More stories

  • in

    Inter-species interactions alter antibiotic efficacy in bacterial communities

    1.Filkins LM, O’Toole GA. Cystic fibrosis lung infections: polymicrobial, complex, and hard to treat. PLoS Pathog. 2015;11:e1005258.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    2.Paterson IK, Hoyle A, Ochoa G, Baker-Austin C, Taylor NGH. Optimising antibiotic usage to treat bacterial infections. Sci Rep. 2016;6:37853.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    3.Andrews JM. Determination of minimum inhibitory concentrations. J Antimicrob Chemother. 2001;48:5–16.CAS 
    PubMed 
    Article 

    Google Scholar 
    4.Brook I. Inoculum effect. Rev Infect Dis. 1989;11:361–8.CAS 
    PubMed 
    Article 

    Google Scholar 
    5.Karslake J, Maltas J, Brumm P, Wood KB. Population density modulates drug inhibition and gives rise to potential bistability of treatment outcomes for bacterial infections. PLOS Comput Biol. 2016;12:e1005098.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    6.Udekwu KI, Parrish N, Ankomah P, Baquero F, Levin BR. Functional relationship between bacterial cell density and the efficacy of antibiotics. J Antimicrob Chemother. 2009;63:745–57.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    7.Sweeney E, Sabnis A, Edwards AM, Harrison F. Effect of host-mimicking medium and biofilm growth on the ability of colistin to kill Pseudomonas aeruginosa. Microbiology. 2020;166:1171–80.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    8.Walters MC, Roe F, Bugnicourt A, Franklin MJ, Stewart PS. Contributions of antibiotic penetration, oxygen limitation, and low metabolic activity to tolerance of Pseudomonas aeruginosa biofilms to ciprofloxacin and tobramycin. Antimicrob Agents Chemother. 2003;47:317–23.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    9.Nguyen D, Joshi-Datar A, Lepine F, Bauerle E, Olakanmi O, Beer K, et al. Active starvation responses mediate antibiotic tolerance in biofilms and nutrient-limited bacteria. Science. 2011;334:982–6.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    10.Høiby N, Bjarnsholt T, Givskov M, Molin S, Ciofu O. Antibiotic resistance of bacterial biofilms. Int J Antimicrob Agents. 2010;35:322–32.PubMed 
    Article 
    CAS 

    Google Scholar 
    11.Olsen I. Biofilm-specific antibiotic tolerance and resistance. Eur J Clin Microbiol Infect Dis. 2015;34:877–86.CAS 
    PubMed 
    Article 

    Google Scholar 
    12.Macia MD, Rojo-Molinero E, Oliver A. Antimicrobial susceptibility testing in biofilm-growing bacteria. Clin Microbiol Infect. 2014;20:981–90.CAS 
    PubMed 
    Article 

    Google Scholar 
    13.Thieme L, Hartung A, Tramm K, Klinger-Strobel M, Jandt KD, Makarewicz O, et al. MBEC versus MBIC: the lack of differentiation between biofilm reducing and inhibitory effects as a current problem in biofilm methodology. Biol Proced Online. 2019;21:18.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    14.Bottery MJ, Pitchford JW, Friman V-P. Ecology and evolution of antimicrobial resistance in bacterial communities. ISME J. 2021;15:939–48.PubMed 
    Article 

    Google Scholar 
    15.Smith AL, Fiel SB, Mayer-Hamblett N, Ramsey B, Burns JL. Susceptibility testing of Pseudomonas aeruginosa isolates and clinical response to parenteral antibiotic administration: lack of association in cystic fibrosis. Chest. 2003;123:1495–502.CAS 
    PubMed 
    Article 

    Google Scholar 
    16.Radlinski L, Conlon B. Antibiotic efficacy in the complex infection environment. Curr Opin MicrobioL 2018;42:19–24.CAS 
    PubMed 
    Article 

