting habitat suitability for rare plants at local spatial scales using a species distribution model. Ecol. Appl. 21, 33–47. https://doi.org/10.1890/09-1190.1 (2011).
Article PubMed Google Scholar
21.
Dudley, T. L. & Bean, D. W. Tamarisk biocontrol, endangered species risk and resolution of conflict through riparian restoration. Biocontrol 57, 331–347. https://doi.org/10.1007/s10526-011-9436-9 (2012).
Article Google Scholar
22.
Antúnez, P. et al. The potential distribution of tree species in three periods of time under a climate change scenario. Forests 9(10), 628. https://doi.org/10.3390/f9100628 (2018).
Article Google Scholar
23.
Wilson, C. D., Roberts, D. & Reid, N. Applying species distribution modeling to identify areas of high conservation value for endangered species: a case study using Margaritifera margaritifera (L.). Biol. Cons. 144, 821–829 (2011).
Google Scholar
24.
Koch, R., Almeida-Cortez, J. S. & Kleinschmit, B. Revealing areas of high nature conservation importance in a seasonally dry tropical forest in Brazil: combination of modelled plant diversity hot spots and threat patterns. J. Nat. Conserv. 35, 24–39 (2017).
Google Scholar
25.
Spiers, J. A., Oatham, M. P., Rostant, L. V. & Farrell, A. D. Applying species distribution modelling to improving conservation based decisions: a gap analysis of Trinidad and Tobago’s endemic vascular plants. Biodivers. Conserv. 27(11), 2931–2949 (2018).
Google Scholar
26.
Ramírez, S. R., Gravendeel, B., Singer, R. B., Marshall, C. R. & Pierce, N. E. Dating the origin of the Orchidaceae from a fossil orchid with its pollinator. Nature 448, 1042–1045 (2007).
ADS PubMed Google Scholar
27.
Conran, J. G., Bannister, J. M. & Lee, D. E. Earliest orchid macrofossils: early Miocene Dendrobium and Earina (Orchidaceae: Epidendroideae) from New Zealand. Am. J. Bot. 96(2), 466–474 (2009).
PubMed Google Scholar
28.
Kenny, J. 2008. Orchids of Trinidad and Tobago (ed. Kenny, J.) 1–127 (Prospect Press, 2008).
29.
Swarts, N. D. & Dixon, K. W. Terrestrial orchid conservation in the age of extinction. Ann. Bot. 104(3), 543–556 (2009).
PubMed PubMed Central Google Scholar
30.
Teketay, D. History, botany and ecological requirements of coffee. Walia 20, 28–50 (1999).
Google Scholar
31.
Tupac, O. J., Ackerman, J. D. & Bayman, P. Diversity and host specificity of endophytic Rhizoctonia-like fungi from tropical orchids. Am. J. Bot. 89(11), 1852–1858 (2002).
Google Scholar
32.
Pellegrino, G., Luca, A. & Bellusci, F. Relationships between orchid and fungal biodiversity: mycorrhizal preferences in Mediterranean orchids. Plant Biosyst. 150(2), 180–189 (2016).
Google Scholar
33.
Suárez, J. P. & Kottke, I. Main fungal partners and different levels of specificity of orchid mycorrhizae in the tropical mountain forests of Ecuador. Lankesteriana 16(2), 299–305 (2016).
Google Scholar
34.
Senthilkumar, S. Mycorrhizal fungi of endangered orchid species in Kolli, a part of eastern ghats, South India. Lankesteriana 7, 15–156 (2003).
Google Scholar
35.
Pereira, O. L., Rollemberg, C. L., Borges, A. C., Matsuoka, K. & Kasuya, M. C. M. Epulorhiza epiphytica sp. nov. isolated from mycorrhizal roots of epiphytic orchids in Brazil. Mycoscience 44, 153–155 (2003).
Google Scholar
36.
Tedersoo, L. Biogeography of mycorrhizal symbiosis (Springer, Cham, 2017).
Google Scholar
37.
