Ecosystem decay exacerbates biodiversity loss with habitat loss
1.
Pimm, S. L. et al. The biodiversity of species and their rates of extinction, distribution, and protection. Science 344, 1246752 (2014).
CAS PubMed Google Scholar
2.
Díaz, S. et al. Pervasive human-driven decline of life on Earth points to the need for transformative change. Science 366, eaax3100 (2019).
PubMed Google Scholar
3.
Haddad, N. M. et al. Habitat fragmentation and its lasting impact on Earth’s ecosystems. Sci. Adv. 1, e1500052 (2015).
ADS PubMed PubMed Central Google Scholar
4.
Fahrig, L. Ecological responses to habitat fragmentation per se. Annu. Rev. Ecol. Evol. Syst. 48, 1–23 (2017).
Google Scholar
5.
Fletcher, R. J. Jr et al. Is habitat fragmentation good for biodiversity? Biol. Conserv. 226, 9–15 (2018).
Google Scholar
6.
Fahrig, L. et al. Is habitat fragmentation bad for biodiversity? Biol. Conserv. 230, 179–186 (2019).
Google Scholar
7.
Connor, E. F. & McCoy, E. D. The statistics and biology of the species–area relationship. Am. Nat. 113, 791–833 (1979).
MathSciNet Google Scholar
8.
Yaacobi, G., Ziv, Y. & Rosenzweig, M. L. Habitat fragmentation may not matter to species diversity. Proc. R. Soc. Lond. B 274, 2409–2412 (2007).
Google Scholar
9.
Lovejoy, T. E. et al. in Extinctions (ed. Nitecki, M. H.) 295–325 (Univ. of Chicago Press, 1984).
10.
Hanski, I., Zurita, G. A., Bellocq, M. I. & Rybicki, J. Species-fragmented area relationship. Proc. Natl Acad. Sci. USA 110, 12715–12720 (2013).
ADS CAS PubMed Google Scholar
11.
Pimm, S. L. & Askins, R. A. Forest losses predict bird extinctions in eastern North America. Proc. Natl Acad. Sci. USA 92, 9343–9347 (1995).
ADS CAS PubMed Google Scholar
12.
He, F. & Hubbell, S. P. Species–area relationships always overestimate extinction rates from habitat loss. Nature 473, 368–371 (2011).
ADS CAS PubMed Google Scholar
13.
Terborgh, J. et al. Ecological meltdown in predator-free forest fragments. Science 294, 1923–1926 (2001).
ADS CAS PubMed Google Scholar
14.
Laurance, W. F. et al. The fate of Amazonian forest fragments: a 32-year investigation. Biol. Conserv. 144, 56–67 (2011).
Google Scholar
15.
Gibson, L. et al. Near-complete extinction of native small mammal fauna 25 years after forest fragmentation. Science 341, 1508–1510 (2013).
ADS CAS PubMed Google Scholar
16.
Thomas, C. D. et al. Extinction risk from climate change. Nature 427, 145–148 (2004).
ADS CAS PubMed PubMed Central Google Scholar
17.
Tilman, D. et al. Future threats to biodiversity and pathways to their prevention. Nature 546, 73–81 (2017).
ADS CAS PubMed Google Scholar
18.
Halley, J. M., Sgardeli, V. & Monokrousos, N. Species–area relationships and extinction forecasts. Ann. NY Acad. Sci. 1286, 50–61 (2013).
ADS PubMed Google Scholar
19.
Bueno, A. S. & Peres, C. A. Patch-scale biodiversity retention in fragmented landscapes: reconciling the habitat amount hypothesis with the island biogeography theory. J. Biogeogr. 46, 621–632 (2019).
Google Scholar
20.
Chase, J. M. et al. A framework for disentangling ecological mechanisms underlying the island species–area relationship. Front. Biogeogr. 11, e40844 (2019).
Google Scholar
21.
Chase, J. M. et al. Embracing scale-dependence to achieve a deeper understanding of biodiversity and its change across communities. Ecol. Lett. 21, 1737–1751 (2018).
PubMed Google Scholar
22.
Chase, J. M. et al. FragSAD: a database of diversity and species abundance distributions from habitat fragments. Ecology 100, e02861 (2019).
PubMed Google Scholar
23.
Ewers, R. M. & Didham, R. K. Confounding factors in the detection of species responses to habitat fragmentation. Biol. Rev. Camb. Philos. Soc. 81, 117–142 (2006).
PubMed Google Scholar
24.