    Google Scholar 
    17.Vos MGJ, de, Zagorski M, McNally A, Bollenbach T. Interaction networks, ecological stability, and collective antibiotic tolerance in polymicrobial infections. PNAS. 2017;114:10666–71.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    18.Adamowicz EM, Flynn J, Hunter RC, Harcombe WR. Cross-feeding modulates antibiotic tolerance in bacterial communities. ISME J. 2018;12:2723–35.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    19.Aranda-Díaz A, Obadia B, Dodge R, Thomsen T, Hallberg ZF, Güvener ZT, et al. Bacterial interspecies interactions modulate pH-mediated antibiotic tolerance. eLife. 2020;9:e51493.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    20.Vega NM, Gore J. Collective antibiotic resistance: mechanisms and implications. Curr Opin Microbiol. 2014;21:28–34.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    21.Beaudoin T, Yau YCW, Stapleton PJ, Gong Y, Wang PW, Guttman DS, et al. Staphylococcus aureus interaction with Pseudomonas aeruginosa biofilm enhances tobramycin resistance. NPJ Biofilms Microbiomes. 2017;3:25.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    22.Orazi G, O’Toole GA. Pseudomonas aeruginosa alters Staphylococcus aureus sensitivity to vancomycin in a biofilm model of cystic fibrosis infection. mBio. 2017;8:e00873–17.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    23.Sorg RA, Lin L, Doorn GS, van, Sorg M, Olson J, Nizet V, et al. Collective resistance in microbial communities by intracellular antibiotic deactivation. PLOS Biol. 2016;14:e2000631.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    24.Perlin MH, Clark DR, McKenzie C, Patel H, Jackson N, Kormanik C, et al. Protection of Salmonella by ampicillin-resistant Escherichia coli in the presence of otherwise lethal drug concentrations. Proc R Soc B. 2009;276:3759–68.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    25.Flynn JM, Cameron LC, Wiggen TD, Dunitz JM, Harcombe WR, Hunter RC. Disruption of cross-feeding inhibits pathogen growth in the sputa of patients with cystic fibrosis. mSphere. 2020;5:e00343–20.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    26.Gurney J, Brown SP, Kaltz O, Hochberg ME. Steering phages to combat bacterial pathogens. Trends Microbiol. 2020;28:85–94.CAS 
    PubMed 
    Article 

    Google Scholar 
    27.Waters VJ, Kidd TJ, Canton R, Ekkelenkamp MB, Johansen HK, LiPuma JJ, et al. Reconciling antimicrobial susceptibility testing and clinical response in antimicrobial treatment of chronic cystic fibrosis lung infections. Clin Infect Dis. 2019;69:1812–6.CAS 
    PubMed 
    Article 

    Google Scholar 
    28.Somayaji R, Parkins MD, Shah A, Martiniano SL, Tunney MM, Kahle JS, et al. Antimicrobial susceptibility testing (AST) and associated clinical outcomes in individuals with cystic fibrosis: a systematic review. J Cyst Fibros. 2019;18:236–43.CAS 
    PubMed 
    Article 

    Google Scholar 
    29.Raghuvanshi R, Vasco K, Vázquez-Baeza Y, Jiang L, Morton JT, Li D, et al. High-resolution longitudinal dynamics of the cystic fibrosis sputum microbiome and metabolome through antibiotic therapy. mSystems. 2020;5:e00292–20.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    30.Cystic Fibrosis Trust. UK cystic fibrosis registry annual data report 2019. 2020. [online] Available at: https://www.cysticfibrosis.org.uk/sites/default/files/2020-12/2019%20Registry%20Annual%20Data%20report_Sep%202020.pdf [Accessed 5 June 2021].31.Nixon GM, Armstrong DS, Carzino R, Carlin JB, Olinsky A, Robertson CF, et al. Clinical outcome after early Pseudomonas aeruginosa infection in cystic fibrosis. J Pediatr. 2001;138:699–704.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    32.Sánchez MB. Antibiotic resistance in the opportunistic pathogen Stenotrophomonas maltophilia. Front Microbiol. 2015;6:658.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    33.Salsgiver EL, Fink AK, Knapp EA, LiPuma JJ, Olivier KN, Marshall BC, et al. Changing epidemiology of the respiratory bacteriology of patients with cystic fibrosis. Chest. 2016;149:390–400.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    34.Cystic Fibrosis Trust. Antibiotic treatment for cystic fibrosis. 2009. [online] Available at: https://www.cysticfibrosis.org.uk/sites/default/files/2020-11/Anitbiotic%20Treatment.pdf [Accessed 7 June 2021].35.Denton M, Todd NJ, Littlewood JM. Role of anti-pseudomonal antibiotics in the emergence of Stenotrophomonas maltophilia in cystic fibrosis patients. Eur J Clin Microbiol Infect Dis. 1996;15:402–5.CAS 
    PubMed 
    Article 

