Philippa Kaur
More stories
163 Shares189 Views
in EcologyThe sources and transmission routes of microbial populations throughout a meat processing facility
1.
Buzby, J. C., Wells, H. F. & Hyman, J. The Estimated Amount, Value, and Calories of Postharvest Food Losses at the Retail and Consumer Levels in the United States. (EIB-121, U.S. Department of Agriculture, Economic Research Service, Washington, 2014).
2.
Huis In’t Veld, J. H. J. Microbial and biochemical spoilage of foods: an overview. Int. J. Food Microbiol.33, 1–18 (1996).
Google Scholar3.
Havelaar, A. H. et al. World Health Organization global estimates and regional comparisons of the burden of foodborne disease in 2010. PLoS Med.12, e1001923 (2015).
PubMed PubMed Central Google Scholar4.
EFSA (European Food Safety Authority) and ECDC (European Centre for Disease Prevention and Control), The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2015. EFSA J. 14(12): 4634, 231, (2016).5.
Gill, C. O. Meat spoilage and evaluation of the potential storage life of fresh meat. J. Food Prot.46, 444–452 (1983).
CAS PubMed Google Scholar6.
Giaouris, E. et al. Attachment and biofilm formation by foodborne bacteria in meat processing environments: causes, implications, role of bacterial interactions and control by alternative novel methods. Meat Sci.97, 289–309 (2014).
Google Scholar7.
Choi, Y. M. et al. Changes in microbial contamination levels of porcine carcasses and fresh pork in slaughterhouses, processing lines, retail outlets, and local markets by commercial distribution. Res. Vet. Sci.94, 413–418 (2013).
CAS PubMed Google Scholar8.
Sheridan, J. J. Sources of contamination during slaughter and measures of control. J. Food Saf.18, 321–339 (1998).
Google Scholar9.
International Organization for Standardization. Microbiology of the Food Chain—Carcass Sampling for Microbiological Analysis. (2015). ISO 17604:2015, Retrieved from https://www.iso.org/standard/62769.html10.
Nocker, A., Burr, M. & Camper, A. K. Genotypic microbial community profiling: a critical technical review. Microb. Ecol.54, 276–289 (2007).
CAS PubMed Google Scholar11.
Hultman, J., Rahkila, R., Ali, J., Rousu, J. & Björkroth, K. J. Meat processing plant microbiome and contamination patterns of cold-tolerant bacteria causing food safety and spoilage risks in the manufacture of vacuum-packaged cooked sausages. Appl. Environ. Microbiol.81, 7088–7097 (2015).
CAS PubMed PubMed Central Google Scholar12.
Chaillou, S. et al. Origin and ecological selection of core and food-specific bacterial communities associated with meat and seafood spoilage. ISME J.9, 1105–1118 (2015).
PubMed Google Scholar13.
Yang, H. et al. Uncovering the composition of microbial community structure and metagenomics among three gut locations in pigs with distinct fatness. Sci. Rep.6, 27427 (2016).
CAS PubMed PubMed Central Google Scholar14.
Bokulich, N. A., Bergsveinson, J., Ziola, B. & Mills, D. A. Mapping microbial ecosystems and spoilage-gene flow in breweries highlights patterns of contamination and resistance. Elife4, e04634 (2015).
PubMed Central Google Scholar15.
Mann, E. et al. Psychrophile spoilers dominate the bacterial microbiome in musculature samples of slaughter pigs. Meat Sci.117, 36–40 (2016).
CAS PubMed Google Scholar16.
Bokulich, N. A., Lewis, Z. T., Boundy-Mills, K. & Mills, D. A. A new perspective on microbial landscapes within food production. Curr. Opin. Biotechnol.37, 182–189 (2016).
CAS PubMed PubMed Central Google Scholar17.
Bridier, A. et al. Impact of cleaning and disinfection procedures on microbial ecology and Salmonella antimicrobial resistance in a pig slaughterhouse. Sci. Rep.9, 12947 (2019).
PubMed PubMed Central Google Scholar18.
Kang, S., Ravensdale, J., Coorey, R., Dykes, G. A. & Barlow, R. A comparison of 16S rRNA profiles through slaughter in Australian export beef abattoirs. Front. Microbiol.10, 2747 (2019).19.
Stellato, G. et al. Overlap of spoilage microbiota between meat and meat processing environment in small-scale 2 vs. large-scale retail distribution. Appl. Environ. Microbiol.82, 4045–4054 (2016).
CAS PubMed PubMed Central Google Scholar20.
Campos Calero, G. et al. Deciphering resistome and virulome diversity in a porcine slaughterhouse and pork products through its production chain. Front. Microbiol.9, 2099 (2018).21.
Johnson, J. S. et al. Evaluation of 16S rRNA gene sequencing for species and strain-level microbiome analysis. Nat. Commun.10, 5029 (2019).
PubMed PubMed Central Google Scholar22.
Spescha, C., Stephan, R. & Zweifel, C. Microbiological contamination of pig carcasses at different stages of slaughter in two European Union—approved abattoirs. J. Food Prot.69, 2568–2575 (2006).
CAS PubMed Google Scholar23.
Warriner, K., Aldsworth, T. G., Kaur, S. & Dodd, C. E. R. Cross-contamination of carcasses and equipment during pork processing. J. Appl. Microbiol.93, 169–177 (2002).
CAS PubMed Google Scholar24.
Wheatley, P., Giotis, E. S. & McKevitt, A. I. Effects of slaughtering operations on carcass contamination in an Irish pork production plant. Ir. Vet. J.67, 1 (2014).
PubMed PubMed Central Google Scholar25.
Gill, C. O. in Woodhead Publishing Series in Food Science, Technology and Nutrition (ed. Sofos, J. N. et al.) 630–672 (Woodhead Publishing, Sawston, 2005). https://doi.org/10.1533/9781845691028.2.63026.
de Filippis, F., La Storia, A., Villani, F. & Ercolini, D. Exploring the sources of bacterial spoilers in beefsteaks by culture-independent high-throughput sequencing. PLoS ONE8, e70222 (2013).27.
de Smidt, O. The use of PCR-DGGE to determine bacterial fingerprints for poultry and red meat abattoir effluent. Lett. Appl. Microbiol.62, 1–8 (2016).
PubMed Google Scholar28.
Andrew, D. & Board, R. Microbiology of Meat and Poultry. (Blackie Academic & Professional, Glasgow, 1998).29.
Khan, I. U. et al. Anoxybacillus sediminis sp. nov., a novel moderately thermophilic bacterium isolated from a hot spring. Antonie Van. Leeuwenhoek111, 2275–2282 (2018).
PubMed Google Scholar30.
Pikuta, E. et al. Anoxybacillus pushchinensis gen. nov., sp. nov., a novel anaerobic, alkaliphilic, moderately thermophilic bacterium from manure, and description of Anoxybacillus flavitherms comb. nov. Int. J. Syst. Evol. Microbiol.50, 2109–2117 (2000).
CAS PubMed Google Scholar31.
Burgess, S. A., Lindsay, D. & Flint, S. H. Thermophilic bacilli and their importance in dairy processing. Int. J. Food Microbiol.144, 215–225 (2010).
CAS PubMed Google Scholar32.
Burgess, S. A., Brooks, J. D., Rakonjac, J., Walker, K. M. & Flint, S. H. The formation of spores in biofilms of Anoxybacillus flavithermus. J. Appl. Microbiol.107, 1012–1018 (2009).
CAS PubMed Google Scholar33.
Goh, K. M. et al. Recent discoveries and applications of Anoxybacillus. Appl. Microbiol. Biotechnol.97, 1475–1488 (2013).
CAS PubMed Google Scholar34.
Knights, D. et al. Bayesian community-wide culture-independent microbial source tracking. Nat. Methods8, 761–763 (2011).
CAS PubMed PubMed Central Google Scholar35.
Henry, R. et al. Into the deep: evaluation of sourcetracker for assessment of faecal contamination of coastal waters. Water Res.93, 242–253 (2016).
CAS PubMed Google Scholar36.
Liu, G. et al. Assessing the origin of bacteria in tap water and distribution system in an unchlorinated drinking water system by SourceTracker using microbial community fingerprints. Water Res.138, 86–96 (2018).
CAS PubMed Google Scholar37.
Bik, H. M. et al. Microbial community patterns associated with automated teller machine keypads in New York City. mSphere1, e00226–16 (2016).
PubMed PubMed Central Google Scholar38.
Hewitt, K. M. et al. Bacterial diversity in two neonatal intensive care units (NICUs). PLoS ONE8, e54703 (2013).
CAS PubMed PubMed Central Google Scholar39.
Li, L.-G., Yin, X. & Zhang, T. Tracking antibiotic resistance gene pollution from different sources using machine-learning classification. Microbiome6, 93 (2018).
PubMed PubMed Central Google Scholar40.
Bolton, D. J. et al. Washing and chilling as critical control points in pork slaughter hazard analysis and critical control point (HACCP) systems. J. Appl. Microbiol.92, 893–902 (2002).41.
Yu, S. L. et al. Effect of dehairing operations on microbiological quality of swine carcasses. J. Food Prot.62, 1478–1481 (1999).
CAS PubMed Google Scholar42.
Jagadeesan, B. et al. The use of next generation sequencing for improving food safety: translation into practice. Food Microbiol.79, 96–115 (2019).
CAS PubMed Google Scholar43.
Bergholz, T. M., Moreno Switt, A. I. & Wiedmann, M. Omics approaches in food safety: fulfilling the promise? Trends Microbiol.22, 275–281 (2014).
CAS PubMed PubMed Central Google Scholar44.
Leonard, S. R., Mammel, M. K., Lacher, D. W. & Elkins, C. A. Application of metagenomic sequencing to food safety: detection of shiga toxin-producing Escherichia coli on fresh bagged spinach. Appl. Environ. Microbiol.81, 8183–8191 (2015).
CAS PubMed PubMed Central Google Scholar45.
Moura, A. et al. Real-time whole-genome sequencing for surveillance of listeria monocytogenes, France. Emerg. Infect. Dis.23, 1462–1470 (2017).
CAS PubMed PubMed Central Google Scholar46.
Wang, S. et al. Food safety trends: from globalization of whole genome sequencing to application of new tools to prevent foodborne diseases. Trends Food Sci. Technol.57, 188–198 (2016).
CAS Google Scholar47.
Nastasijevic, I. et al. Tracking of listeria monocytogenes in meat establishment using whole genome sequencing as a food safety management tool: a proof of concept. Int. J. Food Microbiol.257, 157–164 (2017).
PubMed Google Scholar48.
Weimer, B. C. et al. Defining the food microbiome for authentication, safety, and process management. IBM J. Res. Dev.60, 1:1–1:13 (2016).
Google Scholar49.
Köster, J. & Rahmann, S. Snakemake—a scalable bioinformatics workflow engine. Bioinformatics28, 2520–2522 (2012).
PubMed Google Scholar50.
Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol.37, 852–857 (2019).
CAS PubMed PubMed Central Google Scholar51.
Martijn, J. et al. Confident phylogenetic identification of uncultured prokaryotes through long read amplicon sequencing of the 16S-ITS-23S rRNA operon. Environ. Microbiol.21, 2485–2498 (2019).
CAS PubMed PubMed Central Google Scholar52.
Pearce, R. A. & Bolton, D. J. Excision vs sponge swabbing—a comparison of methods for the microbiological sampling of beef, pork and lamb carcasses. J. Appl. Microbiol.98, 896–900 (2005).
CAS PubMed Google Scholar53.
Zwirzitz, B. et al. Culture-independent evaluation of bacterial contamination patterns on pig carcasses at a commercial slaughter facility. J. Food Prot.82, 1677–1682 (2019).
CAS PubMed Google Scholar54.
Muyzer, G., De Waal, E. C. & Uitterlinden, A. G. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol.59, 695–700 (1993).
CAS PubMed PubMed Central Google Scholar55.
Stoddard, S. F., Smith, B. J., Hein, R., Roller, B. R. K. & Schmidt, T. M. rrnDB: improved tools for interpreting rRNA gene abundance in bacteria and archaea and a new foundation for future development. Nucleic Acids Res.43, D593–D598 (2015).
CAS PubMed Google Scholar56.
Větrovský, T. & Baldrian, P. The variability of the 16S rRNA gene in bacterial genomes and its consequences for bacterial community analyses. PLoS ONE8, 1–10 (2013).
Google Scholar57.
Klindworth, A. et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res.41, 1–11 (2013).
Google Scholar58.
Pacific Biosciences SMRT® Tools Reference Guide. (2018).59.
Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods13, 581–583 (2016).
CAS PubMed PubMed Central Google Scholar60.
Callahan, B. J. et al. High-throughput amplicon sequencing of the full-length 16S rRNA gene with single-nucleotide resolution. Nucleic Acids Res.47, e103–e103 (2019).
CAS PubMed PubMed Central Google Scholar61.
Alishum, A. et al. DADA2 formatted 16S rRNA gene sequences for both bacteria & archaea. https://doi.org/10.5281/zenodo.2541239 (2019).62.
Parks, D. H. et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat. Biotechnol.36, 996–1004 (2018).
CAS PubMed Google Scholar63.
Davis, N. M., Proctor, D., Holmes, S. P., Relman, D. A. & Callahan, B. J. Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data. bioRxiv221499, (2017).64.
McMurdie, P. J. & Holmes, S. Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One8, e61217 (2013).
CAS PubMed PubMed Central Google Scholar65.
Wickham, H. ggplot2: Elegant Graphics for Data Analysis. (Springer, New York, 2016).66.
Lindstrom, J. C. Tsnemicrobiota: T-distributed stochastic neighbor embedding for microbiota data. (2017). Github Repository, https://github.com/opisthokonta/tsnemicrobiota67.
Cardoso, P., Rigal, F. & Carvalho, J. C. BAT—biodiversity Assessment Tools, an R package for the measurement and estimation of alpha and beta taxon, phylogenetic and functional diversity. Methods Ecol. Evol.6, 232–236 (2015).
Google Scholar More213 Shares99 Views
in EcologyMulti-scale habitat modelling and predicting change in the distribution of tiger and leopard using random forest algorithm
1.
Wikramanayake, E. D. et al. An ecology-based method for defining priorities for large mammal conservation: the tiger as case study. Conserv. Biol. 12, 865–868 (1998).