Waud, M., Brys, R., Van Landuyt, W., Lievens, B. & Jacquemyn, H. Mycorrhizal specificity does not limit the distribution of an endangered orchid species. Mol. Ecol. 26(6), 1687–1701 (2017).
CAS PubMed Google Scholar
38.
van der Cingel, N. A. An atlas of orchid pollination: America, Africa, Asia and Australia (A.A. Balkema Publishers, Rotterdam, 2001).
Google Scholar
39.
Pansarin, E. R. & Maria do Carmo, E. A. Biologia reprodutiva e polinização de duas espécies de Polystachya Hook. no Sudeste do Brasil: evidência de pseudocleistogamia em Polystachyeae (Orchidaceae). Rev. Bras. Bot. 29(3), 423–432 (2006).
40.
Chakraborty, D. et al. Selecting populations for non-analogous climate conditions using universal response functions: the case of Douglas-Fir in Central Europe. PLoS ONE 10(8), e0136357 (2015).
PubMed PubMed Central Google Scholar
41.
Broennimann, O. & Guisan, A. Predicting current and future biological invasions: both native and invaded ranges matter. Biol. Lett. 4, 585–589 (2008).
PubMed PubMed Central Google Scholar
42.
Abrams, M. D. Adaptations of forest ecosystems to air pollution and climate change. Tree Physiol. 31, 258–261 (2011).
PubMed Google Scholar
43.
Atwater, D. Z., Ervine, C. & Barney, J. N. Climatic niche shifts are common in introduced plants. Nat. Ecol. Evol. 2, 34–43 (2018).
PubMed Google Scholar
44.
Konowalik, K. & Kolanowska, M. Climatic niche shift and possible future spread of the invasive South African Orchid Disa bracteata in Australia and adjacent areas. PeerJ 6, e6107 (2018).
PubMed PubMed Central Google Scholar
45.
Early, R. & Sax, D. F. Climatic niche shifts between species’ native and naturalized ranges raise concern for ecological forecasts during invasions and climate change. Global Ecol. Biogeogr. 23, 1356–1365 (2014).
Google Scholar
46.
Baranow, P. & Mytnik-Ejsmont, J. Two new species of Polystachya Hook. (Orchidaceae) from Africa. Plant Syst Evol. 281, 11–16 (2009).
Google Scholar
47.
Mytnik-Ejsmont, J. & Baranow, P. Taxonomic study of Polystachya Hook. (Orchidaceae) from Asia. Plant Syst. Evol. 290, 57–63 (2010).
Google Scholar
48.
Russell, A. et al. Phylogenetics and cytology of a pantropical orchid genus Polystachya (Polystachyinae, Vandeae, Orchidaceae): Evidence from plastid DNA sequence data. Taxon 59(2), 389–404 (2010).
Google Scholar
49.
McCartney, C. African affinities, part I: the surprising relationship of some of Florida’s wild orchids. Orchids 69(2), 130–139 (2010).
Google Scholar
50.
Mytnik-Ejsmont, J. A monograph of the subtribe Polystachyinae Schltr. (Orchidaceae) (Wydawnictwo Uniwersytetu Gdańskiego, Gdańsk, 2011).
Google Scholar
51.
GBIF Occurrence Download; https://doi.org/10.15468/dl.ks410t (2018).
52.
Phillips, S. J., Dudík, M. & Schapire, R. E. A maximum entropy approach to species distribution modeling. In: ICML ’04. Proceedings of the Twenty-First International Conference on Machine learning. 655–662 (ACM, New York, 2004).
53.
Phillips, S. J., Anderson, R. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190, 231–259 (2006).
Google Scholar
54.
Elith, J. et al. A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 17, 43–57 (2011).
Google Scholar
55.
Barve, N. et al. The crucial role of the accessible area in ecological niche modeling and species distribution modeling. Ecol. Model. 222, 1810–1819 (2011).
Google Scholar
56.
Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).
Google Scholar
57.
WorldClim (version 1.4) www.worldclim.org
58.
Warren, D. L., Glor, R. E. & Turelli, M. ENMTools: a toolbox for comparative studies of environmental niche models. Ecography 33, 607–611 (2010).