    Google Scholar 
    36.Esposito A, Pompilio A, Bettua C, Crocetta V, Giacobazzi E, Fiscarelli E, et al. Evolution of Stenotrophomonas maltophilia in cystic fibrosis lung over chronic infection: a genomic and phenotypic population study. Front Microbiol. 2017;8:1590.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    37.Pompilio A, Crocetta V, De Nicola S, Verginelli F, Fiscarelli E, Di Bonaventura G. Cooperative pathogenicity in cystic fibrosis: Stenotrophomonas maltophilia modulates Pseudomonas aeruginosa virulence in mixed biofilm. Front Microbiol. 2015;6:951.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    38.Dalbøge CS, Hansen CR, Pressler T, Høiby N, Johansen HK. Chronic pulmonary infection with Stenotrophomonas maltophilia and lung function in patients with cystic fibrosis. J Cyst Fibros. 2011;10:318–25.PubMed 
    Article 

    Google Scholar 
    39.Okazaki A, Avison MB. Induction of L1 and L2 β-lactamase production in Stenotrophomonas maltophilia is dependent on an AmpR-type regulator. Antimicrob Agents Chemother. 2008;52:1525–8.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    40.Yurtsev EA, Chao HX, Datta MS, Artemova T, Gore J. Bacterial cheating drives the population dynamics of cooperative antibiotic resistance plasmids. Mol Syst Biol. 2013;9:683.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    41.Bottery MJ, Wood AJ, Brockhurst MA. Selective conditions for a multidrug resistance plasmid depend on the sociality of antibiotic resistance. Antimicrob Agents Chemother. 2016;60:2524–7.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    42.Palmer KL, Aye LM, Whiteley M. Nutritional cues control Pseudomonas aeruginosa multicellular behavior in cystic fibrosis sputum. J Bacteriol. 2007;189:8079–87.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    43.Artemova T, Gerardin Y, Dudley C, Vega NM, Gore J. Isolated cell behavior drives the evolution of antibiotic resistance. Mol Syst Biol. 2015;11:822.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    44.Harrison E, Wood AJ, Dytham C, Pitchford JW, Truman J, Spiers A, et al. Bacteriophages limit the existence conditions for conjugative plasmids. mBio. 2015;6:e00586–15.PubMed 
    PubMed Central 

    Google Scholar 
    45.Hall JPJ, Wood AJ, Harrison E, Brockhurst MA. Source–sink plasmid transfer dynamics maintain gene mobility in soil bacterial communities. PNAS. 2016;113:8260–5.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    46.Regoes RR, Wiuff C, Zappala RM, Garner KN, Baquero F, Levin BR. Pharmacodynamic functions: a multiparameter approach to the design of antibiotic treatment regimens. Antimicrob Agents Chemother. 2004;48:3670–6.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    47.Yu G, Baeder DY, Regoes RR, Rolff J. Predicting drug resistance evolution: insights from antimicrobial peptides and antibiotics. Proc R Soc B. 2018;285:20172687.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    48.Zhanel GG, Simor AE, Vercaigne L, Mandell L. Imipenem and meropenem: comparison of in vitro activity, pharmacokinetics, clinical trials and adverse effects. Can J Infect Dis. 1998;9:215–28.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    49.Gould VC, Okazaki A, Avison MB. β-Lactam resistance and β-lactamase expression in clinical Stenotrophomonas maltophilia isolates having defined phylogenetic relationships. J Antimicrob Chemother. 2006;57:199–203.CAS 
    PubMed 
    Article 