Google Scholar
2.
Walston, J. et al. Bringing the tiger back from the brink—the six percent solution. PLoS Biol. 8(9), e1000485 (2010).
PubMed PubMed Central Google Scholar3.
Smith, J. L. D. The role of dispersal in structuring the Chitwan tiger population. Behaviour 124(3–4), 165–195 (1993).
Google Scholar4.
Dinerstein, E. et al. The fate of wild tigers. Bioscience 57, 508–514 (2007).
Google Scholar5.
Sanderson, E. et al. Setting priorities for the conservation and recovery of wild tigers: 2005–2015. The technical assessment. In Tigers of the World. A Review of Tigers of the World: The Biology, Biopolitics, Management, and Conservation of an Endangered Species 2nd edn (eds Ronald, L. T. & Ulysses, S. S.) 143–161 (Elsevier, New York, 2006).
Google Scholar6.
Jhala, Y. V., Qureshi, Q. & Gopal, R. Can the abundance of tigers be assessed from their signs?. J. Appl. Ecol. 48, 14–24 (2011).
Google Scholar7.
IPCC. Global Warming of 15 °C. 26 (Intergovernmental Panel on Climate Change, Switzerland, 2018).
Google Scholar8.
Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W. & Courchamp, F. Impacts of climate change on the future of biodiversity. Ecol. Lett. 15(4), 365–377 (2012).
PubMed PubMed Central Google Scholar9.
Gaston, K. J. The structure and dynamics of geographic ranges (Oxford University Press, London, 2003).
Google Scholar10.
Cahill, A. E. et al. How does climate change cause extinction?. Proc. R. Soc. B. 280, 20121890. https://doi.org/10.1098/rspb.2012.1890 (2012).
Article PubMed Google Scholar11.
Gienapp, P., Teplitsky, C., Alho, J., Mills, J. & Merilä, J. Climate change and evolution: disentangling environmental and genetic responses. Mol. Ecol. 17(1), 167–178 (2008).
CAS PubMed Google Scholar12.
Moritz, C. et al. Impact of a century of climate change on small-mammal communities in Yosemite National Park, USA. Science 322(5899), 261–264 (2008).
ADS CAS PubMed Google Scholar13.
Myers, P., Lundrigan, B. L., Hoffman, S. M., Haraminac, A. P. & Seto, S. H. Climate induced changes in the small mammal communities of the northern Great Lakes region. Glob. Change Biol. 15(6), 1434–1454 (2009).
ADS Google Scholar14.
Burns, C. E., Johnston, K. M. & Schmitz, O. J. Global climate change and mammalian species diversity in US national parks. PNAS 100(20), 11474–11477 (2003).
ADS CAS PubMed Google Scholar15.
Bradter, U., Kunin, W. E., Altringham, J. D., Thom, T. J. & Benton, T. G. Identifying appropriate spatial scales of predictors in species distribution models with the random forest algorithm. Methods Ecol. Evol. 4, 167–174 (2013).
Google Scholar16.
Wiens, J. A. Spatial scaling in ecology. Funct. Ecol. 3, 385–397 (1989).
Google Scholar17.
Cunningham, M. A. & Johnson, D. H. Proximate and landscape factors influence grassland bird distributions. Ecol. Appl. 16, 1062–1075 (2006).
PubMed Google Scholar18.
Thogmartin, W. E. & Knutson, M. G. Scaling local species-habitat relations to the larger landscape with a hierarchical spatial count model. Landsc. Ecol. 22, 61–75 (2007).
Google Scholar19.
Wasserman, T. N., Cushman, S. A., Wallin, D. O. & Hayden, J. Multi Scale Habitat Relationships of Martes americana in Northern Idaho, USA (US Department of Agriculture and Forest Service Rocky Mountain Research Station, Fort Collins, 2012).
Google Scholar20.
Mateo Sanchez, M. C., Cushman, S. A. & Saura, S. Scale dependence in habitat selection: the case of the endangered brown bear (Ursus arctos) in the Cantabrian Range (NW Spain). Int. J. Geogr. Inf. Sci. 28(8), 1531–1546 (2013).
Google Scholar21.
Vergara, M., Cushman, S. A., Urra, F. & Ruiz-Gonzalez, A. Shaken but not stirred: multiscale habitat suitability modeling of sympatric marten species (Martes martes and Martes foina) in the northern Iberian Peninsula. Landsc. Ecol. 31(6), 1241–1260 (2016).
Google Scholar22.
Elith, J. Quantitative methods for modeling species habitat: comparative performance and an application to Australian plants. In Quantitative Methods for Conservation Biology (eds Ferson, S. & Burgman, M.) 39–58 (Springer, New York, 2002).
Google Scholar23.
Elith, J. et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29, 129–151 (2006).
Google Scholar24.
Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190, 231–259 (2006).
Google Scholar25.
Phillips, S. J. & Dudik, M. Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31, 161–175 (2008).
Google Scholar26.
Breiman, L. Random forests. Mach. Learn. 45(1), 5–32 (2001).
MATH Google Scholar27.
Breiman, L., Friedman, J. H., Olshen, R. A. & Stone, C. J. Classification and Regression Trees (Chapman and Hall/CRC Press, Boca Raton, 1984).
Google Scholar28.
Cushman, S. A. & Wasserman, T. N. Landscape applications of machine learning: comparing random forests and logistic regression in multi-scale optimized predictive modeling of American marten occurrence in northern Idaho, USA. In Machine Learning for Ecology and Sustainable Natural Resource Management (eds Humpshires, G., Magness, D. et al.) 185–203 (Springer, New York, 2018).
Google Scholar29.
Cushman, S. A., Gutzwiller, K., Evans, J. S. & McGarigal, K. The gradient paradigm: a conceptual and analytical framework for landscape ecology. In Spatial Complexity, Informatics, and Wildlife Conservation (eds Cushman, S. A. & Huettman, F.) 83–108 (Springer, Tokyo, 2010).
Google Scholar30.
Evans, J. S., Murphy, M. A., Holden, Z. A. & Cushman, S. A. Modeling species distribution and change using random forest. In Predictive Species and Habitat Modeling in Landscape Ecology: Concepts and Applications (eds Drew, C. A. et al.) 139–159 (Springer, New York, 2011).
Google Scholar31.
Drew, C. A., Wiersma, Y. F. & Huettmann, F. Predictive Species and Habitat Modeling in Landscape Ecology: Concepts and Applications (Springer, New York, 2010).
Google Scholar32.
Rodriguez-Galiano, V. F., Ghimire, B., Rogan, J., Chica-Olmo, M. & Rigol-Sanchez, J. P. An assessment of the effectiveness of a random forest classifier for land-cover classification. ISPRS J. Photogramm. 67, 93–104 (2012).
Google Scholar33.
Schneider, A. Monitoring land cover change in urban and peri-urban areas using dense time stacks of Landsat satellite data and a data mining approach. Remote Sens. Environ. 124, 689–704 (2012).
ADS Google Scholar34.
Cushman, S. A., Macdonald, E. A., Landguth, E. L., Halhi, Y. & Macdonald, D. W. Multiple-scale prediction of forest-loss risk across Borneo. Landsc. Ecol. 32, 1581–1598 (2017).
Google Scholar35.
Buermann, W. et al. Predicting species distributions across the Amazonian and Andean regions using remote sensing data. J. Biogeogr. 35, 1160–1176 (2008).
Google Scholar36.
Lentz, D. L., Bye, R. & Sánchez-Cordero, V. Ecological niche modeling and distribution of wild sunflower (Helianthus annuus L.) in Mexico. Int. J. Plant Sci. 169(4), 541–549 (2008).
Google Scholar37.
Warren, D. L., Glor, R. E. & Turelli, M. Environmental niche equivalency versus conservatism: quantitative approaches to niche evolution. Evolution 62, 2868–3288 (2008).
PubMed Google Scholar38.
Peterson, A. T., Soberon, J. & Sanchez-Cordero, V. Conservatism of ecological niches in evolutionary time. Science 285, 1265–1267 (1999).
CAS PubMed Google Scholar39.
Graham, C. H., Ron, S. R., Santos, J. C., Schneider, C. J. & Moritz, C. Integrating phylogenetics and environmental niche models to explore speciation mechanisms in dendrobatid frogs. Evolution 58, 1781–1793 (2004).
PubMed Google Scholar40.
Pearman, P. B., Guisan, A., Broennimann, O. & Randin, C. F. Niche dynamics in space and time. Trends Ecol. Evol. 23, 149–158 (2008).
PubMed Google Scholar41.
Warren, D. L., Glor, R. E. & Turelli, M. ENMTools: a toolbox for comparative studies of environmental niche models. Ecography 33, 607–611 (2010).
Google Scholar42.
Broennimann, O. et al. Measuring ecological niche overlap from occurrence and spatial environmental data. Glob. Ecol. Biogeogr. 21, 481–497 (2012).
Google Scholar43.
Cola, Di. et al. ecospat: an R package to support spatial analyses and modeling of species niches and distributions. Ecography 40, 774–787 (2017).
Google Scholar44.
Brown, J. L. & Carnaval, A. C. A tale of two niches: methods, concepts and evolution. Front. Biogeogr. 11, 44158. https://doi.org/10.21425/F5FBG44158 (2019).
Article Google Scholar45.
Qiao, H., Escobar, L. E. & Peterson, A. T. Accessible areas in ecological niche comparisons of invasive species: recognized but still overlooked. Sci. Rep. 7, 1213 (2017).
ADS PubMed PubMed Central Google Scholar46.
Wan, J. Z., Wang, C. J., Tan, J. F. & Yu, F. H. Climatic niche divergence and habitat suitability of eight alien invasive weeds in China under climate change. Ecol. Evol. 7(5), 1541–1552 (2017).
PubMed PubMed Central Google Scholar47.
Khosravi, R., Hemani, M. R. & Cushman, S. A. Multi-scale niche modeling of three sympatric felids of conservation importance in central Iran. Landsc. Ecol. 34, 2451–2467 (2019).
Google Scholar48.
Hayward, M. W., Jędrzejewski, W. & Jêdrzejewska, B. Prey preferences of the tiger. J. Zool. (London) 286, 221–231 (2012).
Google Scholar49.
Wilson, D. E. M. & Russell, A. Handbook of the Mammals of the World Vol. 2 (Lynx Edicions, Barcelona, 2009).
Google Scholar50.
Myers, N. Conservation of Africa’s cats: problems and opportunities. In Cats of the World (eds Miller, S. D. & Everett, D. D.) 437–457 (National Wildlife Federation, Washington, DC, 1986).
Google Scholar51.
Hamilton, P.H. The movements of leopards in Tsavo National Park, Kenya, as determined by radio-tracking. M.Sc. Thesis (University of Nairobi, Kenya 1976).52.
Odden, M., Wegge, P. & Fredriksen, T. Do tigers displace leopards? If so, why?. Ecol. Res. 25, 875–881 (2010).
Google Scholar53.
Bagchi, S., Goyal, S. P. & Sankar, K. Prey abundance and prey selection by tigers (Panthera tigris) in a semi-arid, dry deciduous forests in western India. J. Zool. (London) 260(3), 285–290 (2003).
Google Scholar54.
Johnsingh, A. J. T. Large mammalian predators in Bandipur. J. Bombay Nat. Hist. Soc. 80, 1–57 (1983).
Google Scholar55.
Khan, J. A., Chellam, R., Rodgers, W. A. & Johnsingh, A. J. T. Ungulate densities and biomass in the tropical dry deciduous forests of Gir, Gujarat, India. J. Trop. Ecol. 12(01), 149–162 (1996).
Google Scholar56.
Wilson, D. E. & Russell, A. Handbook of the Mammals of the World. Carnivores Vol. 1 (Lynx Edicions, Barcelona, 2009).
Google Scholar57.
Singh, H. S. Status of the leopard Panthera pardus in India. Cat News 42, 15–17 (2005).
Google Scholar58.
Athreya, V. Is relocation a viable management option for unwanted animals? The case of the leopard in India. Conserv. Soc. 4, 419–423. https://www.conservationandsociety.org/text.asp?2006/4/3/419/49275 (2006).59.
Karanth, K. U. & Stith, B. M. Prey depletion as a critical determinant of tiger population viability. In Riding the Tiger: Tiger Conservation in Human Dominated Landscapes (eds Seidensticker, J., Christie, S. et al.) 100–113 (Cambridge University Press, Cambridge, 1999).
Google Scholar60.
Rowe, K. C. et al. Spatially heterogeneous impact of climate change on small mammals of montane California. Proc. R. Soc. 282, 20141857. https://doi.org/10.1098/rspb.2014.1857 (2015).
Article Google Scholar61.
Pandey, R. & Papeş, M. Changes in future potential distributions of apex predator and mesopredator mammals in North America. Reg. Environ. Change 18, 1223–1233 (2018).
Google Scholar62.
Tian, Y., Wu, J., Wang, T. & Ge, J. Climate change and landscape fragmentation jeopardize the population viability of Siberian tiger (Panthera tigris altaica). Landsc. Ecol. 29, 621–637 (2014).
CAS Google Scholar63.
Ashrafzadeh, M. R., Naghipour, A. A., Haidarian, M. & Igor, K. Modeling the response of an endangered flagship predator to climate in Iran. Mamm. Res. 64(1), 39–51 (2019).
Google Scholar64.
Karanth, K. U., Nichols, J. D., Kumar, N. S., Link, W. A. & Hines, J. E. Tigers and their prey: predicting carnivore densities from prey abundance. PNAS 101(14), 4854–4858 (2004).
ADS CAS PubMed Google Scholar65.
Seidensticker, J. On the ecological separation between tigers and leopards. Biotropica 8(4), 225–234 (1976).
Google Scholar66.
McDougal, C. Leopard and tiger interactions at Royal Chitwan National Park, Nepal. J. Bombay Nat. Hist. Soc. 85, 609–610 (1988).
Google Scholar67.
Seidensticker, J., Sunquist, M. E. & McDougal, C. Leopards living at the edge of the Royal Chitwan National Park, Nepal. In Conservation in Developing Countries: Problems and Prospects (eds Daniel, J. C. & Serrao, J. S.) 415–423 (Bombay Natural History Society and Oxford University Press, Bombay, 1990).
Google Scholar68.
Schoener, T. W. Resource partitioning in ecological communities. Science 185, 27–39 (1974).
