Extreme hyperthermia tolerance in the world’s most abundant wild bird
1.
Sears, M. W., Raskin, E. & Angilletta, M. J. Jr. The world is not flat: defining relevant thermal landscapes in the context of climate change. Integr. Comp. Biol. 51, 666–675 (2011).
PubMed Google Scholar
2.
du Plessis, K. L., Martin, R. O., Hockey, P. A. R., Cunningham, S. J. & Ridley, A. R. The costs of keeping cool in a warming world: implications of high temperatures for foraging, thermoregulation and body condition of an arid-zone bird. Glob. Change Biol. 18, 3063–3070 (2012).
ADS Google Scholar
3.
Araújo, M. B. et al. Heat freezes niche evolution. Ecol. Lett. 16, 1206–1219 (2013).
PubMed Google Scholar
4.
Speakman, J. R. & Król, E. Maximal heat dissipation capacity and hyperthermia risk: neglected key factors in the ecology of endotherms. J. Anim. Ecol. 79, 726–746 (2010).
PubMed Google Scholar
5.
Daghir, N. J. Poultry production in hot climates 2nd edn. (CAB International, Wallingford, 2008).
Google Scholar
6.
Nyoni, N. M. B., Grab, S. & Archer, E. R. M. Heat stress and chickens: climate risk effects on rural poultry farming in low-income countries. Clim. Dev. 11, 83–90. https://doi.org/10.1080/17565529.2018.1442792 (2018).
Article Google Scholar
7.
Laszlo, A. The effects of hyperthermia on mammalian cell structure and function. Cell Prolif. 25, 59–87 (1992).
CAS PubMed Google Scholar
8.
Roti Roti, J. L. Cellular responses to hyperthermia (40–46 C): Cell killing and molecular events. Int. J. Hyperthermia 24, 3–15 (2008).
ADS PubMed Google Scholar
9.
Feder, M. E. & Hofmann, G. E. Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Annu. Rev. Physiol. 61, 243–282 (1999).
CAS PubMed Google Scholar
10.
Hochachka, P. W. & Somero, G. N. Biochemical Adaptation (Princeton University Press, Princeton, 1984).
Google Scholar
11.
Pörtner, H. Climate change and temperature-dependent biogeography: oxygen limitation of thermal tolerance in animals. Naturwissenschaften 88, 137–146 (2001).
ADS PubMed Google Scholar
12.
Pörtner, H.-O. Oxygen-and capacity-limitation of thermal tolerance: a matrix for integrating climate-related stressor effects in marine ecosystems. J. Exp. Biol. 213, 881–893 (2010).
PubMed Google Scholar
13.
Clusella-Trullas, S., Blackburn, T. M. & Chown, S. L. Climatic predictors of temperature performance curve parameters in ectotherms imply complex responses to climate change. Am. Nat. 177, 738–751 (2011).
PubMed Google Scholar
14.
McKechnie, A. E. & Wolf, B. O. The physiology of heat tolerance in small endotherms. Physiology 34, 302–313 (2019).
CAS PubMed Google Scholar
15.
Arad, Z. & Marder, J. Strain differences in heat resistance to acute heat stress, between the bedouin desert fowl, the white leghorn and their crossbreeds. Comp. Biochem. Physiol. A 72, 191–193 (1982).
Google Scholar
16.
Randall, W. C. Factors influencing the temperature regulation of birds. Am. J. Physiol. 139, 56–63 (1943).
Google Scholar
17.
Tieleman, B. I., Williams, J. B., LaCroix, F. & Paillat, P. Physiological responses of Houbara bustards to high ambient temperatures. J. Exp. Biol. 205, 503–511 (2002).
PubMed Google Scholar
18.
Chappell, M. A. & Bartholomew, G. A. Activity and thermoregulation of the antelope ground squirrel Ammospermophilus leucurus in winter and summer. Physiol. Zool. 54, 215–223 (1981).
Google Scholar
19.
Lovegrove, B. G., Heldmaier, G. & Ruf, T. Perspectives of endothermy revisited: the endothermic temperature range. J. Therm. Biol 16, 185–197 (1991).