    Google Scholar 
    50.European Cystic Fibrosis Society Patient Registry. ECFS patient registry annual data report 2018. 2020. [online] Available at: https://www.ecfs.eu/sites/default/files/general-content-files/working-groups/ecfs-patient-registry/ECFSPR_Report_2018_v1.4.pdf [Accessed 7 June 2021].51.Radlinski L, Rowe SE, Kartchner LB, Maile R, Cairns BA, Vitko NP, et al. Pseudomonas aeruginosa exoproducts determine antibiotic efficacy against Staphylococcus aureus. PLoS Biol. 2017;15:e2003981.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    52.Harrison FY. Microbial ecology of the cystic fibrosis lung. Microbiology. 2007;153:917–23.CAS 
    PubMed 
    Article 

    Google Scholar 
    53.Keel RA, Sutherland CA, Crandon JL, Nicolau DP. Stability of doripenem, imipenem and meropenem at elevated room temperatures. Int J Antimicrob Agents. 2011;37:184–5.CAS 
    PubMed 
    Article 

    Google Scholar 
    54.Okazaki A, Avison MB. Aph(3′)-IIc, an Aminoglycoside resistance determinant from Stenotrophomonas maltophilia. Antimicrob Agents Chemother. 2007;51:359–60.CAS 
    PubMed 
    Article 

    Google Scholar 
    55.Li X-Z, Zhang L, McKay GA, Poole K. Role of the acetyltransferase AAC(6′)-Iz modifying enzyme in aminoglycoside resistance in Stenotrophomonas maltophilia. J Antimicrob Chemother. 2003;51:803–11.CAS 
    PubMed 
    Article 

    Google Scholar 
    56.Frost I, Smith WPJ, Mitri S, Millan AS, Davit Y, Osborne JM, et al. Cooperation, competition and antibiotic resistance in bacterial colonies. ISME J. 2018;12:1582–93.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    57.Yin C, Yang W, Meng J, Lv Y, Wang J, Huang B. Co-infection of Pseudomonas aeruginosa and Stenotrophomonas maltophilia in hospitalised pneumonia patients has a synergic and significant impact on clinical outcomes. Eur J Clin Microbiol Infect Dis. 2017;36:2231–5.CAS 
    PubMed 
    Article 

    Google Scholar 
    58.Waters V, Yau Y, Prasad S, Lu A, Atenafu E, Crandall I, et al. Stenotrophomonas maltophilia in cystic fibrosis: serologic response and effect on lung disease. Am J Respir Crit Care Med. 2011;183:635–40.PubMed 
    Article 

    Google Scholar 
    59.Goss CH, Mayer-Hamblett N, Aitken ML, Rubenfeld GD, Ramsey BW. Association between Stenotrophomonas maltophilia and lung function in cystic fibrosis. Thorax. 2004;59:955–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    60.Mojica MF, Ouellette CP, Leber A, Becknell MB, Ardura MI, Perez F, et al. Successful treatment of bloodstream infection due to metallo-β-lactamase-producing Stenotrophomonas maltophilia in a renal transplant patient. Antimicrob Agents Chemother. 2016;60:5130–4.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    61.McCutcheon JG, Dennis JJ. The potential of phage therapy against the emerging opportunistic pathogen Stenotrophomonas maltophilia. Viruses. 2021;13:1057.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    62.Rossi E, La Rosa R, Bartell JA, Marvig RL, Haagensen JAJ, Sommer LM, et al. Pseudomonas aeruginosa adaptation and evolution in patients with cystic fibrosis. Nat Rev Microbiol. 2021;19:331–42.CAS 
    PubMed 
    Article 

    Google Scholar 
    63.Davies EV, James CE, Brockhurst MA, Winstanley C. Evolutionary diversification of Pseudomonas aeruginosa in an artificial sputum model. BMC Microbiol. 2017;17:3.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    64.Bara JJ, Matson Z, Remold SK. Life in the cystic fibrosis upper respiratory tract influences competitive ability of the opportunistic pathogen Pseudomonas aeruginosa. R Soc Open Sci. 2018;5:180623.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    65.Bartell JA, Sommer LM, Haagensen JAJ, Loch A, Espinosa R, Molin S, et al. Evolutionary highways to persistent bacterial infection. Nat Commun. 2019;10:629.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    66.Estrela S, Brown SP. Community interactions and spatial structure shape selection on antibiotic resistant lineages. PLOS Comput Biol. 2018;14:e1006179.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    67.McNally L, Bernardy E, Thomas J, Kalziqi A, Pentz J, Brown SP, et al. Killing by Type VI secretion drives genetic phase separation and correlates with increased cooperation. Nat Commun. 2017;8:14371.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    68.Burmølle M, Webb JS, Rao D, Hansen LH, Sørensen SJ, Kjelleberg S. Enhanced biofilm formation and increased resistance to antimicrobial agents and bacterial invasion are caused by synergistic interactions in multispecies biofilms. Appl Environ Microbiol. 2006;72:3916–23.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    69.Willner D, Haynes MR, Furlan M, Schmieder R, Lim YW, Rainey PB, et al. Spatial distribution of microbial communities in the cystic fibrosis lung. ISME J. 2012;6:471–4.CAS 
    PubMed 
    Article 