ADS CAS PubMed Google Scholar69.
Schoener, T. W. Field experiments on interspecific competition. Am. Nat. 122, 240–285 (1983).
Google Scholar70.
Fedriani, J. M. et al. Niche relations among three sympatric Mediterranean carnivores. Oecologia 121, 138–148 (1999).
ADS PubMed Google Scholar71.
Loveridge, A. J. & Macdonald, D. W. Niche separation in sympatric jackals (Canis mesomelas and Canis adustus). J. Zool. 259, 143–153 (2003).
Google Scholar72.
Vieira, E. M. & Port, D. Niche overlap and resource partitioning between two sympatric fox species in southern Brazil. J. Zool. 272, 57–63 (2007).
Google Scholar73.
Champion, H. G. & Seth, S. K. A Revised Survey of the Forest Types of India (Government of India Press, New Delhi, 1968).
Google Scholar74.
Johnsingh, A. J. T. Prey selection in three sympatric carnivores in Bandipur. Mammalia 56, 517–526 (1992).
Google Scholar75.
Karanth, K. U. & Sunquist, M. E. Prey selection by tiger, leopard and dhole in tropical forests. J. Appl. Ecol. 64, 439–450 (1995).
Google Scholar76.
Andheria, A., Karanth, K. U. & Kumar, N. Diet and prey profiles of three sympatric large carnivores in Bandipur Tiger Reserve, India. J. Zool. 273, 169–175 (2007).
Google Scholar77.
Brown, J. L. SDMtoolbox: a python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses. Methods Ecol. Evol. 5(7), 694–700 (2014).
Google Scholar78.
Titeux, N. Modelling species distribution when habitat occupancy depart from suitability. Application to birds in a landscape context. Ph.D. thesis (Universite´ Catholique de Louvain, Louvain-la-Neuve, 2006).79.
Mateo, R. G., Croat, T. B., Felicisimo, A. M. & Munoz, J. Profile or group discriminative techniques? Generating reliable pseudo-absences and target-group absences from natural history collections. Divers. Distrib. 16, 84–94 (2010).
Google Scholar80.
Graham, C. H. & Hijmans, R. J. A comparison of methods for mapping species richness. Glob. Ecol. Biogeogr. 15, 578–587 (2006).
Google Scholar81.
Liaw, A. & Wiener, M. Classification and regression by randomForest. R News 2, 3, 18–22 https://www.R-project.org (2002)82.
R core Team. R: A language and environment for statistical computing. R Foundation for statistical computing, Vienna https://www.R-project.org/ (2019).83.
Dormann, C. F. et al. Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36(1), 27–46 (2013).
Google Scholar84.
Heikkinen, R. K. et al. Methods and uncertainties in bioclimatic envelope modelling under climate change. Prog. Phys. Geogr. 30(6), 751–777 (2006).
Google Scholar85.
Farr, T. G. et al. The Shuttle Radar Topography Mission. Rev. Geophys. 45, RG2004. https://doi.org/10.1029/2005RG000183 (2007).
ADS Article Google Scholar86.
Rabus, B., Eineder, M., Roth, A. & Bamler, R. The shuttle radar topography mission—a new class of digital elevation models acquired by spaceborne radar. ISPRS J. Photogramm. 57(4), 241–262 (2003).
Google Scholar87.
Beaumont, L. J., Hughes, L. & Pitman, A. J. Why is the choice of future climate scenarios for species distribution modelling important?. Ecol. Lett. 11(11), 1135–1146 (2008).
PubMed Google Scholar88.
Perkins, S., Pitman, A., Holbrook, N. & McAveney, J. Evaluation of the AR4 climate models’ simulated daily maximum temperature, minimum temperature and precipitation over Australia using probability density functions. J. Clim. 20, 4356–4376 (2007).
ADS Google Scholar89.
Watanabe, M. et al. Improved Climate Simulation by MIROC5: mean states, variability, and climate sensitivity. J. Clim. 23(23), 6312–6335 (2010).
ADS Google Scholar90.
Calvente, M. E. et al. Can gypsophytes distinguish different types of gypsum habitats?. Acta. Bot. Gallica. 156(1), 63–78 (2009).
Google Scholar91.
van Vurren, D. P. et al. The representative concentration pathways: an overview. Clim. Change 109, 5. https://doi.org/10.1007/s10584-011-0148-z (2011).
ADS Article Google Scholar92.
Wayne, G.P. The beginner’s guide to representative concentration pathways. Skeptical Science 25 https://skepticalscience.com/rcp.php (2013)93.
Rogelj, J., Meinshausen, M. & Knutti, R. Global warming under old and new scenarios using IPCC climate sensitivity range estimates. Nat. Clim. Change 2, 248–253 (2012).
ADS Google Scholar94.
Steffan-Dewenter, I., Munzenberg, U., Burger, C., Thies, C. & Tscharntke, T. Scale-dependent effects of landscape context on three pollinator guilds. Ecology 83, 1421–1432 (2002).
Google Scholar95.
Holland, J. D., Bert, D. G. & Fahrig, L. Determining the spatial scale of species’ response to habitat. Bioscience 54, 227–233 (2004).
Google Scholar96.
McGarigal, K., Wan, H. Y., Zeller, K. A., Timm, B. C. & Cushman, S. A. Multi-scale habitat modeling: a review and outlook. Landsc. Ecol. 31, 1161–1175 (2016).
Google Scholar97.
Sandri, M. & Zuccolotto, P. Variable selection using random forests. In Data Analysis, Classification and the Forward Search (eds Zani, S. & Cerioli, A.) 263–270 (Springer, Berlin, 2005).
Google Scholar98.
Diaz-Uriarte, R. & Alvarez de Andres, S. Gene selection and classification of microarray data using randomForest. BMC Bioinform. 7, 3 (2006).
Google Scholar99.
Genuer, R., Poggi, J.-M. & Tuleau-Malot, C. Variable selection using random forests. Pattern Recognit. Lett. 31, 2225–2236 (2010).
Google Scholar100.
Strobl, C., Boulesteix, A.-L., Kneib, T., Augustin, T. & Zeileis, A. Conditional variable importance for randomforests. BMC Bioinform. 9, 307 (2008).
Google Scholar101.
Evans, J. S. & Cushman, S. A. Gradient modeling of conifer species using random forests. Landsc. Ecol. 24(5), 673–683 (2009).
Google Scholar102.
Pontius, R. G. Jr. & Milones, M. Death to Kappa: Birth of quality disagreement and allocation disagreement for accuracy assessment. Int. J. Remote Sens. 32, 4407–4429 (2011).
ADS Google Scholar103.
Pontius, R. G. Jr. & Si, K. The total operating characteristic to measure diagnostic ability for multiple thresholds. Int. J. Geogr. Inf. Sci. 28, 570–583 (2014).
Google Scholar104.
Hof, C., Rahbek, C. & Araújo, M. B. Phylogenetic signals in the climatic niches of the world’s amphibians. Ecography 33, 242–250 (2010).
Google Scholar105.
Guisan, A. & Thuiller, W. Predicting species distribution: offering more than simple habitat models. Ecol. Lett. 8, 993–1009 (2005).
Google Scholar106.
Saupe, E. E. et al. Reconstructing ecological niche evolution when niches are incompletely characterized. Syst. Biol. 67, 428–438 (2017).
Google Scholar More163 Shares159 Views
in EcologyMechanism and consequences for avoidance of superparasitism in the solitary parasitoid Cotesia vestalis
1.
Vinson, S. B. Host selection by insect parasitoids. Annual Review of Entomology 21, 109–133 (1976).
Google Scholar
2.
Tormos, J. et al. Superparasitism in laboratory rearing of Spalangia cameroni (Hymenoptera: Pteromalidae), a parasitoid of medfly (Diptera: Tephritidae). Bulletin of Entomological Research 102, 51–61 (2012).
CAS PubMed Google Scholar3.
Reynolds, K. T. & Hardy, I. C. W. Superparasitism: a non-adaptive strategy? Trends in Ecology & Evolution 19, 347–348 (2004).
Google Scholar4.
Parker, G. A. & Courtney, S. P. Models of clutch size in insect oviposition. Theoretical Population Biology 26, 27–48 (1984).
MATH Google Scholar5.
Potting, R. P. J., Snellen, H. M. & Vet, L. E. M. Fitness consequences of superparasitism and mechanism of host discrimination in the stemborer parasitoid Cotesia flavipes. Entomologia Experimentalis et Applicata 82, 341–348 (1997).
Google Scholar6.
Van Alphen, J. J. & Visser, M. E. Superparasitism as an adaptive strategy for insect parasitoids. Annual Review of Entomology 35, 59–79 (1990).
PubMed Google Scholar7.
Hubbard, S. F., Harvey, I. F. & Fletcher, J. P. Avoidance of superparasitism: a matter of learning? Animal Behaviour 57, 1193–1197 (1999).
CAS PubMed Google Scholar8.
Khafagi, W. E. & Hegazi, E. M. Does superparasitism improve host suitability for parasitoid development? A case study in the Microplitis rufiventris – Spodoptera littoralis system. Biocontrol 53, 427–438 (2008).
Google Scholar9.
Böckmann, E. A., Tormos, J., Beitia, F. & Fischer, K. Offspring production and self-superparasitism in the solitary ectoparasitoid Spalangia cameroni (Hymenoptera: Pteromalidae) in relation to host abundance. Bulletin of Entomological Research 102, 131–137 (2012).
PubMed Google Scholar10.
Luna, M. G., Desneux, N. & Schneider, M. I. Encapsulation and self-superparasitism of Pseudapanteles dignus (Muesebeck) (Hymenoptera: Braconidae), a parasitoid of Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). Plos One 11 (2016).11.
Varaldi, J., Fouillet, P., Bouletreau, M. & Fleury, F. Superparasitism acceptance and patch-leaving mechanisms in parasitoids: a comparison between two sympatric wasps. Animal Behaviour 69, 1227–1234 (2005).
Google Scholar12.
Van Lenteren, J. C. The development of host discrimination and the prevention of superparasitism in the parasite Pseudeucoila bochei Weld (Hym.: Cynipidae). Netherlands Journal of Zoology 26, 1–83 (1975).
Google Scholar13.
Agboka, K. et al. Self-, intra-, and interspecific host discrimination in Telenomus busseolae Gahan and Tisis Polaszek (Hymenoptera: Scelionidae), sympatric egg parasitoids of the African cereal stem borer Sesamia calamistis Hampson (Lepidoptera: Noctuidae). Journal of Insect Behavior 15, 1–12 (2002).
Google Scholar14.
Gauthier, N. & Bénédet, F. Y., T., Monge, J. P. & Huignard, J. Marking behavior and discrimination of concealed hosts by the ectoparasitoid, Dinarmus basalis Rond. (Hym. Pteromalidae). Journal of Insect Behavior 15, 589–606 (2002).
Google Scholar15.
Jaloux, B., Errard, C., Mondy, N., Vannier, F. & Monge, J. P. Sources of chemical signals which enhance multiparasitism preference by a cleptoparasitoid. Journal of Chemical Ecology 31, 1325–1337 (2005).
CAS PubMed Google Scholar16.
Stelinski, L. L., Oakleaf, R. & Rodriguez, C. Oviposition-deterring pheromone deposited on blueberry fruit by the parasitic wasp, Diachasma alloeum. Behaviour 144, 429–445 (2007).
Google Scholar17.
Wu, Z. X. & Nordlund, D. A. Superparasitism of Lygus hesperus Knight eggs by Anaphes iole Girault in the Laboratory. Biological Control 23, 121–126 (2002).
Google Scholar18.
Ganesalingam, V. K. Mechanism of discrimination between parasitized and unparasitized hosts by Venturia canescens (Hymenoptera: Ichneumonidae). Entomologia Experimentalis et Applicata 17, 36–44 (1974).
Google Scholar19.
Micha, S. G., Stammel, J. & Höller, C. 6-methyl-5-heptene-2-one, a putative sex and spacing pheromone of the aphid hyperparasitoid, Alloxysta victrix (Hymenoptera: Alloxystidae). European Journal of Entomology 90, 439–442 (1993).
CAS Google Scholar20.
Sheehan, W., Wäckers, F. L. & Lewis, W. J. Discrimination of previously searched, host-free sites by Microplitis croceipes (Hymenoptera: Braconidae). Journal of Insect Behavior 6, 323–331 (1993).
Google Scholar21.
Syvertsen, T. C., Jackson, L. L., Blomquist, G. J. & Vinson, S. B. Alkadienes mediating courtship in the parasitoid Cardiochiles nigriceps (Hymenoptera: Braconidae). Journal of Chemical Ecology 21, 1971–1989 (1995).
CAS PubMed Google Scholar22.
Van Baaren, J. & Boivin, G. Learning affects host discrimination behavior in a parasitoid wasp. Behavioral Ecology & Sociobiology 42, 9–16 (1998).
Google Scholar23.
Ruschioni, S., van Loon, J. J. A., Smid, H. M. & van Lenteren, J. C. Insects can count: Sensory basis of host discrimination in parasitoid wasps revealed. Plos One 10 (2015).24.
Nufio, C. R. & Papaj, D. R. Host marking behavior in phytophagous insects and parasitoids. Entomologia Experimentalis et Applicata 99, 273–293 (2001).
Google Scholar25.
Velasco, L. R. I. The life history of Apanteles plutellae Kurdj. (Braconidae), a parasitoids of the diamondback moth. Philippines Entomology 5, 385–399 (1982).
Google Scholar26.
Talekar, N. S. & Yang, J. C. Characteristic of parasitism of diamondback moth by two larval parasites. Entomophaga 36, 95–104 (1991).
Google Scholar27.
Shi, Z. H., Liu, S. S. & Li, Y. X. Cotesia plutellae parasitizing Plutella xylostella: Host-age dependent parasitism and its effect on host development and food consumption. Biocontrol 47, 499–511 (2002).
Google Scholar28.
De Boer, J. G., Ode, P. J., Vet, L. E. M., Whitfield, J. & Heimpel, G. E. Complementary sex determination in the parasitoid wasp Cotesia vestalis (C. plutellae). Journal of Evolutionary Biology 20, 340–348 (2010).
Google Scholar29.
Li, Y., Liu, Y. & Liu, S. Effect of superparasitism on bionomics of Cotesia plutellae. Chinese Journal of Biological Control 17, 151–154 (2001).