Tilman, D., May, R. M., Lehman, C. L. & Nowak, M. A. Habitat destruction and the extinction debt. Nature 371, 65–66 (1994).
ADS Google Scholar
25.
Jackson, S. T. & Sax, D. F. Balancing biodiversity in a changing environment: extinction debt, immigration credit and species turnover. Trends Ecol. Evol. 25, 153–160 (2010).
PubMed Google Scholar
26.
Betts, M. G. et al. Extinction filters mediate the global effects of habitat fragmentation on animals. Science 366, 1236–1239 (2019).
ADS CAS PubMed Google Scholar
27.
Chisholm, R. A. et al. Species–area relationships and biodiversity loss in fragmented landscapes. Ecol. Lett. 21, 804–813 (2018).
PubMed PubMed Central Google Scholar
28.
Matthews, T. J., Cottee-Jones, H. E. & Whittaker, R. J. Habitat fragmentation and the species–area relationship: a focus on total species richness obscures the impact of habitat loss on habitat specialists. Divers. Distrib. 20, 1136–1146 (2014).
Google Scholar
29.
Koh, L. P., Lee, T. M., Sodhi, N. S. & Ghazoul, J. An overhaul of the species–area approach for predicting biodiversity loss: incorporating matrix and edge effects. J. Appl. Ecol. 47, 1063–1070 (2010).
Google Scholar
30.
Halley, J. M., Monokrousos, N., Mazaris, A. D., Newmark, W. D. & Vokou, D. Dynamics of extinction debt across five taxonomic groups. Nat. Commun. 7, 12283 (2016).
ADS CAS PubMed PubMed Central Google Scholar
31.
Saunders, D. A., Hobbs, R. J. & Margules, C. R. Biological consequences of ecosystem fragmentation: a review. Conserv. Biol. 5, 18–32 (1991).
Google Scholar
32.
Andrén, H. Effects of habitat fragmentation on birds and mammals in landscapes with different proportions of suitable habitat: a review. Oikos 71, 355–366 (1994).
Google Scholar
33.
Debinski, D. M. & Holt, R. D. A survey and overview of habitat fragmentation experiments. Conserv. Biol. 14, 342–355 (2000).
Google Scholar
34.
Fahrig, L. Effects of habitat fragmentation on biodiversity. Annu. Rev. Ecol. Evol. Syst. 34, 487–515 (2003).
Google Scholar
35.
Jones, I. L., Bunnefeld, N., Jump, A. S., Peres, C. A. & Dent, D. H. Extinction debt on reservoir land-bridge islands. Biol. Conserv. 199, 75–83 (2016).
Google Scholar
36.
Aguiar, W. M. D. & Gaglianone, M. C. Euglossine bee communities in small forest fragments of the Atlantic Forest, Rio de Janeiro state, southeastern Brazil (Hymenoptera, Apidae). Rev. Bras. Entomol. 56, 210–219 (2012).
Google Scholar
37.
Aizen, M. A. & Feinsinger, P. Habitat fragmentation, native insect pollinators, and feral honey bees in Argentine “Chaco Serrano”. Ecol. Appl. 4, 378–392 (1994).
Google Scholar
38.
Almeida-Gomes, M. & Rocha, C. F. D. Diversity and distribution of lizards in fragmented Atlantic Forest landscape in southeastern Brazil. J. Herpetol. 48, 423–429 (2014).
Google Scholar
39.
Andresen, E. Effect of forest fragmentation on dung beetle communities and functional consequences for plant regeneration. Ecography 26, 87–97 (2003).
Google Scholar
40.
Báldi, A. & Kisbenedek, T. Orthopterans in small steppe patches: an investigation for the best-fit model of the species–area curve and evidences for their non-random distribution in the patches. Acta Oecol. 20, 125–132 (1999).
ADS Google Scholar
41.
Baz, A. & Garcia-Boyero, A. The SLOSS dilemma: a butterfly case study. Biodivers. Conserv. 5, 493–502 (1996).
Google Scholar
42.
Bell, K. E. & Donnelly, M. A. Influence of forest fragmentation on community structure of frogs and lizards in northeastern Costa Rica. Conserv. Biol. 20, 1750–1760 (2006).
PubMed Google Scholar
43.
Benedick, S. et al. Impacts of rain forest fragmentation on butterflies in northern Borneo: species richness, turnover and the value of small fragments. J. Appl. Ecol. 43, 967–977 (2006).
Google Scholar
44.
Benítez-Malvido, J. et al. The multiple impacts of tropical forest fragmentation on arthropod biodiversity and on their patterns of interactions with host plants. PLoS ONE 11, e0146461 (2016).