    Google Scholar 
    70.Turner KH, Wessel AK, Palmer GC, Murray JL, Whiteley M. Essential genome of Pseudomonas aeruginosa in cystic fibrosis sputum. PNAS. 2015;112:4110–5.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    71.Kirchner S, Fothergill JL, Wright EA, James CE, Mowat E, Winstanley C. Use of artificial sputum medium to test antibiotic efficacy against Pseudomonas aeruginosa in conditions more relevant to the cystic fibrosis lung. J Vis Exp. 2012;64:e3857.
    Google Scholar 
    72.Harrison F, Diggle SP. An ex vivo lung model to study bronchioles infected with Pseudomonas aeruginosa biofilms. Microbiology. 2016;162:1755–60.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    73.Harrington NE, Sweeney E, Harrison F. Building a better biofilm – formation of in vivo-like biofilm structures by Pseudomonas aeruginosa in a porcine model of cystic fibrosis lung infection. Biofilm. 2020;2:100024.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    74.Bricio-Moreno L, Sheridan VH, Goodhead I, Armstrong S, Wong JKL, Waters EM, et al. Evolutionary trade-offs associated with loss of PmrB function in host-adapted Pseudomonas aeruginosa. Nat Commun. 2018;9:2635.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    75.Castellani S, Di Gioia S, di Toma L, Conese M. Human cellular models for the investigation of lung inflammation and mucus production in cystic fibrosis. Anal Cell Pathol. 2018;2018:3839803.Article 
    CAS 

    Google Scholar 
    76.Levin-Reisman I, Ronin I, Gefen O, Braniss I, Shoresh N, Balaban NQ. Antibiotic tolerance facilitates the evolution of resistance. Science. 2017;355:826–30.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    77.Wistrand-Yuen E, Knopp M, Hjort K, Koskiniemi S, Berg OG, Andersson DI. Evolution of high-level resistance during low-level antibiotic exposure. Nat Commun. 2018;9:1599.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    78.Choi K-H, Schweizer HP. mini-Tn7 insertion in bacteria with single attTn7 sites: example Pseudomonas aeruginosa. Nat Protoc. 2006;1:153–61.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    79.Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. SPAdes: a new genome assembly algorithm and Its applications to single-cell Sequencing. J Comput Biol. 2012;19:455–77.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    80.Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014;30:2068–9.CAS 
    Article 

    Google Scholar 
    81.Onoue Y, Mori M. Amino acid requirements for the growth and enterotoxin production by Staphylococcus aureus in chemically defined media. Int J Food Microbiol. 1997;36:77–82.CAS 
    PubMed 
    Article 

    Google Scholar 
    82.Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol. 2018;35:1547–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    83.Guindon S, Dufayard J-F, Lefort V, Anisimova M, Hordijk W, Gascuel O. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol. 2010;59:307–21.CAS 
    PubMed 
    Article 

    Google Scholar 
    84.Lefort V, Longueville J-E, Gascuel O. SMS: smart model selection in PhyML. Mol Biol Evol. 2017;34:2422–4.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    85.Kuznetsov A, Bollin CJ. NCBI Genome Workbench: desktop software for comparative genomics, visualization, and GenBank data submission. Methods Mol Biol. 2021;2231:261–95.CAS 
    PubMed 
    Article 

    Google Scholar 
    86.Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25:1754–60.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    Sexual dimorphism in size and shape of the head in the sea snake Emydocephalus annulatus (Hydrophiinae, Elapidae)