ADS Google Scholar30.
Yu, R.-X., Shi, M., Huang, F. & Chen, X.-X. Immature development of Cotesia vestalis (Hymenoptera: Braconidae), an endoparasitoid of Plutella xylostella (Lepidoptera: Plutellidae). Annals of the Entomological Society of America 101, 189–196 (2008).
Google Scholar31.
Mitsunaga, T., Shimoda, T. & Yano, E. Influence of food supply on longevity and parasitization ability of a larval endoparasitoid, Cotesia plutellae (Hymenoptera: Braconidae). Appl. Entomol. Zoolog 39, 691–697 (2004).
Google Scholar32.
Roux, O., Van Baaren, J., Gers, C., Arvanitakis, L. & Legal, L. Antennal structure and oviposition behavior of the Plutella xylostella specialist parasitoid: Cotesia plutellae. Microscopy Research & Technique 68, 36–44 (2005).
Google Scholar33.
Potting, R. P. J., Poppy, G. M. & Schuler, T. H. The role of volatiles from cruciferous plants and pre‐flight experience in the foraging behaviour of the specialist parasitoid Cotesia plutellae. Entomologia Experimentalis et Applicata 93, 87–95 (1999).
CAS Google Scholar34.
Chen, W. B. et al. Parasitised caterpillars suffer reduced predation: potential implications for intra-guild predation. Scientific Reports 7 (2017).35.
Liu, T. S. et al. Isolation and characterization of microsatellite loci for Cotesia plutellae (Hymenoptera: Braconidae). Insects 8 (2017).36.
Peakall, R. & Smouse, P. E. Genalex 6: genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes 6, 288–295 (2006).
Google Scholar37.
Peakall, R. & Smouse, P. E. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 28, 2537–2539 (2012).
CAS PubMed PubMed Central Google Scholar38.
Jervis, M. A., Ellers, J. & Harvey, J. A. Resource acquisition, allocation, and utilization in parasitoid reproductive strategies. Annual Review of Entomology 53, 361–385 (2008).
CAS PubMed Google Scholar39.
Couchoux, C. & van Nouhuys, S. Effects of intraspecific competition and host-parasitoid developmental timing on foraging behaviour of a parasitoid wasp. Journal of Insect Behavior 27, 283–301 (2014).
PubMed Google Scholar40.
McKay, T. & Broce, A. B. Discrimination of self-parasitized hosts by the pupal parasitoid Muscidifurax zaraptor (Hymenoptera: Pteromalidae). Annals of the Entomological Society of America 97, 592–599 (2004).
Google Scholar41.
Yamada, Y. Y. & Sugaura, K. Evidence for adaptive self-superparasitism in the dryinid parasitoid Haplogonatopus atratus when conspecifics are present. Oikos 103, 175–181 (2003).
Google Scholar42.
Gariepy, T. D., Kuhlmann, U., Gillott, C. & Erlandson, M. Parasitoids, predators and PCR: the use of diagnostic molecular markers in biological control of Arthropods. Journal of Applied Entomology 131, 225–240 (2007).
CAS Google Scholar43.
Santolamazza-Carbone, S. & Rivera, A. C. Superparasitism and sex ratio adjustment in a wasp parasitoid: results at variance with local mate competition? Oecologia 136, 365–373 (2003).
ADS PubMed Google Scholar44.
Zhang, L., Bai, S., Yu, H. & Li, X. Intraspecific competition in Cotesia vestalis, a solitary endoparasitoid of Plutella xylostella larvae. Chinese Journal of Biological Control 30, 128–133 (2014).
Google Scholar45.
Lebreton, S., Christidès, J. P., Bagnères, A. G., Chevrier, C. & Darrouzet, E. Modifications of the chemical profile of hosts after parasitism allow parasitoid females to assess the time elapsed since the first attack. Journal of Chemical Ecology 36, 513–521 (2010).
CAS PubMed Google Scholar46.
Strand, M. R. & Godfray, H. C. J. Superparasitism and ovicide in parasitic Hymenoptera: theory and a case study of the ectoparasitoid Bracon hebetor. Behavioral Ecology & Sociobiology 24, 421–432 (1989).
Google Scholar47.
Tena, A., Kapranas, A., Garcia-Marí, F. & Luck, R. F. Host discrimination, superparasitism and infanticide by a gregarious endoparasitoid. Animal Behaviour 76, 789–799 (2008).
Google Scholar48.
Yamada, Y. Y. & Ikawa, K. Superparasitism strategy in a semisolitary parasitoid with imperfect self/non-self recognition, Echthrodelphax fairchildii. Entomologia Experimentalis et Applicata 114, 143–152 (2005).
Google Scholar49.
Field, S., Keller, M. & Calbert, G. The pay-off from superparasitism in the egg parasitoid Trissolcus basalis, in relation to patch defence. Ecological Entomology 22, 142–149 (1997).
Google Scholar50.
Díazfleischer, F., Galvez, C. & Montoya, P. Oviposition, superparasitism, and egg load in the solitary parasitoid Diachasmimorpha longicaudata (Hymenoptera: Braconidae): response to host availability. Annals of the Entomological Society of America 108, 235–241 (2015).
Google Scholar51.
Gauthier, N., Monge, J. P. & Huignard, J. Superparasitism and host discrimination in the solitary ectoparasitoid Dinarmus basalis. Entomologia Experimentalis et Applicata 79, 91–99 (1996).
Google Scholar52.
Weber, C. A., Smilanick, J. M., Ehler, L. E. & Zalom, F. G. Ovipositional behavior and host discrimination in three scelionid egg parasitoids of stink bugs. Biological Control 6, 245–252 (1996).
Google Scholar53.
Darrouzet, E., Bignon, L. & Chevrier, C. Impact of mating status on egg-laying and superparasitism behaviour in a parasitoid wasp. Entomologia Experimentalis et Applicata 123, 279–285 (2007).
Google Scholar54.
Lebreton, S., Labarussias, M., Chevrier, C. & Darrouzet, E. Discrimination of the age of conspecific eggs by an ovipositing ectoparasitic wasp. Entomologia Experimentalis et Applicata 130, 28–34 (2009).
Google Scholar55.
Hoffmeister, T. S. & Roitberg, B. D. Evolutionary ecology of oviposition marking pheromones. In: Hilker, M., Meiners, T., (eds.), Chemoecology of insect eggs and egg deposition. (Germany: Blackwell Publishing, 2008).56.
Ito, E. & Yamada, Y. Y. Self-/conspecific discrimination and superparasitism strategy in the ovicidal parasitoid Echthrodelphax fairchildii (Hymenoptera: Dryinidae). Insect Science 21, 741–749 (2014).
PubMed Google Scholar57.
Liang, Q. F., Jia, Y. J. & Liu, T. X. Self- and conspecific discrimination between unparasitized and parasitized green peach aphid (Hemiptera: Aphididae), by Aphelinus asychis (Hymenoptera: Aphelinidae). Journal of Economic Entomology 110, 430–437 (2017).
PubMed Google Scholar58.
Yazdani, M., Glatz, R. & Keller, M. Host discrimination by the solitary endoparasitoid Dolichogenidea tasmanica (Hymenopotera: Braconidae). Biocontrol Sci. Technol. 25, 155–162 (2015).
Google Scholar59.
Wang, X. G. & Keller, M. A. A comparison of the host-searching efficiency of two larval parasitoids of Plutella xylostella. Ecological Entomology 27, 105–114 (2002).
CAS Google Scholar More100 Shares149 Views
in EcologyGroup structure and kinship in beluga whale societies
1.
Hamilton, W. D. The genetical evolution of social behavior I. J. Theor. Biol. 7, 1–6 (1964).
CAS PubMed Google Scholar
2.
Trivers, R. L. The evolution of reciprocal altruism. Q. Rev. Biol. 46, 35–57 (1971).
Google Scholar3.
Axelrod, R. & Hamilton, W. D. The evolution of cooperation. Science 211, 1390–1396 (1981).
ADS MathSciNet CAS PubMed MATH Google Scholar4.
Maynard Smith, J. Game theory and the evolution of cooperation. In Evolution from Molecules to Men (ed. Bendall, D. S.) 445–456 (Cambridge University Press, Cambridge, 1983).
Google Scholar5.
Clutton-Brock, T. Cooperation between non-kin in animal societies. Nature 462, 51–57 (2009).
ADS CAS PubMed Google Scholar6.
Kokko, H., Johnstone, R. A. & Clutton-Brock, T. H. The evolution of cooperative breeding through group augmentation. Proc. R. Soc. B 268, 187–196 (2001).
CAS PubMed Google Scholar7.
Kingma, S. A., Santema, P., Taborsky, M. & Komdeur, J. Group augmentation and the evolution of cooperation. Trends Ecol. Evol. 29, 476–484 (2014).
PubMed Google Scholar8.
Hamilton, W. D. Geometry for the selfish herd. J. Theor. Biol. 31, 295–311 (1971).
CAS PubMed Google Scholar9.
Reluga, T. C. & Viscido, S. Simulated evolution of selfish herd behavior. J. Theor. Biol. 234, 213–225 (2005).
MathSciNet PubMed Google Scholar10.
Nowak, M. A., Tarnita, C. E. & Wilson, E. O. The evolution of eusociality. Nature 446, 1057–1062 (2010).
ADS Google Scholar11.
Wilson, E. O. The Social Conquest of Earth (Norton, New York, 2012).
Google Scholar12.
Dawkins, R. The Descent of Edward Wilson. Prospect. May 24 (2012).13.
Whitehead, H. & Rendell, L. The Cultural Lives of Whales and Dolphins (The University of Chicago Press Ltd., Chicago, 2015).
Google Scholar14.
Aplin, L. M. Culture and cultural evolution in birds: a review of the evidence. Anim. Behav. 147, 179–187. https://doi.org/10.1016/j.anbehav.2018.05.001 (2019).
Article Google Scholar15.
Allen, J. A. Community through culture: from insects to whales. BioEssays 41, 1900060. https://doi.org/10.1002/bies.201900060 (2019).
Article Google Scholar16.
Kleinenberg, S. E., Yablokov, A. V., Bel’kovich, B. M. & Tarasevich, M. N. Beluga (Delphinapterus leucas) Investigation of the Species (Academy of Sciences of the USSR, Moscow, 1964).
Google Scholar17.
Karlsen, J. D., Bisther, A., Lydersen, C., Haug, T. & Kovacs, K. M. Summer vocalizations of adult male white whales (Delphinapterus leucas) in Svalbard, Norway. Polar Biol. 25, 808–817 (2002).
Google Scholar18.
Chmelnitsky, E. G. & Ferguson, S. H. Beluga whale, Delphinapterus leucas, vocalizations from the Churchill River, Manitoba, Canada. J. Acoust. Soc. Am. 131, 4821–4835 (2012).
ADS PubMed Google Scholar19.
Bel’kovitch, V. M. & Sh’ekotov, M. N. The Belukha Whale: Natural Behavior and Bioacoustics (Woods Hole Oceanographic Institution, Woods Hole, 1993).
Google Scholar20.
Panova, E. M., Belikov, R. A., Agafonov, A. V. & Bel’kovich, V. M. The relationship between the behavioral activity and the underwater vocalization of the beluga whale (Delphinapterus leucas). Oceanology 52, 79–87 (2012).
ADS Google Scholar21.
Smith, T. G., Hammill, M. O. & Martin, A. R. Herd composition and behaviour of white whales (Delphinapterus leucas) in two Canadian arctic estuaries. Meddelelsser Grønland. Biosci. 39, 175–184 (1994).
Google Scholar22.
Loseto, L. L., Richard, P., Stern, G. A., Orr, J. & Ferguson, S. H. Segregation of Beaufort Sea beluga whales during the open-water season. Can. J. Zool. 84, 1743–1751 (2006).
Google Scholar23.
Krasnova, V. V., Chernetsky, A. D., Kirillova, O. I. & Bel’kovich, V. M. The dynamics of the abundance, age, and sex structure of the Solovetsky reproductive gathering of the beluga whale Delphinapterus leucas (Onega Bay, White Sea). Russ. J. Mar. Biol. 38, 218–225 (2012).
Google Scholar24.
Palsbøll, P. J., Heidi-Jøgensen, M. P. & Bérubé, M. Analysis of mitochondrial control region nucleotide sequences from Baffin Bay belugas (Delphinapterus leucas): detecting pods or subpopulations?. NAMMCO Sci. Pub. 4, 39–50 (2002).
Google Scholar25.
Bigg, M. A., Olesiuk, P. F., Ellis, G. M., Ford, J. K. B. & Balcomb, K. C. III. Social organization and genealogy of resident killer whales (Orcinus orca) in the coastal waters of British Columbia and Washington State. Rep. Int. Whal. Commun. SI 12, 383–405 (1990).
Google Scholar26.
Amos, B., Schlötterer, C. & Tautz, D. Social structure of pilot whales revealed by analytical DNA profiling. Science 260, 670–672 (1993).
ADS CAS PubMed Google Scholar27.
Richard, K. R., Dillon, M. C., Whitehead, H. & Wright, J. M. Patterns of kinship in groups of free-living sperm whales (Physeter macrocephalus) revealed by multiple molecular generic analyses. Proc. Natl. Acad. Sci. USA 93, 8792–8795 (1996).
ADS CAS PubMed Google Scholar28.
Barrett-Lennard, L. G. Population Structure and Mating Patterns of Killer Whales (Orcinus orca) as Revealed by DNA Analysis. PhD thesis (2000).29.
Konrad, C. M., Gero, S., Frasier, T. & Whitehead, H. Kinship influences sperm whale social organization within, but generally not among, social units. R. Soc. Open Sci. 5, 180914. https://doi.org/10.1098/rsos.180914 (2018).
ADS Article PubMed PubMed Central Google Scholar30.
Connor, R. C., Wells, R., Mann, J. & Read, A. The bottlenose dolphin: social relationships in a fission–fusion society. In Cetecean Societies: Field Studies of Dolphins and Whales, 91–126 (ed. Mann, J.) (The Univerisity of Chicago Press Ltd., Chicago, 2000).
Google Scholar31.
Wiszniewski, J., Lusseau, D. & Möller, L. M. Female bisexual kinship ties maintain social cohesion in a dolphin network. Anim. Behav. 80, 895–904. https://doi.org/10.1016/j.anbehav.2010.08.013 (2010).