PubMed PubMed Central Google Scholar
45.
Berg, Å. Diversity and abundance of birds in relation to forest fragmentation, habitat quality and heterogeneity. Bird Study 44, 355–366 (1997).
Google Scholar
46.
Bernard, E. & Fenton, M. B. Bats in a fragmented landscape: species composition, diversity and habitat interactions in savannas of Santarém, Central Amazonia, Brazil. Biol. Conserv. 134, 332–343 (2007).
Google Scholar
47.
Bolger, D. T. et al. Response of rodents to habitat fragmentation in coastal southern California. Ecol. Appl. 7, 552–563 (1997).
Google Scholar
48.
Bossart, J. L. et al. Richness, abundance, and complementarity of fruit-feeding butterfly species in relict sacred forests and forest reserves of Ghana. Biodivers. Conserv. 15, 333–359 (2006).
Google Scholar
49.
Bossart, J. L. & Antwi, J. B. Limited erosion of genetic and species diversity from small forest patches: sacred forest groves in an Afrotropical biodiversity hotspot have high conservation value for butterflies. Biol. Conserv. 198, 122–134 (2016).
Google Scholar
50.
Bragagnolo, C. et al. Harvestmen in an Atlantic forest fragmented landscape: evaluating assemblage response to habitat quality and quantity. Biol. Conserv. 139, 389–400 (2007).
Google Scholar
51.
Brosi, B. J., Daily, G. C., Shih, T. M., Oviedo, F. & Durán, G. The effects of forest fragmentation on bee communities in tropical countryside. J. Appl. Ecol. 45, 773–783 (2008).
Google Scholar
52.
Brosi, B. J. The effects of forest fragmentation on euglossine bee communities (Hymenoptera: Apidae: Euglossini). Biol. Conserv. 142, 414–423 (2009).
Google Scholar
53.
Cabrera-Guzmán, E. & Reynoso, V. H. Amphibian and reptile communities of rainforest fragments: minimum patch size to support high richness and abundance. Biodivers. Conserv. 21, 3243–3265 (2012).
Google Scholar
54.
Cadotte, M. W., Franck, R., Reza, L. & Lovett-Doust, J. Tree and shrub diversity and abundance in fragmented littoral forest of southeastern Madagascar. Biodivers. Conserv. 11, 1417–1436 (2002).
Google Scholar
55.
Carneiro, M. S., Campos, C. C., Ramos, F. N. & Dos Santos, F. A. Spatial species turnover maintains high diversities in a tree assemblage of a fragmented tropical landscape. Ecography 7, e01500 (2016).
Google Scholar
56.
Cayuela, L., Golicher, D. J., Benayas, J. M. R., González-Espinosa, M. & Ramírez-Marcial, N. Fragmentation, disturbance and tree diversity conservation in tropical montane forests. J. Appl. Ecol. 43, 1172–1181 (2006).
Google Scholar
57.
Chiarello, A. G. Effects of fragmentation of the Atlantic forest on mammal communities in south-eastern Brazil. Biol. Conserv. 89, 71–82 (1999).
Google Scholar
58.
Cosson, J. F. et al. Ecological changes in recent land-bridge islands in French Guiana, with emphasis on vertebrate communities. Biol. Conserv. 91, 213–222 (1999).
Google Scholar
59.
Dami, F. D., Mwansat, G. S. & Manu, S. A. The effects of forest fragmentation on species richness on the Obudu Plateau, south-eastern Nigeria. Afr. J. Ecol. 51, 32–36 (2013).
Google Scholar
60.
Dauber, J., Bengtsson, J. & Lenoir, L. Evaluating effects of habitat loss and land-use continuity on ant species richness in seminatural grassland remnants. Conserv. Biol. 20, 1150–1160 (2006).
PubMed Google Scholar
61.
Davies, R. G. et al. Environmental and spatial influences upon species composition of a termite assemblage across neotropical forest islands. J. Trop. Ecol. 19, 509–524 (2003).
Google Scholar
62.
de La Sancha, N. U. Patterns of small mammal diversity in fragments of subtropical interior Atlantic forest in eastern Paraguay. Mammalia 78, 437–449 (2014).
Google Scholar
63.
de Souza, O. F. F. & Brown, V. K. Effects of habitat fragmentation on Amazonian termite communities. J. Trop. Ecol. 10, 197 (1994).
Google Scholar
64.