    1.Andersson, M. Sexual Selection (Princeton University Press, 1996).
    Google Scholar 
    2.Clutton-Brock, T. H. The Evolution of Parental Care (Princeton University Press, 1991).Book 

    Google Scholar 
    3.Olsson, M., Shine, R., Wapstra, E., Ujvari, B. & Madsen, T. Sexual dimorphism in lizard body shape: The roles of sexual selection and fecundity selection. Evolution 56, 1538–1542 (2002).Article 

    Google Scholar 
    4.McPherson, F. J. & Chenoweth, P. J. Mammalian sexual dimorphism. Anim. Reprod. Sci. 131, 109–122 (2012).Article 
    CAS 

    Google Scholar 
    5.Shine, R. The evolution of large body size in females: A critique of Darwin’s “fecundity advantage” model. Am. Nat. 131, 124–131 (1988).Article 

    Google Scholar 
    6.Fairbairn, D. J. et al. (eds) Sex, Size and Gender Roles: Evolutionary Studies of Sexual Size Dimorphism (Oxford University Press, 2007).
    Google Scholar 
    7.Slatkin, M. Ecological causes of sexual dimorphism. Evolution 38, 622–630 (1984).Article 

    Google Scholar 
    8.Shine, R. Ecological causes for the evolution of sexual dimorphism: A review of the evidence. Q. Rev. Biol. 64, 419–461 (1989).Article 
    CAS 

    Google Scholar 
    9.Herrel, A., Spithoven, L., Van Damme, R. & De Vree, F. Sexual dimorphism of head size in Gallotia galloti: Testing the niche divergence hypothesis by functional analyses. Funct. Ecol. 13, 289–297 (1999).Article 

    Google Scholar 
    10.Pearson, D., Shine, R. & How, R. Sex-specific niche partitioning and sexual size dimorphism in Australian pythons (Morelia spilota imbricata). Biol. J. Linn. Soc. 77, 113–125 (2002).Article 

    Google Scholar 
    11.Hierlihy, C. A., Garcia-Collazo, R., Chavez Tapia, C. B. & Mallory, F. F. Sexual dimorphism in the lizard Sceloporus siniferus: Support for the intraspecific niche divergence and sexual selection hypotheses. Salamandra 49, 1–6 (2013).
    Google Scholar 
    12.Vitt, L. J. & Cooper, W. E. Jr. The evolution of sexual dimorphism in the skink Eumeces laticeps: An example of sexual selection. Can. J. Zool. 63, 995–1002 (1985).Article 

    Google Scholar 
    13.Shine, R. Intersexual dietary divergence and the evolution of sexual dimorphism in snakes. Am. Nat. 138, 103–122 (1991).Article 

    Google Scholar 
    14.Fitzgerald, M. & Shine, R. Mate-guarding in free-ranging Carpet Pythons (Morelia spilota). Aust. Zool. 39, 434–439 (2018).Article 

    Google Scholar 
    15.Cundall, D. & Greene, H. W. Feeding in snakes. In Feeding: Form, Function, and Evolution in Tetrapod Vertebrates (ed. Schwenk, K.) 293–333 (Academic Press, 2000).Chapter 

    Google Scholar 
    16.Goiran, C., Dubey, S. & Shine, R. Effects of season, sex and body size on the feeding ecology of turtle-headed sea snakes (Emydocephalus annulatus) on IndoPacific inshore coral reefs. Coral Reefs 32, 527–538 (2013).ADS 
    Article 

    Google Scholar 
    17.Shine, R., Bonnet, X., Elphick, M. J. & Barrott, E. G. A novel foraging mode in snakes: Browsing by the sea snake Emydocephalus annulatus (Serpentes, Hydrophiidae). Funct. Ecol. 18, 16–24 (2004).Article 

    Google Scholar 
    18.Lynch, T. P. The Behavioural Ecology of the Olive Sea Snake, Aipysurus laevis. PhD thesis, James Cook University (2000).19.Borczyk, B., Paśko, Ł, Kusznierz, J. & Bury, S. Sexual dimorphism and skull size and shape in the highly specialized snake species, Aipysurus eydouxii (Elapidae: Hydrophiinae). PeerJ 9, e11311 (2021).Article 