Article Google Scholar32.
Parsons, K. M. et al. Kinship as a basis for alliance formation between male bottlenose dolphins, Tursiops truncatus, in the Bahamas. Anim. Behav. 66, 185–194. https://doi.org/10.1006/anbe.2003.2186 (2003).
Article Google Scholar33.
Frère, C. H. et al. Home range overlap, matrilineal and biparental kinship drive female associations in bottlenose dolphins. Anim. Behav. 80, 481–486. https://doi.org/10.1016/j.anbehav.2010.06.007 (2010).
Article Google Scholar34.
Louis, M. et al. Evaluating the influences of ecology, sex and kinship on the social structure of resident coastal bottlenose dolphins. Mar. Biol. 165, 80. https://doi.org/10.1007/s00227-018-3341-z (2018).
Article Google Scholar35.
O’Corry-Crowe, G. M., Suydam, R. S., Rosenberg, A., Frost, K. J. & Dizon, A. E. Phylogeography, population structure and dispersal patterns of the beluga whale Delphinapterus leucas in the western Nearctic revealed by mitochondrial DNA. Mol. Ecol. 6, 955–970 (1997).
Google Scholar36.
de March, B. G. E. & Postma, L. D. Molecular genetic stock discrimination of belugas (Delphinapterus leucas) hunted in eastern Hudson Bay, northern Quebec, Hudson Strait, and Sanikiluaq (Belcher Islands), Canada, and comparisons to adjacent populations. Arctic 56, 111–124 (2003).
Google Scholar37.
Turgeon, J., Duchesne, P., Colbeck, G. J., Postma, L. D. & Hammill, M. O. Spatiotemporal segregation among summer stocks of beluga (Delphinapterus leucas) despite nuclear gene flow: implication for the endangered belugas in eastern Hudson Bay. Conserv. Gen. 13, 419–433 (2012).
Google Scholar38.
Meschersky, I. G. et al. A genetic analysis of the beluga whale Delphinapterus leucas (Cetacea: Monodontidae) from summer aggregations in the Russian Far East. Russ. J. Mar. Biol. 39, 125–135 (2013).
CAS Google Scholar39.
Colbeck, G. J. et al. Groups of related belugas (Delphinapterus leucas) travel together during their seasonal migrations in and around Hudson Bay. Proc. R. Soc. B. 280, 2012–2552. https://doi.org/10.1098/rspb.2012.2552 (2013).
Article Google Scholar40.
O’Corry-Crowe, G. et al. Migratory culture, population structure and stock identity in North Pacific beluga whales (Delphinapterus leucas). PLoS ONE 13(3), e0194201. https://doi.org/10.1371/journal.pone.0194201 (2018).
CAS Article PubMed PubMed Central Google Scholar41.
Krasnova, V. V., Chernetsky, A. D., Zheludkova, A. I. & Bel’kovich, V. M. Parental behavior of the beluga whale (Delphinapterus leucas) in natural environment. Biol. Bull. 41, 349–356 (2014).
Google Scholar42.
Vergara, V. & Mikus, M. Contact call diversity in natural beluga entrapments in an Arctic estuary: preliminary evidence of vocal signatures in wild belugas. Mar. Mamm. Sci. 35, 434–465 (2019).
Google Scholar43.
Suydam, R. S., Frost, K. J., Lowry, L. F., O’Corry-Crowe, G. M. & Pikok, D. Satellite tracking of eastern Chukchi Sea beluga whales in the Arctic Ocean. Arctic 54, 237–243 (2001).
Google Scholar44.
Lydersen, C., Martin, A. R., Kovacs, K. M. & Gjertz, I. Summer and autumn movements of white whales Delphinapterus leucas in Svalbard, Norway. Mar. Ecol. Prog. Ser. 219, 265–274 (2001).
ADS Google Scholar45.
Michaud, R. Distribution estivale du béluga du St.-Laurent: synthèse 1986 à 1992. Can. Tech. Rep. Fish. Aquat. Sci. 1906, 28 (1993).
Google Scholar46.
Suydam, R. S. Age, Growth, Reproduction, and Movements of Beluga Whales (Delphinapterus leucas) from the Eastern Chukchi Sea. PhD thesis (2009).47.
Lefebvre, S. L., Michaud, R., Lesage, V. & Berteaux, D. Identifying high residency areas of the threatened St. Lawrence beluga whale from fine-scale movements of individuals and coarse-scale movements of herds. Mar. Ecol. Prog. Ser. 450, 243–257 (2012).
ADS Google Scholar48.
Sjare, B. L. & Smith, T. G. The relationship between behavioral activity and underwater vocalizations of the white whale, Delphinapterus leucas. Can. J. Zool. 64, 2824–2831 (1986).
Google Scholar49.
Alekseeva, Y. I., Panova, E. M. & Belkovich, V. M. Behavioral and acoustical characteristics of the reproductive gathering of beluga whales (Delphinapterus leucas) in the vicinity of Myagostrov, Golyi Sosnovets, and Roganka Islands (Onega Bay, the White Sea). Biol. Bull. 40, 307–317 (2013).
Google Scholar50.
Smith, T. G., St. Aubin, D. J. & Hammill, M. O. Rubbing behavior of belugas, Delphinapterus leucas, in a high Arctic estuary. Can. J. Zool. 70, 2405–2409 (1992).
Google Scholar51.
Howe, M. et al. Beluga, Delphinapterus leucas, ethogram: a tool for Cook Inlet beluga conservation. Mar. Fish. Rev. 77, 32–40 (2015).
Google Scholar52.
Anderson, P. A., Poe, R. B., Thompson, L. A., Weber, N. & Romano, T. A. Behavioral responses of beluga whales (Delphinapterus leucas) to environmental variation in an Arctic estuary. Behav. Process. 145, 48–59 (2017).
Google Scholar53.
Ford, J. K. B., Ellis, G. M. & Balcomb, K. C. III. Killer Whales (University of British Columbia Press, Vancouver, 200).
Google Scholar54.
Heimlich-Boran, J. R. Social Organization of the Short-Finned Pilot Whale, Globicephala macrorhynchus, with Special Reference to the Social Ecology of Delphinids. PhD thesis (1993).55.
Rendell, L., Cantor, M., Gero, S., Whitehead, H. & Mann, J. Causes and consequences of female centrality in cetacean societies. Phil. Trans. R. Soc. B 374, 20180066. https://doi.org/10.1098/rstb.2018.0066 (2019).
Article PubMed Google Scholar56.
Connor, R. C. et al. Male alliance behaviour and mating access varies with habitat in a dolphin social network. Sci. Rep. 7, 46354. https://doi.org/10.1038/srep46354 (2017).
ADS CAS Article PubMed PubMed Central Google Scholar57.
Packer, C., Gilbert, D. A., Pusey, A. E. & O’Brien, S. J. A molecular genetic analysis of kinship and cooperation in African lions. Nature 351, 562–565 (1991).
ADS CAS Google Scholar58.
Grinnell, J., Packer, C. & Pusey, A. E. Cooperation in male lions: kinship, reciprocity or mutualism?. Anim. Behav. 49, 95–105 (1995).
Google Scholar59.
Gilby, I. C. et al. Fitness benefits of coalitionary aggression in male chimpanzees. Behav. Ecol. Sociobiol. 67, 373–381 (2013).
PubMed Google Scholar60.
Croft, D. P., Brent, L. J. N., Franks, D. W. & Cant, M. A. The evolution of prolonged life after reproduction. TREE 30(7), 407–416. https://doi.org/10.1016/j.tree.2015.04.011 (2015).
Article PubMed Google Scholar61.
Brent, L. J. N. et al. Ecological knowledge, leadership, and the evolution of menopause in killer whales. Curr. Biol. 25, 746–750 (2015).
CAS PubMed Google Scholar62.
Ellis, S. et al. Analyses of ovarian activity reveal repeated evolution of postreproductive lifespans in toothed Whales. Sci. Rep. 8, 12833. https://doi.org/10.1038/s41598-018-31047-8 (2018).
ADS CAS Article PubMed PubMed Central Google Scholar63.
Nattrass, A. et al. Postreproductive killer whale grandmothers improve the survival of their grandoffspring. PNAS https://doi.org/10.1073/pnas.1903844116 (2019).
Article PubMed Google Scholar64.
McComb, K., Moss, C., Durant, S. M., Baker, L. & Sayialel, S. Matriarchs as repositories of social knowledge in African elephants. Science 292, 491–494. https://doi.org/10.1126/science.1057895 (2001).
ADS CAS Article PubMed Google Scholar65.
McComb, K. et al. Leadership in elephants: the adaptive value of age. Proc. R. Soc. B 278, 3270–3276. https://doi.org/10.1098/rspb.2011.0168 (2011).
Article PubMed Google Scholar66.
Boran, J. & Heimlich, S. Pilot whales: delphinid matriarchies in deep seas. In Ethology and Behavioral Ecology of Odontocetes (ed. Würsig, B.) 281–304 (Springer, Berlin, 2019). https://doi.org/10.1007/978-3-030-16663-2_13.
Google Scholar67.
Whitehead, H. Cultural selection and genetic diversity in matrilineal whales. Science 282, 1708–1711 (1998).
ADS CAS PubMed Google Scholar68.
Whitehead, H. Gene–culture coevolution in whales and dolphins. PNAS 114, 7814–7821. https://doi.org/10.1073/pnas.162073611 (2017).
CAS Article PubMed Google Scholar69.
Johnstone, R. A. & Cant, M. A. The evolution of menopause in cetaceans and humans: the role of demography. Proc. R. Soc. B 277, 3765–3771 (2010).
PubMed Google Scholar70.
Foote, A. D. Mortality rate acceleration and post-reproductive lifespan in matrilineal whale species. Biol. Let. 4, 189–191. https://doi.org/10.1098/rsbl.2008.0006 (2008).
Article Google Scholar71.
Westdal, K. H., Davies, J., MacPherson, A., Orr, J. & Ferguson, S. H. Behavioural changes in belugas (Delphinpaterus leucas) during a killer whale (Orcinus orca) attack in southwest Hudson Bay. Can. Field Nat. 130(4), 315–319 (2016).
Google Scholar72.
Smith, T. G. & Sjare, B. Predation of belugas and narwhals by polar bears in nearshore areas of the Canadian High Arctic. Arctic 43, 99–102 (1990).
Google Scholar73.
Schino, G. & Aureli, F. Reciprocity in group-living animals: partner control versus partner choice. Biol. Rev. 92, 665–672. https://doi.org/10.1111/brv.12248 (2017).
Article PubMed Google Scholar74.
Gowans, S., Whitehead, H. & Hooker, S. K. Social organization in northern bottlenose whales, Hyperoodon ampullatus: not driven by deep-water foraging?. Anim. Behav. 62, 369–377 (2001).
Google Scholar75.
Feduitin, I. D., Filatova, O. A., Mamev, E. G., Burdin, A. M. & Hoyt, E. Occurrence and social structure of Baird’s beaked whales, Berardius bairdii, in the Commander islands, Russia. Mar. Mamm. Sci. 31, 853–865 (2015).
Google Scholar76.
Hill, K. R. et al. Co-residence patterns in hunter-gatherer societies show unique human social structure. Science 331, 1286–1289 (2011).
ADS CAS PubMed Google Scholar77.
Conkova, N., Fokkema, T. & Dykstra, P. A. Non-kin ties as a source of support in Europe: understanding the role of cultural context. Eur. Soc. 20, 131–156. https://doi.org/10.1080/14616696.2017.1405058 (2017).
Article Google Scholar78.
Wade, P. R., Reeves, R. R. & Mesnick, S. L. Social and behavioural factors in cetacean responses to overexploitation: are odontocetes less “resilient” than mysticetes?. J. Mar. Biol. https://doi.org/10.1155/2012/567276 (2012).
Article Google Scholar79.
Brakes, P. et al. Animal cultures matter for conservation. Science 363, 1032–1034 (2019).
ADS CAS PubMed Google Scholar80.
O’Corry-Crowe, G., Lucey, B., Castellote, M. & Stafford, K. Abundance, Habitat Use and Behavior of Beluga Whales in Yakutat Bay, May 2008; as Revealed by Passive Acoustic Monitoring, Visual Observations and Photo-ID. HBOI-Florida Atlantic University Rep. (2009).81.
Richard, P. R., Martin, A. R. & Orr, J. R. Summer and autumn movements of belugas of the eastern Beaufort Sea stock. Arctic 54, 223–236 (2001).
Google Scholar82.
Litovka, D. I. et al. Research of belugas Delphinapterus leucas in Anadyr Gulf (Chukotka) using satellite telemetry. Mar. Mamm. Holarctic 10, 70–80 (2002).
Google Scholar83.
O’Corry-Crowe, G. M., Dizon, A. E., Suydam, R. S. & Lowry, L. F. Molecular genetic studies of population structure and movement patterns in a migratory species: the beluga whale (Delphinapterus leucas) in the western Nearctic. In Molecular and Cell Biology of Marine Mammals (ed. Pfeiffer, C. J.) 53–64 (Krieger Publishing Co., Malabar, 2002).
Google Scholar84.
O’Corry-Crowe, G., Lucey, W., Archer, F. I. & Mahoney, B. The genetic ecology and population origins of the beluga whales of Yakutat Bay. Mar. Fish. Rev. 71, 47–48 (2015).
Google Scholar85.
O’Corry-Crowe, G. M. L. et al. Population genetic structure and evolutionary history of North Atlantic beluga whales (Delphinapterus leucas) from West Greenland, Svalbard and the White Sea. Polar Biol. 33, 1179–1194 (2010).
Google Scholar86.
Fain, S. R. & LeMay, J. P. Gender identification of humans and mammalian wildlife species from PCR amplified sex linked genes. Proc. Am. Acad. Forensic Sci. 1, 34 (1995).
Google Scholar87.
Citta, J. J. et al. Assessing the abundance of Bristol Bay belugas with genetic mark-recapture methods. Mar. Mamm. Sci. 34, 666–686. https://doi.org/10.1111/mms.12472 (2018).
Article Google Scholar88.
Wang, J. conancestry: a program for simulating, estimating and analyzing relatedness and inbreeding coefficients. Mol. Ecol. Resour. 11, 141–145 (2011).
PubMed Google Scholar89.