Dickman, C. R. Habitat fragmentation and vertebrate species richness in an urban environment. J. Appl. Ecol. 24, 337–351 (1987).
Google Scholar
65.
Didham, R. K., Hammond, P. M., Lawton, J. H., Eggleton, P. & Stork, N. E. Beetle species responses to tropical forest fragmentation. Ecol. Monogr. 68, 295–323 (1998).
Google Scholar
66.
Ding, Z., Feeley, K. J., Wang, Y., Pakeman, R. J. & Ding, P. Patterns of bird functional diversity on land-bridge island fragments. J. Anim. Ecol. 82, 781–790 (2013).
PubMed Google Scholar
67.
Dixo, M. & Metzger, J. P. Are corridors, fragment size and forest structure important for the conservation of leaf-litter lizards in a fragmented landscape? Oryx 43, 435 (2009).
Google Scholar
68.
Dominguez-Haydar, Y. & Armbrecht, I. Response of ants and their seed removal in rehabilitation areas and forests at El Cerrejón coal mine in Colombia. Restor. Ecol. 19, 178–184 (2011).
Google Scholar
69.
Echeverría, C. et al. Impacts of forest fragmentation on species composition and forest structure in the temperate landscape of southern Chile. Glob. Ecol. Biogeogr. 16, 426–439 (2007).
Google Scholar
70.
Edwards, D. P. et al. Wildlife-friendly oil palm plantations fail to protect biodiversity effectively. Conserv. Lett. 3, 236–242 (2010).
Google Scholar
71.
Estrada, A. & Coates-Estrada, R. Bats in continuous forest, forest fragments and in an agricultural mosaic habitat-island at Los Tuxtlas, Mexico. Biol. Conserv. 103, 237–245 (2002).
Google Scholar
72.
Estrada, A. & Coates-Estrada, R. Dung beetles in continuous forest, forest fragments and in an agricultural mosaic habitat island at Los Tuxtlas, Mexico. Biodivers. Conserv. 11, 1903–1918 (2002).
Google Scholar
73.
Filgueiras, B. K. C., Iannuzzi, L. & Leal, I. R. Habitat fragmentation alters the structure of dung beetle communities in the Atlantic forest. Biol. Conserv. 144, 362–369 (2011).
Google Scholar
74.
da Fonseca, G. A. B. & Robinson, J. G. Forest size and structure: competitive and predatory effects on small mammal communities. Biol. Conserv. 53, 265–294 (1990).
Google Scholar
75.
Fujita, A. et al. Effects of forest fragmentation on species richness and composition of ground beetles (Coleoptera: Carabidae and Brachinidae) in urban landscapes. Entomol. Sci. 11, 39–48 (2008).
Google Scholar
76.
Gavish, Y., Ziv, Y. & Rosenzweig, M. L. Decoupling fragmentation from habitat loss for spiders in patchy agricultural landscapes. Conserv. Biol. 26, 150–159 (2012).
PubMed Google Scholar
77.
Giladi, I. et al. Scale-dependent determinants of plant species richness in a semi-arid fragmented agro-ecosystem. J. Veg. Sci. 22, 983–996 (2011).
Google Scholar
78.
Giraudo, A. R. et al. Comparing bird assemblages in large and small fragments of the Atlantic forest hotspots. Biodivers. Conserv. 17, 1251–1265 (2008).
Google Scholar
79.
Gonçalves-Souza, T., Matallana, G. & Brescovit, A. D. Effects of habitat fragmentation on the spider community (Arachnida, Araneae) in three Atlantic forest remnants in southeastern Brazil. Rev. Iber. Aracnol. 16, 35–42 (2008).
Google Scholar
80.
Goodman, S. M. & Rakotondravony, D. The effects of forest fragmentation and isolation on insectivorous small mammals (Lipotyphla) on the Central High Plateau of Madagascar. J. Zool. 250, 193–200 (2000).
Google Scholar
81.
Guadagnin, D. L., Peter, Â. S., Perello, L. F. C. & Maltchik, L. Spatial and temporal patterns of waterbird assemblages in fragmented wetlands of southern Brazil. Waterbirds 28, 261–272 (2005).
Google Scholar
82.
Halme, E., Niemela, J. & Haime, E. Carabid beetles in fragments of coniferous forest. Ann. Zool. Fenn. 30, 17–30 (1993).
Google Scholar
83.
Henry, M., Pons, J.-M. & Cosson, J.-F. Foraging behaviour of a frugivorous bat helps bridge landscape connectivity and ecological processes in a fragmented rainforest. J. Anim. Ecol. 76, 801–813 (2007).