    Google Scholar 
    20.Queral-Regil, A. & King, R. B. Evidence for phenotypic plasticity in snake body size and relative head dimensions in response to amount and size of prey. Copeia 1998, 423–429 (1998).Article 

    Google Scholar 
    21.Bonnet, X., Shine, R., Naulleau, G. & Thiburce, C. Plastic vipers: influence of food intake on the size and shape of Gaboon vipers (Bitis gabonica). J. Zool. 255, 341–351 (2001).Article 

    Google Scholar 
    22.Sanders, K. L., Lee, M. S., Leys, R., Foster, R. & Keogh, J. S. Molecular phylogeny and divergence dates for Australasian elapids and sea snakes (Hydrophiinae): Evidence from seven genes for rapid evolutionary radiations. J. Evol. Biol. 21, 682–695 (2008).Article 
    CAS 

    Google Scholar 
    23.Aubret, F. & Shine, R. Genetic assimilation and the postcolonization erosion of phenotypic plasticity in island tiger snakes. Curr. Biol. 19, 1932–1936 (2009).Article 
    CAS 

    Google Scholar 
    24.McCarthy, C. J. Adaptations of sea snakes that eat fish eggs; with a note on the throat musculature of Aipysurus eydouxi (Gray, 1849). J. Nat. Hist. 21, 1119–1128 (1987).Article 

    Google Scholar 
    25.Shine, R., Shine, T. G., Brown, G. P. & Goiran, C. Life history traits of the sea snake Emydocephalus annulatus, based on a 17-yr study. Coral Reefs 39, 1407–1414 (2020).Article 

    Google Scholar 
    26.Segall, M., Cornette, R., Fabre, A. C., Godoy-Diana, R. & Herrel, A. Does aquatic foraging impact head shape evolution in snakes? Proc. R. Soc. B 283, 20161645 (2016).Article 

    Google Scholar 
    27.Avolio, C., Shine, R. & Pile, A. J. The adaptive significance of sexually dimorphic scale rugosity in sea snakes. Am. Nat. 167, 728–738 (2006).Article 

    Google Scholar 
    28.Sherratt, E., Rasmussen, A. R. & Sanders, K. L. Trophic specialization drives morphological evolution in sea snakes. R. Soc. Open Sci. 5, 172141 (2018).ADS 
    Article 

    Google Scholar 
    29.Frédérich, B. & Parmentier, E. (eds) Biology of Damselfishes (CRC Press, 2016).
    Google Scholar 
    30.Heatwole, H. Sea Snakes 2nd edn. (Krieger Publishing Company, 1999).
    Google Scholar 
    31.Lukoschek, V. & Shine, R. Sea snakes rarely venture far from home. Ecol. Evol. 2, 1113–1121 (2012).Article 

    Google Scholar 
    32.Shine, R., Shine, T. & Shine, B. Intraspecific habitat partitioning by the sea snake Emydocephalus annulatus (Serpentes, Hydrophiidae): The effects of sex, body size, and colour pattern. Biol. J. Linn. Soc. 80, 1–10 (2003).Article 

    Google Scholar 
    33.Goiran, C., Brown, G. P. & Shine, R. Niche partitioning within a population of sea snakes is constrained by ambient thermal homogeneity and small prey size. Biol. J. Linn. Soc. 129, 644–651 (2020).Article 

    Google Scholar  More

  • in

    Seasonal variation in reversal learning reveals greater female cognitive flexibility in African striped mice

    Seasonal changes in weather, food availability and mice body conditionThe weather was hot and dry during summer (temperature: 24.42 ± 0.36 °C; total rainfall: 0.60 mm) and temperatures were lower and rainfall was higher during the winter months (temperature: 13.47 ± 0.45 °C; total rainfall: 39.60 mm; LM: N = 138, F = 368.4, P  More

  • in

    Urohidrosis as an overlooked cooling mechanism in long-legged birds

    1.Amat, J. A. & Masero, J. A. How Kentish plovers, Charadrius alexandrinus, cope with heat stress during incubation. Behav. Ecol. Sociobiol. 56, 26–33 (2004).Article 