Kalinowski, S. T., Wagner, A. P. & Taper, M. L. ml-relate: a computer program for maximum likelihood estimation of relatedness and relationships. Mol. Ecol. Notes 6, 576–579 (2006).
CAS Google Scholar90.
Wang, J. Triadic IBD coefficients and applications to estimating pairwise relatedness. Genet. Res. 89, 135–153 (2007).
CAS PubMed Google Scholar91.
Queller, D. C. & Goodnight, K. F. Estimating relatedness using molecular markers. Evolution 43, 258–275 (1989).
PubMed Google Scholar92.
Kraemer, P. & Gerlach, G. Demrelate: calculating interindividual relatedness for kinship analysis based on codominant diploid genetic markers in R. Mol. Ecol. Resour. 17, 1371–1377 (2017).
CAS PubMed Google Scholar93.
Kraemer, P. & Gerlach G. Package ‘Demrelate’ Version 0.9-3: Functions to Calculate Relatedness on Diploid Genetic Data. https://cran.r-project.org/web/packages%20s%20Demrelate/index.html (2017).94.
Blouin, M., Parsons, M., Lacaille, V. & Lotz, S. Use of microsatellite loci to classify individuals by relatedness. Mol. Ecol. 5, 393–401 (1996).
CAS PubMed Google Scholar95.
Kivelä, M., Arnaud-Haond, S. & Saramäki, J. EDENetworks Version 218: Ecological and Evolutionary Networks (Oxford University Press, Oxford, 2014).
Google Scholar More113 Shares169 Views
in EcologyBiological rhythms in the deep-sea hydrothermal mussel Bathymodiolus azoricus
1.
Kumar, V. Biological Timekeeping. (Springer, India, 2017). .
2.
Tessmar-Raible, K., Raible, F. & Arboleda, E. Another place, another timer: marine species and the rhythms of life. Bioessays 33, 165–172 (2011).
PubMed PubMed Central Google Scholar3.
de la Iglesia, H. O. & Johnson, C. H. Biological clocks: riding the tides. Curr. Biol. 23, R921–R923 (2013).
PubMed PubMed Central Google Scholar4.
Oosthuizen, M. K., Cooper, H. M. & Bennett, N. C. Circadian rhythms of locomotor activity in solitary and social species of African mole-rats (Family: Bathyergidae). J. Biol. Rhythms 18, 481–490 (2003).
PubMed Google Scholar5.
van Oort, B. E. H. et al. Circadian organization in reindeer. Nature 438, 1095–1096 (2005).
ADS PubMed Google Scholar6.
Childress, J. J. & Thuesen, E. V. in Deep-Sea Food Chains and the Global Carbon Cycle (eds. Rowe, G. T. & Pariente, V.) 217–236 (Springer, Netherlands, 1992).7.
Turekian, K. K. et al. Slow growth rate of a deep-sea clam determined by 228Ra chronology. Proc. Natl Acad. Sci. USA 72, 2829–2832 (1975).
ADS CAS PubMed Google Scholar8.
Levin, L. A. et al. Hydrothermal vents and methane seeps: rethinking the sphere of influence. Front. Marine Sci. https://doi.org/10.3389/fmars.2016.00072 (2016).9.
Du Preez, C. & Fisher, C. R. Long-term stability of back-arc basin hydrothermal vents. Front. Marine Sci. https://doi.org/10.3389/fmars.2018.00054 (2018).10.
Cuvelier, D. et al. Community dynamics over 14 years at the Eiffel Tower hydrothermal edifice on the Mid-Atlantic Ridge. Limnol. Oceanogr. 56, 1624–1640 (2011).
ADS Google Scholar11.
Garrett, C. Internal tides and ocean mixing. Science 301, 1858–1859 (2003).
CAS PubMed Google Scholar12.
Childress, J. J. & Fisher, C. R. The biology of hydrothermal vent animals: Physiology, biochemistry, and autotrophic symbioses. Oceanogr. Mar. Biol. Ann. Rev. 30, 337–441 (1992).13.
Barreyre, T. et al. Temporal variability and tidal modulation of hydrothermal exit-fluid temperatures at the Lucky Strike deep-sea vent field, Mid-Atlantic Ridge: MAR vent-field temperature monitoring. J. Geophys. Res.: Solid Earth 119, 2543–2566 (2014).
ADS Google Scholar14.
Lelièvre, Y. et al. Astronomical and atmospheric impacts on deep-sea hydrothermal vent invertebrates. Proc. R. Society B: Biol. Sci. 284, 20162123 (2017).15.
Cuvelier, D., Legendre, P., Laes, A., Sarradin, P.-M. & Sarrazin, J. Rhythms and community dynamics of a hydrothermal tubeworm assemblage at main endeavour field – a multidisciplinary deep-sea observatory approach. PLoS ONE 9, e96924 (2014).
ADS PubMed PubMed Central Google Scholar16.
Cuvelier, D., Legendre, P., Laës-Huon, A., Sarradin, P.-M. & Sarrazin, J. Biological and environmental rhythms in (dark) deep-sea hydrothermal ecosystems. Biogeosciences 14, 2955–2977 (2017).
ADS Google Scholar17.
Nedoncelle, K. et al. Bathymodiolus growth dynamics in relation to environmental fluctuations in vent habitats. Deep Sea Res. Part I: Oceanographic Res. Pap. 106, 183–193 (2015).
ADS Google Scholar18.
Chiesa, J. J., Aguzzi, J., García, J. A., Sardà, F. & de la Iglesia, H. O. Light intensity determines temporal niche switching of behavioral activity in deep-water Nephrops norvegicus (Crustacea: Decapoda). J. Biol. Rhythms 25, 277–287 (2010).
PubMed Google Scholar19.
Sbragaglia, V. et al. Identification, characterization, and diel pattern of expression of canonical clock genes in Nephrops norvegicus (Crustacea: Decapoda) eyestalk. PLOS ONE 10, e0141893 (2015).
PubMed PubMed Central Google Scholar20.
Modica, L., Cartes, J. E. & Carrassón, M. Food consumption of five deep-sea fishes in the Balearic Basin (western Mediterranean Sea): are there daily feeding rhythms in fishes living below 1000 m?: feeding rhythm and rations in deep-sea fishes. J. Fish. Biol. 85, 800–820 (2014).
CAS PubMed Google Scholar21.
Wagner, H.-J., Kemp, K., Mattheus, U. & Priede, I. G. Rhythms at the bottom of the deep sea: cyclic current flow changes and melatonin patterns in two species of demersal fish. Deep Sea Res. Part I: Oceanographic Res. Pap. 54, 1944–1956 (2007).
ADS Google Scholar22.
Hui, M., Song, C., Liu, Y., Li, C. & Cui, Z. Exploring the molecular basis of adaptive evolution in hydrothermal vent crab Austinograea alayseae by transcriptome analysis. PLoS ONE 12, e0178417 (2017).
PubMed PubMed Central Google Scholar23.
Mercier, A. & Hamel, J.-F. in Annual, Lunar, and Tidal Clocks: Patterns and Mechanisms of Nature’s Enigmatic Rhythms (eds. Numata, H. & Helm, B.) 99–120 (Springer, Japan, 2014).24.
Husson, B., Sarradin, P.-M., Zeppilli, D. & Sarrazin, J. Picturing thermal niches and biomass of hydrothermal vent species. Deep Sea Res. Part II: Topical Stud. Oceanogr. 137, 6–25 (2017).
ADS Google Scholar25.
Duperron, S. in The Vent and Seep Biota: Aspects from Microbes to Ecosystems (ed. Kiel, S.) 137–167 (Springer, Netherlands, 2010).26.
Appeltans, W. et al. The magnitude of global marine species diversity. Curr. Biol. 22, 2189–2202 (2012).
CAS PubMed Google Scholar27.
Gosling, E. M. Marine Bivalve Molluscs. (Wiley Blackwell, 2015).28.
Takeuchi, T. et al. Draft genome of the Pearl Oyster Pinctada fucata: a platform for understanding bivalve biology. DNA Res. 19, 117–130 (2012).
CAS PubMed PubMed Central Google Scholar29.
Simakov, O. et al. Insights into bilaterian evolution from three spiralian genomes. Nature 493, 526–531 (2012).
ADS PubMed PubMed Central Google Scholar30.
Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31, 3210–3212 (2015).
PubMed Google Scholar31.
Ponnudurai, R. et al. Genome sequence of the sulfur-oxidizing Bathymodiolus thermophilus gill endosymbiont. Standards Genomic Sci. 12, 50 (2017).
Google Scholar32.
Takishita, K. et al. Genomic evidence that methanotrophic endosymbionts likely provide deep-sea bathymodiolus mussels with a sterol intermediate in cholesterol biosynthesis. Genome Biol. Evolution 9, 1148–1160 (2017).
Google Scholar33.
Payton, L. et al. Remodeling of the cycling transcriptome of the oyster Crassostrea gigas by the harmful algae Alexandrium minutum. Sci. Rep. 7, 3480 (2017).
Google Scholar34.
Sorek, M. et al. Setting the pace: host rhythmic behaviour and gene expression patterns in the facultatively symbiotic cnidarian Aiptasia are determined largely by Symbiodinium. Microbiome 6, 83 (2018).
PubMed PubMed Central Google Scholar35.
Thaben, P. F. & Westermark, P. O. Detecting rhythms in time series with RAIN. J. Biol. Rhythms 29, 391–400 (2014).
PubMed PubMed Central Google Scholar36.
Ren, Y., Hong, C. I., Lim, S. & Song, S. Finding clocks in genes: a bayesian approach to estimate periodicity. BioMed. Res. Int. 2016, 1–14 (2016).
Google Scholar37.
Radford-Knoery, J. et al. Distribution of dissolved sulfide, methane, and manganese near the seafloor at the Lucky Strike (37°17′N) and Menez Gwen (37°50′N) hydrothermal vent sites on the mid-Atlantic Ridge. Deep Sea Res. Part I: Oceanographic Res. Pap. 45, 367–386 (1998).
ADS CAS Google Scholar38.
Waeles, M. et al. On the early fate of hydrothermal iron at deep-sea vents: a reassessment after in situ filtration: Fe Sulfide Precipitation Is Very Limited. Geophys. Res. Lett. 44, 4233–4240 (2017).
ADS Google Scholar39.
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 1–21 (2014).
Google Scholar40.
Sung, Windsor & Morgan, J. J. Kinetics and product of ferrous iron oxygenation in aqueous systems. Environ. Sci. Technol. 14, 561–568 (1980).
ADS CAS Google Scholar41.
Tapley, D. W., Buettner, G. R. & Shick, J. M. Free radicals and chemiluminescence as products of the spontaneous oxidation of sulfide in seawater, and their biological implications. Biol. Bull. 196, 52–56 (1999).
CAS PubMed PubMed Central Google Scholar42.
Hayden, M. S. & Ghosh, S. Signaling to NF-kappaB. Genes Dev. 18, 2195–2224 (2004).
CAS PubMed Google Scholar43.
Courtial, L. et al. The c-Jun N-terminal kinase prevents oxidative stress induced by UV and thermal stresses in corals and human cells. Sci. Rep. 7, 45713 (2017).
ADS CAS PubMed PubMed Central Google Scholar44.
Praveen, K. & Saxena, N. Crosstalk between Fas and JNK determines lymphocyte apoptosis after ionizing radiation. Radiat. Res. 179, 725–736 (2013).
ADS CAS PubMed Google Scholar45.
Distel, D. L. et al. Do mussels take wooden steps to deep-sea vents? Nature 403, 725–726 (2000).
ADS CAS PubMed Google Scholar46.
Mohawk, J. A., Green, C. B. & Takahashi, J. S. Central and peripheral circadian clocks in mammals. Annu. Rev. Neurosci. 35, 445–462 (2012).
CAS PubMed PubMed Central Google Scholar47.
Connor, K. M. & Gracey, A. Y. Circadian cycles are the dominant transcriptional rhythm in the intertidal mussel Mytilus californianus. Proc. Natl Acad. Sci. USA 108, 16110–16115 (2011).48.
Gracey, A. Y. et al. Rhythms of gene expression in a fluctuating intertidal environment. Curr. Biol. 18, 1501–1507 (2008).
CAS PubMed Google Scholar49.
White, S. N., Chave, A. D., Reynolds, G. T. & Van Dover, C. L. Ambient light emission from hydrothermal vents on the Mid-Atlantic Ridge. Geophys. Res. Lett. 29, 34-1–34-4 (2002).
Google Scholar50.
Devey, C., Fisher, C. & Scott, S. Responsible science at hydrothermal vents. Oceanography 20, 162–171 (2007).
Google Scholar51.
Hughes, M. E. et al. Guidelines for genome-scale analysis of biological rhythms. J. Biol. Rhythms 32, 380–393 (2017).
CAS PubMed PubMed Central Google Scholar52.
Yoo, S.-H. et al. PERIOD2::LUCIFERASE real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues. Proc. Natl Acad. Sci. USA 101, 5339–5346 (2004).
ADS CAS PubMed Google Scholar53.
Zhang, R., Lahens, N. F., Ballance, H. I., Hughes, M. E. & Hogenesch, J. B. A circadian gene expression atlas in mammals: Implications for biology and medicine. Proc. Natl Acad. Sci. USA 111, 16219–16224 (2014).
ADS CAS PubMed Google Scholar54.
Li, J., Grant, G. R., Hogenesch, J. B. & Hughes, M. E. Considerations for RNA-seq analysis of circadian rhythms. Methods Enzymol. 551, 349–367 (2015).55.
O’Neill, J. S. & Reddy, A. B. Circadian clocks in human red blood cells. Nature 469, 498–503 (2011).
ADS PubMed PubMed Central Google Scholar56.
Rey, G. et al. Metabolic oscillations on the circadian time scale in Drosophila cells lacking clock genes. Mol. Syst. Biol. 14, e8376 (2018).
PubMed PubMed Central Google Scholar57.
Zhang, L. et al. Dissociation of Circadian and Circatidal Timekeeping in the Marine Crustacean Eurydice pulchra. Curr. Biol. 23, 1863–1873 (2013).
CAS PubMed PubMed Central Google Scholar58.
Zantke, J. et al. Circadian and Circalunar Clock Interactions in a Marine Annelid. Cell Rep. 5, 99–113 (2013).