PubMed Google Scholar
84.
Horváth, R. et al. Spiders are not less diverse in small and isolated grasslands, but less diverse in overgrazed grasslands: a field study (East Hungary, Nyirseg). Agric. Ecosyst. Environ. 130, 16–22 (2009).
Google Scholar
85.
Jauker, F., Jauker, B., Grass, I., Steffan-Dewenter, I. & Wolters, V. Partitioning wild bee and hoverfly contributions to plant–pollinator network structure in fragmented habitats. Ecology 100, e02569 (2019).
PubMed Google Scholar
86.
Jung, J. K. et al. A comparison of diversity and species composition of ground beetles (Coleoptera: Carabidae) between conifer plantations and regenerating forests in Korea. Ecol. Res. 29, 877–887 (2014).
Google Scholar
87.
Jyothi, K. M. & Nameer, P. O. Birds of sacred groves of northern Kerala, India. J. Threat. Taxa 7, 8226–8236 (2015).
Google Scholar
88.
Kapoor, V. Effects of rainforest fragmentation and shade-coffee plantations on spider communities in the Western Ghats, India. J. Insect Conserv. 12, 53–68 (2008).
Google Scholar
89.
Kappes, H. et al. Response of snails and slugs to fragmentation of lowland forests in NW Germany. Landsc. Ecol. 24, 685–697 (2009).
Google Scholar
90.
Klein, B. C. Effects of forest fragmentation on dung and carrion beetle communities in central Amazonia. Ecology 70, 1715–1725 (1989).
Google Scholar
91.
Knapp, M. & Řezáč, M. Even the smallest non-crop habitat islands could be beneficial: distribution of carabid beetles and spiders in agricultural landscape. PLoS ONE 10, e0123052 (2015).
PubMed PubMed Central Google Scholar
92.
Lambert, T. D. et al. Rodents on tropical land-bridge islands. J. Zool. 260, 179–187 (2003).
Google Scholar
93.
Lasky, J. R. & Keitt, T. H. Abundance of Panamanian dry-forest birds along gradients of forest cover at multiple scales. J. Trop. Ecol. 26, 67–78 (2010).
Google Scholar
94.
de Lima, M. G. & Gascon, C. The conservation of linear forest remnants in central Amazonia. Biol. Conserv. 91, 241–247 (1999).
Google Scholar
95.
Lima, J. et al. Amphibians on Amazonian land-bridge islands are affected more by area than isolation. Biotropica 47, 369–376 (2015).
Google Scholar
96.
Lion, M. B., Garda, A. A. & Fonseca, C. R. Split distance: a key landscape metric shaping amphibian populations and communities in forest fragments. Divers. Distrib. 20, 1245–1257 (2014).
Google Scholar
97.
Lion, M. B., Garda, A. A., Santana, D. J. & Fonseca, C. R. The conservation value of small fragments for Atlantic forest reptiles. Biotropica 48, 265–275 (2016).
Google Scholar
98.
Lövei, G. L. & Cartellieri, M. Ground beetles (Coleoptera, Carabidae) in forest fragments of the Manuwatu, New Zealand: collapsed assemblages? J. Insect Conserv. 4, 239–244 (2000).
Google Scholar
99.
Mac Nally, R. & Brown, G. W. Reptiles and habitat fragmentation in the box-ironbark forests of central Victoria, Australia: predictions, compositional change and faunal nestedness. Oecologia 128, 116–125 (2001).
ADS Google Scholar
100.
Manu, S., Peach, W. & Cresswell, W. The effects of edge, fragment size and degree of isolation on avian species richness in highly fragmented forest in West Africa. Ibis 149, 287–297 (2007).
Google Scholar
101.
Martensen, A. C., Ribeiro, M. C., Banks-Leite, C., Prado, P. I. & Metzger, J. P. Associations of forest cover, fragment area, and connectivity with Neotropical understory bird species richness and abundance. Conserv. Biol. 26, 1100–1111 (2012).
PubMed Google Scholar
102.
McCollin, D. Avian distribution patterns in a fragmented wooded landscape (North Humberside, U.K.): the role of between-patch and within-patch structure. Glob. Ecol. Biogeogr. Lett. 3, 48–62 (1993).
Google Scholar
103.
McIntyre, N. E. Effects of forest patch size on avian diversity. Landsc. Ecol. 10, 85–99 (1995).
Google Scholar
104.
Meyer, C. F. J. & Kalko, E. K. V. Assemblage-level responses of phyllostomid bats to tropical forest fragmentation: land-bridge islands as a model system. J. Biogeogr. 35, 1711–1726 (2008).