Google Scholar
20.
Cory Toussaint, D. & McKechnie, A. E. Interspecific variation in thermoregulation among three sympatric bats inhabiting a hot, semi-arid environment. J. Comp. Physiol. B 182, 1129–1140 (2012).
PubMed Google Scholar
21.
Dawson, W. R. In University of California Publications in Zoology Vol. 59 (eds Bartholomew, G. A. et al.) 81–123 (University of California Press, California, 1954).
Google Scholar
22.
Paulissen, M. A. Ontogenetic comparison of body temperature selection and thermal tolerance of Cnemidophorus sexlineatus. J. Herpetol. 22, 473–476 (1988).
Google Scholar
23.
Weathers, W. W. Energetics and thermoregulation by small passerines of the humid, lowland tropics. Auk 114, 341–353 (1997).
Google Scholar
24.
Southwick, E. E. Remote sensing of body temperature in a captive 25-g bird. Condor 75, 464–466 (1973).
Google Scholar
25.
Elliott, C. C. H. In Quelea quelea: Africa’s bird pest (eds Bruggers, R. L. & Elliott, C. C. H.) (Oxford University Press, Oxford, 1989).
Google Scholar
26.
Craig, A. J. F. K. In Roberts birds of southern Africa (eds Hockey, P. A. R. et al.) 1025–1026 (The Trustees of the John Voelcker Bird Book Fund, Cape Town, 2005).
Google Scholar
27.
Whitfield, M. C., Smit, B., McKechnie, A. E. & Wolf, B. O. Avian thermoregulation in the heat: scaling of heat tolerance and evaporative cooling capacity in three southern African arid-zone passerines. J. Exp. Biol. 218, 1705–1714 (2015).
PubMed Google Scholar
28.
McKechnie, A. E. et al. Avian thermoregulation in the heat: efficient evaporative cooling allows for extreme heat tolerance in four southern Hemisphere columbids. J. Exp. Biol. 219, 2145–2155 (2016).
PubMed Google Scholar
29.
Smith, E. K., O’Neill, J. J., Gerson, A. R., McKechnie, A. E. & Wolf, B. O. Avian thermoregulation in the heat: resting metabolism, evaporative cooling and heat tolerance in Sonoran Desert songbirds. J. Exp. Biol. 220, 3290–3300 (2017).
PubMed Google Scholar
30.
Smit, B. et al. Avian thermoregulation in the heat: phylogenetic variation among avian orders in evaporative cooling capacity and heat tolerance. J. Exp. Biol. 221, jeb174870 (2018).
PubMed Google Scholar
31.
Karasov, W. H. In Studies in Avian Biology (eds Morrison, M. L. et al.) 391–415 (Cooper Ornithological Society, California, 1990).
Google Scholar
32.
Swanson, D. L., Drymalski, M. W. & Brown, J. R. Sliding vs static cold exposure and the measurement of summit metabolism in birds. J. Therm. Biol 21, 221–226 (1996).
Google Scholar
33.
Kemp, R. & McKechnie, A. E. Thermal physiology of a range-restricted desert lark. J. Comp. Physiol. B 189, 131–141. https://doi.org/10.1007/s00360-018-1190-1 (2019).
Article PubMed Google Scholar
34.
Lighton, J. R. B. Measuring Metabolic Rates: A Manual for Scientists (Oxford University Press, Oxford, 2008).
Google Scholar
35.
Walsberg, G. E. & Wolf, B. O. Variation in the respirometry quotient of birds and implications for indirect calorimetry using measurements of carbon dioxide production. J. Exp. Biol. 198, 213–219 (1995).
CAS PubMed Google Scholar
36.
Tracy, C. R., Welch, W. R., Pinshow, B. & Porter, W. P. Properties of air: a manual for use in biophysical ecology. 4th Ed. The University of Wisconsin Laboratory for Biophysical Ecology: Technical Report (2010).
37.
R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, Austria, 2019).
38.
Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. & R Core Team. nlme: Linear and Nonlinear Mixed Effects Models. R Package Version 3. 57. (2009).
39.
Muggeo, V. M. R. Segmented: an R package to fit regression models with broken-line relationships. R News 8(1), 20–25 (2008).
Google Scholar
40.
McKechnie, A. E. et al. Avian thermoregulation in the heat: evaporative cooling in five Australian passerines reveals within-order biogeographic variation in heat tolerance. J. Exp. Biol. 220, 2436–2444 (2017).
PubMed Google Scholar
41.
O’Connor, R. S., Wolf, B. O., Brigham, R. M. & McKechnie, A. E. Avian thermoregulation in the heat: efficient evaporative cooling in two southern African nightjars. J Comp Physiol B 187, 477–491 (2017).
PubMed Google Scholar
42.
Hoffmann, A. A., Chown, S. L. & Clusella-Trullas, S. Upper thermal limits in terrestrial ectotherms: how constrained are they? Funct. Ecol. 27, 934–949 (2013).
Google Scholar
43.
Tieleman, B. I., Williams, J. B. & Bloomer, P. Adaptation of metabolic rate and evaporative water loss along an aridity gradient. Proc. R. Soc. Lond. 270, 207–214 (2003).
Google Scholar
44.
Xie, S., Tearle, R. & McWhorter, T. J. Heat shock protein expression is upregulated after acute heat exposure in three species of Australian desert birds. Avian Biol. Res. 11, 263–273 (2018).
Google Scholar
45.
Czenze, Z. J. et al. Regularly-drinking desert birds have greater evaporative cooling capacity and higher heat tolerance limits than non-drinking species. Funct. Ecol. https://doi.org/10.1111/1365-2435.13573 (2020).
Article Google Scholar
46.
Midtgård, U. Scaling of the brain and the eye cooling system in birds: a morphometric analysis of the rete ophthalmicum. J. Exp. Zool. 225, 197–207 (1983).
PubMed Google Scholar
47.
Kilgore, D. L., Bernstein, M. H. & Hudson, D. M. Brain temperatures in birds. J Comp Physiol 110, 209–215 (1976).
Google Scholar
48.
Bernstein, M. H., Curtis, M. B. & Hudson, D. M. Independence of brain and body temperatures in flying American kestrels, Falco sparverius. Am. J. Physiol. 237, R58–R62 (1979).
CAS PubMed Google Scholar
49.
Kregel, K. C. Invited review: heat shock proteins: modifying factors in physiological stress responses and acquired thermotolerance. J. Appl. Physiol. 92, 2177–2186 (2002).
CAS PubMed Google Scholar
50.
McKechnie, A. E. et al. Avian thermoregulation in the heat: evaporative cooling capacity in an archetypal desert specialist, Burchell’s sandgrouse (Pterocles burchelli). J. Exp. Biol. 219, 2137–2144 (2016).
PubMed Google Scholar
51.
Talbot, W. A., McWhorter, T. J., Gerson, A. R., McKechnie, A. E. & Wolf, B. O. Avian thermoregulation in the heat: evaporative cooling capacity of arid-zone Caprimulgiformes from two continents. J. Exp. Biol. 220, 3488–3498 (2017).
PubMed Google Scholar
52.
McWhorter, T. J. et al. Avian thermoregulation in the heat: evaporative cooling capacity and thermal tolerance in two Australian parrots. J. Exp. Biol. 221, jeb168930 (2018).
PubMed Google Scholar
53.
Talbot, W. A., Gerson, A. R., Smith, E. K., McKechnie, A. E. & Wolf, B. O. Avian thermoregulation in the heat: metabolism, evaporative cooling and gular flutter in two small owls. J. Exp. Biol. 221, jeb171108 (2018).
PubMed Google Scholar
54.
Smith, E. K., O’Neill, J., Gerson, A. R. & Wolf, B. O. Avian thermoregulation in the heat: resting metabolism, evaporative cooling and heat tolerance in Sonoran Desert doves and quail. J. Exp. Biol. 218, 3636–3646 (2015).
PubMed Google Scholar More