CAS PubMed PubMed Central Google Scholar59.
Mat, A. M., Perrigault, M., Massabuau, J.-C. & Tran, D. Role and expression of cry1 in the adductor muscle of the oyster Crassostrea gigas during daily and tidal valve activity rhythms. Chronobiol. Int. 33, 949–963 (2016).
CAS PubMed Google Scholar60.
O’Neill, J. S. et al. Metabolic molecular markers of the tidal clock in the marine crustacean Eurydice pulchra. Curr. Biol. 25, R326–R327 (2015).
PubMed PubMed Central Google Scholar61.
Schnytzer, Y. et al. Tidal and diel orchestration of behaviour and gene expression in an intertidal mollusc. Sci. Rep. 8, 4917 (2018).
ADS CAS PubMed PubMed Central Google Scholar62.
Saurel, C., Gascoigne, J. C., Palmer, M. R. & Kaiser, M. J. In situ mussel feeding behavior in relation to multiple environmental factors: regulation through food concentration and tidal conditions. Limnol. Oceanogr. 52, 1919–1929 (2007).
ADS Google Scholar63.
Comeau, L. A., Babarro, J. M. F., Longa, A. & Padin, X. A. Valve-gaping behavior of raft-cultivated mussels in the Ría de Arousa, Spain. Aquac. Rep. 9, 68–73 (2018).
Google Scholar64.
Connor, K. M. & Gracey, A. Y. High-resolution analysis of metabolic cycles in the intertidal mussel Mytilus californianus. Am. J. Physiol.-Regulatory, Integr. Comp. Physiol. 302, R103–R111 (2012).
CAS Google Scholar65.
Ameyaw-Akumfi, C. & Naylor, E. Temporal patterns of shell-gape in Mytilus edulis. Mar. Biol. 95, 237–242 (1987).
Google Scholar66.
Chapman, E. C., O’Dell, A. R., Meligi, N. M., Parsons, D. R. & Rotchell, J. M. Seasonal expression patterns of clock-associated genes in the blue mussel Mytilus edulis. Chronobiol. Int. 34, 1300–1314 (2017).
CAS PubMed Google Scholar67.
Mat, A. M., Massabuau, J.-C., Ciret, P. & Tran, D. Looking for the clock mechanism responsible for circatidal behavior in the oyster Crassostrea gigas. Mar. Biol. 161, 89–99 (2014).
Google Scholar68.
Tran, D., Perrigault, M., Ciret, P. & Payton, L. Bivalve mollusc circadian clock genes can run at tidal frequency. Proc. R. Soc. B 287, 20192440 (2020).
PubMed Google Scholar69.
Martin, W., Baross, J., Kelley, D. & Russell, M. J. Hydrothermal vents and the origin of life. Nat. Rev. Microbiol. 6, 805–814 (2008).
CAS PubMed Google Scholar70.
Dodd, M. S. et al. Evidence for early life in Earth’s oldest hydrothermal vent precipitates. Nature 543, 60–64 (2017).
ADS CAS PubMed Google Scholar71.
Sarrazin, J. et al. TEMPO: a new ecological module for studying deep-sea community dynamics at hydrothermal vents. in OCEANS 2007 – Europe 1–4 (IEEE, 2007).72.
Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).
CAS PubMed PubMed Central Google Scholar73.
Dutilleul, P. Multi-frequential periodogram analysis and the detection of periodic components in time series. Commun. Stat. – Theory Methods 30, 1063–1098 (2001).
MathSciNet MATH Google Scholar74.
Johnson, C. H., Elliott, J., Foster, R., Honma, K.-I. & Kronauer, R. in Chronobiology: Biological Timekeeping (eds. Dunlap, J. C., Loros, J. J. & DeCoursey, P. J.) 406 (Sinauer Associates, Inc. Publishers, 2004).75.
Pegau, W. S., Gray, D. & Zaneveld, J. R. V. Absorption and attenuation of visible and near-infrared light in water: dependence on temperature and salinity. Appl. Opt. 36, 6035–6046 (1997).
ADS CAS PubMed Google Scholar76.
Francis, W. R. et al. A comparison across non-model animals suggests an optimal sequencing depth for de novo transcriptome assembly. BMC Genomics 14, 167 (2013).
CAS PubMed PubMed Central Google Scholar77.
Conesa, A. et al. A survey of best practices for RNA-seq data analysis. Genome Biol. https://doi.org/10.1186/s13059-016-0881-8 (2016).78.
Cabau, C. et al. Compacting and correcting Trinity and Oases RNA-Seq de novo assemblies. PeerJ 5, e2988 (2017).
PubMed PubMed Central Google Scholar79.
Haas, B. J. et al. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat. Protoc. 8, 1494–1512 (2013).
CAS PubMed Google Scholar80.
Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).
PubMed PubMed Central Google Scholar81.
R. Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2015).82.
Conesa, A. et al. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21, 3674–3676 (2005).
CAS PubMed Google Scholar83.
Alexa, A. & Rahnenfuhrer, J. topGO: Enrichment Analysis for Gene Ontology. R package version 2.36.0. (2019).84.
Finn, R. D. et al. The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res. 44, D279–D285 (2016).
CAS PubMed Google Scholar85.
Katoh, K. & Standley, D. M. MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability. Mol. Biol. Evolution 30, 772–780 (2013).
CAS Google Scholar86.
Nguyen, L.-T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evolution 32, 268–274 (2015).
CAS Google Scholar87.
Guindon, S. et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst. Biol. 59, 307–321 (2010).
CAS PubMed Google Scholar88.
Oliveri, P. et al. The Cryptochrome/Photolyase Family in aquatic organisms. Mar. Genomics 14, 23–37 (2014).
PubMed Google Scholar More225 Shares189 Views
in EcologyThe implication of metabolically active Vibrio spp. in the digestive tract of Litopenaeus vannamei for its post-larval development
Sampling of organisms and bioassay experiments
Shrimp post-larvae (PL5) of Litopenaeus vannamei were collected from the aquaculture farm Parque acuícola Cruz de Piedra, Guaymas, Sonora, Mexico (27° 51′ 05.9″ N 110° 31′ 57.0″ W). Afterward, post-larval shrimp were transported in aerated tanks with the same pond water as the farm to the Departamento de Investigaciones Científicas y Tecnológicas de la Universidad de Sonora (DICTUS), where a lab-scale system was previously tested and used. The bioassay was conducted for 80 days with healthy shrimp, each weighing 0.5 ± 0.1 g, and post-larvae were randomly distributed in the lab-scale system. The system consisted of nine 80-L culture units linked to a recirculation aquaculture system (RAS), and sterile seawater was used to fill the units to an operating volume of 60 L. Influent seawater was filtrated and flowed through a UV lamp for sterilization, and the seawater was equally dispensed to all culture units, as depicted in the supplementary material (Fig. S2). The culture units were maintained under similar indoor conditions with artificial aeration (2000F heat bonded silica; pore size, 140 µm), and the salinity was maintained at around 35‰ with the addition of sterile freshwater (MilliQ grade, Millipore) to avoid the incorporation of outside bacteria and to compensate evaporation. Finally, the effluent generated by the system flowed through a biofilter containing nitrifying bacteria to control toxic nitrogen compounds in the recirculation system (Fig. S2). The unconsumed feed, feces, moults, and dead organisms (if any) were removed daily.
The salinity, dissolved oxygen (DO), pH, and temperature were measured twice per day (07:00 and 18:00 h) using a YSI multiprobe system 556 (YSI Incorporated).
The bioassay started with PL5 on day 0. At this point, 40 organisms were randomly introduced into each culture unit, and the experiment lasted 80 days. Throughout the experiment, shrimp were fed twice a day at a rate of 4% wet biomass day–1 using feeding trays with the same formulated feed consisting of commercial grow-out pelletized feed with 25% crude protein, 5% lipids, and 4% fiber.
Water quality and productive response
The water quality was monitored daily throughout the bioassay, and samples were collected weekly from each culture unit using sterile falcon tubes by filtering the water through 0.45 μm membranes (Millipore). Nitrite (NO2–N), nitrate (NO3–N), ammonia (NH3–NH4), and phosphate (P–PO4) concentrations were measured using commercial Hanna reagent kits HI 93707-01, HI 93728-01, HI 93700-01, and HI 93717-01, respectively (Hanna Instruments, Romania).
Biometry analyses were performed at the four different developmental stages, denominated as I, II, III, and IV, corresponding to 0–20, 20–40, 40–60, and 60–80 culture days, respectively, and the productive response was calculated15.
Collection of intestine and water samples and DNA and RNA extraction
To discard the transitory microbiota, the shrimp were fasted for 6 h before sampling. Once the intestines were empty, these were dissected on the corresponding dates using a sterile dissection kit, placed in sterile cryogenic tubes, and stored at – 80 °C until nucleic acid extraction. Each sample date belongs to an experimental unit with three culture tanks. The intestine samples from culture tanks were pooled and considered as a replicate, giving three replicates per sampling time. At the same sampling points, 1 L samples of water (W) from each culture unit corresponding to an experimental replicate were collected and pooled for filtration through 0.22 µm sterile filters of mixed cellulose ester membrane (Whatman, Sigma, St Louis, USA) and placed in sterile, 50 mL falcon tubes for storage at – 80 °C until nucleic acid extraction.
Total DNA and RNA were extracted and purified from the membrane filters previously used to filter seawater samples and from intestines that were also previously sampled, both of them with the FastDNA Spin Kit for Soil15, and the FastRNA Pro Blue Kit (MP-Bio, Santa Ana, CA, USA) in combination with mechanical lysis using the FastPrep Systems (MP-BIO, Santa Ana, CA, USA). The obtained RNA samples were digested according to the TURBO DNA protocol (Ambion, Life Technologies Corporation, Carlsbad, CA, USA) and EDTA to stop the DNase activity and to ensure that any DNA residuals were presented. Finally, samples were purified according to the RNA Cleanup protocol from the RNeasy Mini Kit (Qiagen, Hamburg, Germany). The quality and concentration of nucleic acids were tested as previously described Maza-Márquez et al.39.
qPCR and RT-qPCR assays
Real-time polymerase chain reaction (qPCR) assays have been widely implemented for estimating total cell count based on DNA gene markers, regardless of their level of metabolic activity40,41, while reverse transcription qPCR (RT-qPCR) is a useful method for analyzing the expression of specific genes. RT-qPCR is also used because of its high sensitivity, accuracy, specificity, and rapidity in analyzing the time-specific expression of particular genes, allowing for the detection of low-abundance transcripts42. The absolute abundance of total and metabolically active populations of bacteria and Vibrio in both target samples were measured by qPCR and RT-qPCR, respectively, using a StepOne Real-Time PCR system (Applied Biosystems, USA). For RT-qPCR, the synthesis of cDNA was performed by reverse transcription of RNA with the aid of SuperScript III Reverse Transcriptase (Invitrogen, Life Technologies Corporation, Carlsbad, CA, EEUU), following the manufacturer’s specifications, in a final volume of 20 µL and using 150–200 ng of total RNA as a template (specific primers described in Table S4) (Sigma Aldrich; St. Louis, MO, USA) and dNTPs (Invitrogen; Carlsbad, USA). In addition, the cDNA quality and concentration were measured using a NanoDrop ND-1000 spectrophotometer (Thermo Scientific Waltham, MA USA). The number of copies (nbc) of 16S rRNA genes (16S rDNA) and 16S rRNA (16S rRNA) were evaluated in each sample using either extracted DNA or cDNA, respectively, as templates with a set of primers previously described (Table S4) based on the increasing fluorescence intensity of the SYBR Green dye during amplification. For the amplification and detection of specific fragments, the iTaq Universal SYBR Green Supermix (Biorad, USA) was used in a final volume of 15 µL for each reaction. All quantitative amplifications were performed in triplicate. The qPCR reaction mixtures contained 1.8 µL of cDNA or DNA, 250 ng of T4 gene 32 (QBiogene, Illkirch, France), 1.2 µL of each primer (10 mM), supplied by Sigma Aldrich (St. Louis, MO, USA), and 1 × SYBR Green Supermix. The amplification and detection conditions are described in Table S5.
To provide absolute quantification of the target microorganisms, standard curves were constructed with the aid of a standard plasmid that contained the inserts of the targeted genes. Amplicons of the 16S rDNA were generated from culture strains of Pseudomonas putida NCB957 (quantification of bacteria) and Vibrio parahaemolyticus ATCC17802 (quantification of Vibrio). The PCR products were cloned with the aid of the pCR2.1-TOPO plasmid vector using the TOPO TA cloning system (Invitrogen, Life Technologies Corporation, Carlsbad, CA, USA), following the manufacturer’s protocols. The calibration curves for absolute quantification in the DNA samples (16S rDNA) were generated using serial ten-fold dilutions of linearized plasmid standards, and for absolute quantification in RNA samples (16S rRNA), non-linearized plasmid standards were used as templates for in vitro transcription of the target genes into RNA39,40,43. The copy number per ng was calculated as previously described43. All calibration curves had a correlation coefficient (r2) of > 0.99 in all assays, and the efficiency of PCR amplification was always between 90 and 110%. Finally, the number of copies of the targeted genes was expressed per gram of tissue sampled, while for water samples these were expressed as the number of copies per mL.
Statistical analyses
All statistical analyses were performed in R Studio (version 3.6.0)44 using the following R packages: maggrittr45, ade446, factoextra47, vegan48, and gplots49. Analyses of variance (ANOVA) and multiple-range tests (Student’s-test) were used with a significance level of 95% (p More250 Shares109 Views
in EcologyThe density of anthropogenic features explains seasonal and behaviour-based functional responses in selection of linear features by a social predator
1.
Saunders, S. C., Mislivets, M. R., Chen, J. & Cleland, D. T. Effects of roads on landscape structure within nested ecological units of the Northern Great Lakes Region, USA. Biol. Conserv. 103, 209–225 (2002).
Google Scholar
2.
Potvin, F., Breton, L. & Courtois, R. Response of beaver, moose, and snowshoe hare to clear-cutting in a Quebec boreal forest: A reassessment 10 years after cut. Can. J. For. Res. 35, 151–160 (2005).
Google Scholar3.
Sahlén, E., Støen, O. & Swenson, J. E. Brown bear den site concealment in relation to human activity in Sweden. Ursus 22, 152–158 (2011).
Google Scholar4.