Google Scholar
105.
Nemésio, A. & Silveira, F. A. Orchid bee fauna (Hymenoptera: Apidae: Euglossina) of Atlantic Forest fragments inside an urban area in southeastern Brazil. Neotrop. Entomol. 36, 186–191 (2007).
PubMed Google Scholar
106.
Nemésio, A. & Silveira, F. A. Forest fragments with larger core areas better sustain diverse orchid bee faunas (Hymenoptera: Apidae: Euglossina). Neotrop. Entomol. 39, 555–561 (2010).
PubMed Google Scholar
107.
Neuschulz, E. L., Botzat, A. & Farwig, N. Effects of forest modification on bird community composition and seed removal in a heterogeneous landscape in South Africa. Oikos 120, 1371–1379 (2011).
Google Scholar
108.
Nogueira, A. & Pinto-da-Rocha, R. The effects of habitat size and quality on the orb-weaving spider guild (Arachnida: Araneae) in an Atlantic forest fragmented landscape. J. Arachnol. 44, 36–45 (2016).
Google Scholar
109.
Nufio, R. C., McClenahan, L. J. & Thurston, G. E. Determining the effects of habitat fragment area on grasshopper species density and richness: a comparison of proportional and uniform sampling methods. Insect Conserv. Divers. 2, 295–304 (2009).
Google Scholar
110.
Nyeko, P. Dung beetle assemblages and seasonality in primary forest and forest fragments on agricultural landscapes in Budongo, Uganda. Biotropica 41, 476–484 (2009).
Google Scholar
111.
Nyelele, C. et al. Woodland fragmentation explains tree species diversity in an agricultural landscape of Southern Africa. Trop. Ecol. 55, 365–374 (2014).
Google Scholar
112.
Owen, C. L. Mapping Biodiversity in a Modified Landscape. MSc thesis, Imperial College London (2008).
113.
Paciencia, M. L. B. & Prado, J. Effects of forest fragmentation on pteridophyte diversity in a tropical rain forest in Brazil. Plant Ecol. 180, 87–104 (2005).
Google Scholar
114.
Pardini, R. Effects of forest fragmentation on small mammals in an Atlantic forest landscape. Biodivers. Conserv. 13, 2567–2586 (2004).
Google Scholar
115.
Pineda, E. & Halffter, G. Species diversity and habitat fragmentation: frogs in a tropical montane landscape in Mexico. Biol. Conserv. 117, 499–508 (2004).
Google Scholar
116.
Raheem, D. C. et al. Fragmentation and pre-existing species turnover determine land-snail assemblages of tropical rain forest. J. Biogeogr. 36, 1923–1938 (2009).
Google Scholar
117.
Rocha, R. et al. Consequences of a large-scale fragmentation experiment for Neotropical bats: disentangling the relative importance of local and landscape-scale effects. Landsc. Ecol. 32, 31–45 (2017).
Google Scholar
118.
Sam, K., Koane, B., Jeppy, S. & Novotny, V. Effect of forest fragmentation on bird species richness in Papua New Guinea. J. Field Ornithol. 85, 152–167 (2014).
Google Scholar
119.
Savilaakso, S., Koivisto, J., Veteli, T. O. & Roininen, H. Microclimate and tree community linked to differences in lepidopteran larval communities between forest fragments and continuous forest. Divers. Distrib. 15, 356–365 (2009).
Google Scholar
120.
Schnitzler, F. R. Hymenopteran Parasitoid Diversity and Tri-Trophic Interactions: The Effects of Habitat Fragmentation in Wellington, New Zealand. PhD thesis, Victoria Univ. of Wellington (2008).
121.
Senior, M. J. M. Assessing Biodiversity and Ecosystem Functioning in Fragmented Tropical Landscapes. PhD Thesis, Univ. of York (2014).
122.
Silva, M. P. P. & Porto, K. C. Effect of fragmentation on the community structure of epixylic bryophytes in Atlantic forest remnants in the northeast of Brazil. Biodivers. Conserv. 18, 317–337 (2009).
Google Scholar
123.
Silva, R. J., Storck-Tonon, D. & Vaz-de-Mello, F. Z. Dung beetle (Coleoptera: Scarabaeinae) persistence in Amazonian forest fragments and adjacent pastures: biogeographic implications for alpha and beta diversity. J. Insect Conserv. 20, 549–564 (2016).
Google Scholar
124.