Google Scholar
59.
Chung, M. Y. et al. Comparison of genetic variation between northern and southern populations of Lilium cernuum (Liliaceae): Implications for Pleistocene refugia. PLoS ONE 13(1), e0190520. https://doi.org/10.1371/journal.pone.0190520 (2018).
CAS Article PubMed PubMed Central Google Scholar
60.
Kim, S. H. et al. Phylogeography and ecological niche modeling reveal reduced genetic diversity and colonization patterns of skunk cabbage (Symplocarpus foetidus; Araceae) from Glacial Refugia in Eastern North America. Front. Plant Sci. 9, 648. https://doi.org/10.3389/fpls.2018.00648 (2018).
Article PubMed PubMed Central Google Scholar
61.
Moss, R. et al. Towards New Scenarios for Analysis of Emissions, Climate Change, Impacts, and Response Strategies. (Intergovernmental Panel on Climate Change, 2008)
62.
Weyant, J. et al. Report of 2.6 Versus 2.9 Watts/m2 RCPP Evaluation Panel (IPCC Secretariat, 2009).
63.
Sohel, S. I., Akhter, S., Ullah, H., Haque, E. & Rana, P. Predicting impacts of climate change on forest tree species of Bangladesh: evidence from threatened Dysoxylum binectariferum (Roxb.) Hook.f. ex Bedd. (Meliaceae). Forest 10(1), 154–160 (2016).
Google Scholar
64.
Sony, R. K., Sen, S., Kumar, S., Sen, M. & Jayahari, K. M. Niche models inform the effects of climate change on the endangered Nilgiri Tahr (Nilgiritragus hylocrius) populations in the southern Western Ghats, India. Ecol. Eng. 120, 355–363 (2018).
Google Scholar
65.
Mason, S. J. & Graham, N. E. Areas beneath the relative operating characteristics (ROC) and relative operating levels (ROL) curves statistical significance and interpretation. Q. J. R. Meteorol. Soc. 128, 2145–2166 (2002).
ADS Google Scholar
66.
Evangelista, P. H. et al. Modelling invasion for a habitat generalist and a specialist plant species. Divers. Distrib. 14, 808–817 (2008).
Google Scholar
67.
Allouche, O., Tsoar, A. & Kadmon, R. Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 43, 1223–1232 (2006).
Google Scholar
68.
Hijmans, R. J., Phillips, S., Leathwick, J. & Elith J. Dismo: Species Distribution Modeling. R package version 1.1-4. https://cran.r-project.org/package=dismo (2017)
69.
Phillips, S. B., Aneja, V. P., Kang, D. & Arya, S. P. Modelling and analysis of the atmospheric nitrogen deposition in North Carolina. Int. J. Glob. Environ. Issues 6, 231–252 (2006).
Google Scholar
70.
Warren, D. L., Glor, R. E. & Turelli, M. Environmental nicheequivalency versus conservatism: quantitative approaches toniche evolution. Evolution 62, 2868–2883. https://doi.org/10.1111/evo.2008.62.issue-11 (2008).
Article PubMed Google Scholar
71.
Schoener, T. W. The Anolis lizards of Bimini: resource partitioning in a complex fauna. Ecology 49, 704–726. https://doi.org/10.2307/1935534 (1968).
Article Google Scholar
72.
Heibl, C. & Calenge, C. Phyloclim: integrating phylogenetics and climatic Niche modeling. R package version 0.9-4 https://cran.rproject.org/web/packages/phyloclim/phyloclim.pdf (2015).
73.
Kremen, C. et al. Aligning conservation priorities across taxa in Madagascar with high-resolution planning tools. Science 320, 222–226 (2008).
ADS CAS PubMed Google Scholar
74.
Leps, J. & Smilauer, P. Multivariate Analysis of Ecological Data Using CANOCO (Cambridge University Press, Cambridge, 2003).
Google Scholar
75.
Peterson, A. T. et al. Ecological Niches and Geographic Distributions (MPB-49) (Princeton University Press, Princeton, 2011).
Google Scholar More