James, A. & Stuart-Smith, A. Distribution of caribou and wolves in relation to linear corridors. J. Wildl. Manage. 64, 154–159 (2000).
Google Scholar5.
Vitousek, P. M., Mooney, H. A., Lubchenco, J. & Melillo, J. M. Human domination of earth’s ecosystems. Science 277, 494–499 (1997).
CAS Google Scholar6.
Wittmer, H. U., McLellan, B. N., Serrouya, R. & Apps, C. D. Changes in landscape composition influence the decline of a threatened woodland caribou population. J. Anim. Ecol. 76, 568–579 (2007).
PubMed Google Scholar7.
Irwin, L. L., Rock, D. F. & Miller, G. P. Stand structures used by Northern spotted owls in managed forests. J. Raptor Res. 34, 175–186 (2000).
Google Scholar8.
Leblond, M., Dussault, C. & Ouellet, J. P. Avoidance of roads by large herbivores and its relation to disturbance intensity. J. Zool. 289, 32–40 (2013).
Google Scholar9.
Dickie, M., Serrouya, R., McNay, R. S. & Boutin, S. Faster and farther: Wolf movement on linear features and implications for hunting behaviour. J. Appl. Ecol. 54, 253–263 (2017).
Google Scholar10.
Finnegan, L. et al. Natural regeneration on seismic lines influences movement behaviour of wolves and grizzly bears. PLoS ONE https://doi.org/10.1371/journal.pone.0195480 (2018).
Article PubMed PubMed Central Google Scholar11.
Whittington, J. et al. Caribou encounters with wolves increase near roads and trails: A time-to-event approach. J. Appl. Ecol. 48, 1535–1542 (2011).
Google Scholar12.
Sorensen, T. et al. Determining sustainable levels of cumulative effects for boreal caribou. J. Wildl. Manage. 72, 900–905 (2008).
Google Scholar13.
Dabros, A., Pyper, M. & Castilla, G. Seismic lines in the boreal and arctic ecoystems of North America: Environmental impacts, challenges and opportunities. Environ. Rev. 26, 214–229 (2018).
Google Scholar14.
Lee, P. & Boutin, S. Persistence and developmental transition of wide seismic lines in the western Boreal Plains of Canada. J. Environ. Manage. 78, 240–250 (2006).
PubMed Google Scholar15.
Pigeon, K. E. et al. Toward the restoration of caribou habitat: Understanding factors associated with human motorized use of legacy seismic lines. Environ. Manage. 58, 821–832 (2016).
ADS PubMed Google Scholar16.
Schneider, R. R., Hauer, G., Adamowicz, W. L. V. & Boutin, S. Triage for conserving populations of threatened species: The case of woodland caribou in Alberta. Biol. Conserv. 143, 1603–1611 (2010).
Google Scholar17.
Environment Canada. Recovery strategy for the woodland Caribou (Rangifer tarandus caribou), boreal population, in Canada. in Species at Risk Act Recovery Strategy Series 138 (Environment Canada, 2012).18.
Environment Canada. Recovery strategy for the woodland Caribou, southern mountain population (Rangifer tarandus caribou) in Canada. in Species at Risk Act Recovery Strategy Series. Environment 103 (Environment Canada, Ottawa, 2014).19.
Dickie, M., Serrouya, R., DeMars, C., Cranston, J. & Boutin, S. Evaluating functional recovery of habitat for threatened woodland caribou. Ecosphere 8, e01936. https://doi.org/10.1002/ecs2.1936 (2017).
Article Google Scholar20.
DeMars, C. A. & Boutin, S. Nowhere to hide: Effects of linear features on predator-prey dynamics in a large mammal system. J. Anim. Ecol. 87, 274–284 (2018).
PubMed Google Scholar21.
Johnson, C. J., Ehlers, L. P. W. & Seip, D. R. Witnessing extinction—Cumulative impacts across landscapes and the future loss of an evolutionarily significant unit of woodland caribou in Canada. Biol. Conserv. 186, 176–186 (2015).
Google Scholar22.
Fisher, J. T. & Burton, A. C. Widlife winners and losers in an oil sands landscape. Front. Ecol. Environ. 16, 323–328 (2018).
Google Scholar23.
Ehlers, L. P. W., Johnson, C. J. & Seip, D. R. Evaluating the influence of anthropogenic landscape change on Wolf distribution: Implications for woodland caribou. Ecosphere 7, e01600. https://doi.org/10.1002/ecs2.1600 (2016).
Article Google Scholar24.
Houle, M., Fortin, D., Dussault, C., Courtois, R. & Ouellet, J.-P. Cumulative effects of forestry on habitat use by gray wolf (Canis lupus) in the boreal forest. Landscape. Ecol. 25, 419–433 (2010).
Google Scholar25.
Mysterud, A. & Ims, R. A. Functional responses in habitat use: Availability influences relative use in trade-off situations. Ecology 79, 1435–1441 (1998).
Google Scholar26.
Lima, S. & Dill, L. M. Behavioral decisions made under the risk of predation: A review and prospectus. Can. J. Zool. 68, 619–639 (1990).
Google Scholar27.
Hebblewhite, M., Merrill, E. H. & McDonald, T. L. Spatial decomposition of predation risk using resource selection functions: An example in a wolf-elk predator-prey system. Oikos 111, 101–111 (2005).
Google Scholar28.
Latham, A. D. M., Latham, M. C., Boyce, M. & Boutin, S. Movement responses by wolves to industrial linear features and their effect on woodland caribou in northeastern Alberta. Ecol. Appl. 21, 2854–2865 (2011).
Google Scholar29.
Visscher, D. R. & Merrill, E. H. Temporal dynamics of forage succession for elk at two scale: Implications of forest management. For. Ecol. Manage. 257, 96–106 (2009).
Google Scholar30.
McLoughlin, P., Dunford, J. & Boutin, S. Relating predation mortality to broad-scale habitat selection. J. Anim. Ecol. 74, 701–707 (2005).
Google Scholar31.
Ausband, D. E. et al. Surveying predicted rendezvous sites to monitor gray wolf populations. J. Wildlife. Manage. 71, 1043–1049 (2010).
Google Scholar32.
Corns, I. & Annas, R. M. Field Guide to Forest Ecosystems of West-Central Alberta 251 (Canadian Forest Service Northern Forestry Centre, Edmonton, 1986).
Google Scholar33.
van Rensen, C. K., Nielsen, S. E., White, B., Vinge, T. & Lieffers, V. J. Natural regeneration of forest vegetation on legacy seismic lines in boreal habitats in Alberta’s oil sands region. Biol. Conserv. 184, 127–135 (2015).
Google Scholar34.
Swanson, M. E. et al. The forgotten stage of forest succession: Early-successional ecoystems on forest sites. Front. Ecol. Environ. 9, 117–125 (2010).
Google Scholar35.
Melin, M., Matala, J., Mehtätalo, L., Pusenius, J. & Packalen, P. Ecological dimensions of airborne laser scanning—Analyzing the role of forest structure in moose habitat use within a year. Remote Sens. Environ. 173, 238–247 (2015).
ADS Google Scholar36.
Roffler, G. H., Gregovich, D. P. & Larson, K. R. Resource selection by coastal wolves reveals the seasonal importance of seral forest and suitable prey habitat. For. Ecol. Manage. 409, 190–201 (2018).
Google Scholar37.
DeCesare, N. J. et al. Transcending scale dependence in identifying habitat with resource selection functions. Ecology 22, 1068–1083 (2012).
Google Scholar38.
Neufeld, L. M. Spatial Dynamics of Wolves and Woodland Caribou in an Industrial Forest Landscape in West-Central Alberta 155 (University of Alberta, Alberta, 2006).
Google Scholar39.
Webb, N., Hebblewhite, M. & Merrill, E. Statistical methods for identifying wolf kill sites using global positioning system locations. J. Wildl. Manage. 72, 1798–1804 (2008).
Google Scholar40.
Jedrzejewski, W., Schmidt, K., Theuerkauf, J., Jedrzejewska, B. & Okarma, H. Daily movements and territory use by radio-collared wolves (Canis lupus) in Bialowieza primeval forest in Poland. Can. J. Zool. 79, 1993–2004 (2001).
Google Scholar41.
Mech, L. D. & Boitani, L. Wolves 472 (University of Chicago Press, Chicago, Behaviour, Ecology and Conservation, 2003).
Google Scholar42.
Jenness, J. Topographic position index (tpi_jen.avx) extension for ArcView 3.x v. 1.3a https://www.jennessent.com/arcview/tpi.htm (2006). Accessed 15 June 2014.43.
Gessler, P. E., Chadwick, O. A., Chamran, F., Althouse, L. & Holmes, K. Modeling soil–landscape and ecosystem properties using terrain attributes. Soil Sci. Soc. Am. J. 64, 2046 (2000).
ADS CAS Google Scholar44.
Franklin, S. E., Peddle, D. R. & Dechka, J. A. Evidential reasoning with Landsat TM, DEM and GIS data for landcover classification in support of grizzly bear habitat mapping. Int. J. Remote Sens. 23, 4633–4652 (2002).
ADS Google Scholar45.
McDermid, G. J. et al. Remote sensing and forest inventory for wildlife habitat assessment. For. Ecol. Manage. 257, 2262–2269 (2009).
Google Scholar46.
Environmental Systems Research Institute [ESRI] ArcGIS Desktop: Release 10. Redlands, California, (2015).47.
MacNearney, D. et al. Heading for the hills? Evaluating spatial distribution of woodland caribou in response to a growing anthropogenic disturbance footprint. Ecol. Evol. 6, 6484–6509 (2016).
PubMed PubMed Central Google Scholar48.
Nielsen, S. E., Cranston, J., Stenhouse, G. B. & Street, M. Identification of priority areas for grizzly bear conservation and recovery in Alberta, Canada. J. Conserv. Plan. 5, 38–60 (2009).
Google Scholar49.
White, B. et al. Using the cartographic depth-to-water index to locate small streams and associated wet areas across landscapes. Can. Water Resour. J. 37, 333–347 (2012).
Google Scholar50.
Canadell, J. et al. Maximum rooting depth of vegetation types at the global scale. Oecologia 108, 583–595 (1996).
ADS CAS PubMed Google Scholar51.
Beyer, H. Geospatial Modelling Environment (version 0.7.2.1) https://www.spatialecology.com/gme (2012). Accessed 16 April 2016.52.
Murtaugh, P. Simplicity and complexity in ecological data analysis. Ecology 88, 56–62 (2007).
PubMed Google Scholar53.
Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inferences: A Practical Information-Theoretic Approach 2nd edn. (Springer, New Yirk, 2002).
Google Scholar54.
Takahata, C., Nielsen, S. E., Takii, A. & Izumiyama, S. Habitat selection of a large carnivore along human-wildlife boundaries in a highly modified landscape. PLoS ONE 9, e86181. https://doi.org/10.1371/journal.pone.0086181 (2014).
ADS CAS Article PubMed PubMed Central Google Scholar55.
Fieberg, J., Matthiopoulos, J., Hebblewhite, M., Boyce, M. & Frair, J. Correlation and studies of habitat selection: Problem, red herring, or opportunity?. Philos. Trans. R. Soc. Lond. B Biol. Sci. 365, 2233–2244 (2010).
PubMed PubMed Central Google Scholar56.
Muff, S., Signer, J. & Fieberg, J. Accounting for individual-specific variation in habitat-selection studies: Efficient estimation of mixed-effects models using Bayesian or frequentist computation. J. Anim. Ecol. 89, 80–92 (2020).
PubMed Google Scholar57.
Fieberg, J., Rieger, R. H., Zicus, M. C. & Schildcrout, J. S. Regression modelling of correlated data in ecology: Subject-specific and population averaged response patterns. J. Appl. Ecol. 46, 1018–1025 (2009).
Google Scholar58.
Glenn, E. M., Hansen, M. C. & Anthony, R. G. Spotted owl home-range and habitat use in young forests of western Oregon. J. Wildl. Manage. 68, 33–50 (2004).
Google Scholar59.
Sawyer, H., Nielson, R. M., Lindzey, F. & McDonald, L. L. Winter habitat selection of mule deer before and during development of a natural gas field. J. Wildl. Manage. 70, 396–403 (2006).
Google Scholar60.
Manly, B. F. J., McDonald, L. L., Thomas, D. L., McDonald, T. L. & Erickson, W. P. Resource Selection by Animals—Statistical Design and Analysis for Field Studies 2nd edn. (Kluwer Acadamic Publishers, Berlin, 2002).
Google Scholar61.
Hebblewhite, M., Percy, M. & Merrill, E. H. Are all global positioning system collars created equal? Correcting habitat-induced bias using three brands in the central Canadian Rockies. J. Wildl. Manage. 71, 2026–2033 (2007).
Google Scholar62.
Frair, J. L. et al. Removing GPS collar bias in habitat selection studies. J. Appl. Ecol. 41, 201–212 (2004).
Google Scholar63.
Lumley, T. Survey: Analysis of complex survey samples. R packages version 3.30 (2014).64.
R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ (2015). Accessed 12 Dec 2016.65.
Zuur, A. F., Ieno, E. N. & Elphick, C. S. A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evol. 1, 3–14 (2010).
Google Scholar66.
Matthiopoulos, J., Hebblewhite, M., Aarts, G. & Fieberg, J. Generalized functional responses for species distributions. Ecology 92, 583–589 (2011).
PubMed Google Scholar67.
McKenzie, H. W., Merrill, E. H., Spiteri, R. J. & Lewis, M. A. How linear features alter predator movement and the functional response. Interface Focus. 2, 205–216 (2012).
PubMed PubMed Central Google Scholar68.
Droghini, A. & Boutin, S. Snow conditions influence grey wolf (Canis lupus) travel paths: The effect of human-created linear features. Can. J. Zool. 96, 39–47 (2017).
Google Scholar69.
García-Marmolejo, G., Chapa-Vargas, L., Weber, M. & Huber-Sannwald, E. Landscape composition influences abundance patterns and habitat use of three ungulate species in fragmented secondary deciduous tropical forests, Mexico. Glob. Ecol. Conserv. 3, 744–755 (2015).
Google Scholar70.
DeCesare, N. J. Separating spatial search and efficiency rates as components of predation risk. Proc. R. Soc. B 279, 4626–4633 (2012).
PubMed Google Scholar More