Silveira, G. C. et al. The orchid bee fauna in the Brazilian savanna: do forest formations contribute to higher species diversity? Apidologie 46, 197–208 (2015).
CAS Google Scholar
125.
Slade, E. M. et al. Life-history traits and landscape characteristics predict macro-moth responses to forest fragmentation. Ecology 94, 1519–1530 (2013).
PubMed Google Scholar
126.
Sridhar, H., Raman, T. S. & Mudappa, D. Mammal persistence and abundance in tropical rainforest remnants in the southern Western Ghats, India. Curr. Sci. 94, 748–757 (2008).
Google Scholar
127.
Stireman, J. O. III, Devlin, H. & Doyle, A. L. Habitat fragmentation, tree diversity, and plant invasion interact to structure forest caterpillar communities. Oecologia 176, 207–224 (2014).
ADS PubMed Google Scholar
128.
Storck-Tonon, D. & Peres, C. A. Forest patch isolation drives local extinctions of Amazonian orchid bees in a 26 years old archipelago. Biol. Conserv. 214, 270–277 (2017).
Google Scholar
129.
Struebig, M. J. et al. Conservation importance of limestone karst outcrops for Palaeotropical bats in a fragmented landscape. Biol. Conserv. 142, 2089–2096 (2009).
Google Scholar
130.
Tellería, J. L. & Santos, T. Effects of forest fragmentation on a guild of wintering passerines: the role of habitat selection. Biol. Conserv. 71, 61–67 (1995).
Google Scholar
131.
Tonhasca, A., Blackmer, J. L. & Albuquerque, G. S. Abundance and diversity of euglossine bees in the fragmented landscape of the Brazilian Atlantic forest. Biotropica 34, 416–422 (2002).
Google Scholar
132.
Uehara-Prado, M., Brown, K. S. & Freitas, A. V. L. Species richness, composition and abundance of fruit-feeding butterflies in the Brazilian Atlantic forest: comparison between a fragmented and a continuous landscape. Glob. Ecol. Biogeogr. 16, 43–54 (2007).
Google Scholar
133.
Ulrich, W., Lens, L., Tobias, J. A. & Habel, J. C. Contrasting patterns of species richness and functional diversity in bird communities of east African cloud forest fragments. PLoS ONE 11, e0163338 (2016).
PubMed PubMed Central Google Scholar
134.
Usher, M. B. & Keiller, S. W. J. The Macrolepidoptera of farm woodlands: determinants of diversity and community structure. Biodivers. Conserv. 7, 725–748 (1998).
Google Scholar
135.
Vallan, D. Influence of forest fragmentation on amphibian diversity in the nature reserve of Ambohitantely, highland Madagascar. Biol. Conserv. 96, 31–43 (2000).
Google Scholar
136.
Vasconcelos, H. L., Vilhena, J. M., Magnusson, W. E. & Albernaz, A. L. M. Long-term effects of forest fragmentation on Amazonian ant communities. J. Biogeogr. 33, 1348–1356 (2006).
Google Scholar
137.
Vieira, M. V. et al. Land use vs. fragment size and isolation as determinants of small mammal composition and richness in Atlantic forest remnants. Biol. Conserv. 142, 1191–1200 (2009).
Google Scholar
138.
Vulinec, K. et al. Dung beetles and long-term habitat fragmentation in Alter do Chão, Amazônia, Brazil. Trop. Conserv. Sci. 1, 111–121 (2008).
Google Scholar
139.
Wang, Y., Wang, X. & Ding, P. Nestedness of snake assemblages on islands of an inundated lake. Curr. Zool. 58, 828–836 (2012).
Google Scholar
140.
Williams, M. R. Habitat resources, remnant vegetation condition and area determine distribution patterns and abundance of butterflies and day-flying moths in a fragmented urban landscape, south-west Western Australia. J. Insect Conserv. 15, 37–54 (2011).
Google Scholar
141.
Zartman, C. E. Habitat fragmentation impacts on epiphyllous bryophyte communities in Central Amazonia. Ecology 84, 948–954 (2003).
Google Scholar
142.
Ziter, C., Bennett, E. M. & Gonzalez, A. Functional diversity and management mediate aboveground carbon stocks in small forest fragments. Ecosphere 4, 85 (2013).
Google Scholar
143.
Hudson, L. N. et al. The database of the PREDICTS (Projecting Responses of Ecological Diversity In Changing Terrestrial Systems) project. Ecol. Evol. 7, 145–188 (2017).
PubMed Google Scholar
144.
Cáceres, N. C., Nápoli, R. P., Casella, J. & Hannibal, W. Mammals in a fragmented savannah landscape in south-western Brazil. J. Nat. Hist. 44, 491–512 (2010).
Google Scholar
145.
Ewers, R. M., Thorpe, S. & Didham, R. K. Synergistic interactions between edge and area effects in a heavily fragmented landscape. Ecology 88, 96–106 (2007).
PubMed Google Scholar
146.
Fernández, I. C. & Simonetti, J. A. Small mammal assemblages in fragmented shrublands of urban areas of Central Chile. Urban Ecosyst. 16, 377–387 (2013).
Google Scholar
147.
Garmendia, A., Arroyo-Rodríguez, V., Estrada, A., Naranjo, E. J. & Stoner, K. E. Landscape and patch attributes impacting medium- and large-sized terrestrial mammals in a fragmented rain forest. J. Trop. Ecol. 29, 331–344 (2013).
Google Scholar
148.
Stouffer, P. C., Johnson, E. I., Bierregaard, R. O. Jr & Lovejoy, T. E. Understory bird communities in Amazonian rainforest fragments: species turnover through 25 years post-isolation in recovering landscapes. PLoS ONE 6, e20543 (2011).
ADS CAS PubMed PubMed Central Google Scholar
149.
Gotelli, N. J. & Colwell, R. K. Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecol. Lett. 4, 379–391 (2001).
Google Scholar
150.
Chao, A. et al. Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecol. Monogr. 84, 45–67 (2014).
Google Scholar
151.
Hurlbert, S. H. The nonconcept of species diversity: a critique and alternative parameters. Ecology 52, 577–586 (1971).
PubMed Google Scholar
152.
Jost, L. Entropy and diversity. Oikos 113, 363–375 (2006).
Google Scholar
153.
Olszewski, T. D. A unified mathematical framework for the measurement of richness and evenness within and among multiple communities. Oikos 104, 377–387 (2004).
Google Scholar
154.
Chao, A. & Jost, L. Coverage-based rarefaction and extrapolation: standardizing samples by completeness rather than size. Ecology 93, 2533–2547 (2012).
PubMed Google Scholar
155.
Chao, A. Nonparametric estimation of the number of classes in a population. Scand. J. Stat. 11, 265–270 (1984).
MathSciNet Google Scholar
156.
McGlinn, D. J. et al. Measurement of Biodiversity (MoB): a method to separate the scale-dependent effects of species abundance distribution, density, and aggregation on diversity change. Methods Ecol. Evol. 10, 258–269 (2019).
Google Scholar
157.
Hsieh, T. C., Ma, K. H. & Chao, A. iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods Ecol. Evol. 7, 1451–1456 (2016).
Google Scholar
158.
Marion, Z. H., Fordyce, J. A. & Fitzpatrick, B. M. Pairwise beta diversity resolves an underappreciated source of confusion in calculating species turnover. Ecology 98, 933–939 (2017).
PubMed Google Scholar
159.
Baselga, A. Partitioning the turnover and nestedness components of beta diversity. Glob. Ecol. Biogeogr. 19, 134–143 (2010).
Google Scholar
160.
Baselga, A. Separating the two components of abundance-based dissimilarity: balanced changes in abundance vs. abundance gradients. Methods Ecol. Evol. 4, 552–557 (2013).
Google Scholar
161.
Dray, S. et al. adespatial: multivariate multiscale spatial analysis. R package version 0.3-4 https://CRAN.R-project.org/package=adespatial (2019).
162.
May, F., Gerstner, K., McGlinn, D. J., Xiao, X. & Chase, J. M. mobsim: an R package for the simulation and measurement of biodiversity across spatial scales. Methods Ecol. Evol. 9, 1401–1408 (2018).
Google Scholar
163.
Gurevitch, J., Koricheva, J., Nakagawa, S. & Stewart, G. Meta-analysis and the science of research synthesis. Nature 555, 175–182 (2018).
ADS CAS PubMed Google Scholar
164.
Purvis, A. et al. Modelling and projecting the response of local terrestrial biodiversity worldwide to land use and related pressures: the PREDICTS project. Adv. Ecol. Res. 58, 201–241 (2018).
Google Scholar
165.
Carpenter, B. et al. Stan: a probabilistic programming language. J. Stat. Softw. 76, 1–32 (2017).
Google Scholar
166.
Bürkner, P. C. brms: an R package for Bayesian multilevel models using Stan. J. Stat. Softw. 80, 1–28 (2017).
Google Scholar More