    Google Scholar 
    2.du Plessis, K. L., Martin, R. O., Hockey, P. A. R., Cunningham, S. J. & Ridley, A. R. The costs of keeping cool in a warming world: Implications of high temperatures for foraging, thermoregulation and body condition of an arid-zone bird. Glob. Chang. Biol. 18, 3063–3070 (2012).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    3.Cunningham, S. J., Martin, R. O. & Hockey, P. A. R. Can behaviour buffer the impacts of climate change on an arid-zone bird?. Ostrich 86, 119–126 (2015).Article 

    Google Scholar 
    4.Smit, B. et al. Behavioural responses to heat in desert birds: implications for predicting vulnerability to climate warming. Clim. Chang. Responses 3, 1–14 (2016).Article 

    Google Scholar 
    5.McNab, B.K. The Physiological Ecology of Vertebrates: A View from Energetics (Cornell University Press, 2002).6.Cunningham, S. J., Gardner, J. L. & Martin, R. O. Opportunity costs and the response of birds and mammals to climate warming. Front. Ecol. Environ. 1, 1–8. https://doi.org/10.1002/fee.2324 (2021).Article 

    Google Scholar 
    7.Wolf, B. O., Wooden, K. M. & Walsberg, G. E. The use of thermal refugia by two small desert birds. Condor 98(2), 424–428 (1996).Article 

    Google Scholar 
    8.Cook, T. R. et al. Parenting in a warming world: Thermoregulatory responses to heat stress in an endangered seabird. Conserv. Physiol. 8, 1–13 (2020).Article 

    Google Scholar 
    9.Speakman, J. R. & Król, E. Maximal heat dissipation capacity and hyperthermia risk: Neglected key factors in the ecology of endotherms. J. Anim. Ecol. 79, 726–746 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    10.Nilsson, J. Å. & Nord, A. Testing the heat dissipation limit theory in a breeding passerine. Proc. R. Soc. B Biol. Sci. 285, 1 (2018).
    Google Scholar 
    11.Nord, A. & Nilsson, J. Å. Heat dissipation rate constrains reproductive investment in a wild bird. Funct. Ecol. 33, 250–259 (2019).Article 

    Google Scholar 
    12.Tapper, S., Nocera, J. J. & Burness, G. Heat dissipation capacity influences reproductive performance in an aerial insectivore. J. Exp. Biol. 223, 1 (2020).
    Google Scholar 
    13.Buckley, L. B., Ehrenberger, J. C. & Angilletta, M. J. Thermoregulatory behaviour limits local adaptation of thermal niches and confers sensitivity to climate change. Funct. Ecol. 29, 1038–1047 (2015).Article 

    Google Scholar 
    14.Edwards, E. K., Mitchell, N. J. & Ridley, A. R. The impact of high temperatures on foraging behaviour and body condition in the Western Australian Magpie Cracticus tibicen dorsalis. Ostrich 86, 137–144 (2015).Article 

    Google Scholar 
    15.Thompson, M. L., Cunningham, S. J. & McKechnie, A. E. Interspecific variation in avian thermoregulatory patterns and heat dissipation behaviours in a subtropical desert. Physiol. Behav. 188, 311–323 (2018).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    16.Kemp, R. et al. Sublethal fitness costs of chronic exposure to hot weather vary between sexes in a threatened desert lark. Emu 120, 216–229 (2020).Article 

    Google Scholar 
    17.Funghi, C., McCowan, L. S. C., Schuett, W. & Griffith, S. C. High air temperatures induce temporal, spatial and social changes in the foraging behaviour of wild zebra finches. Anim. Behav. 149, 33–43 (2019).Article 

    Google Scholar 
    18.Pattinson, N. B. et al. Heat dissipation behaviour of birds in seasonally hot arid-zones: are there global patterns?. J. Avian Biol. 51, 1–11 (2020).Article 

    Google Scholar 
    19.Moyer-Horner, L., Mathewson, P. D., Jones, G. M., Kearney, M. R. & Porter, W. P. Modeling behavioral thermoregulation in a climate change sentinel. Ecol. Evol. 5, 5810–5822 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    20.Moore, D., Stow, A. & Kearney, M. R. Under the weather?—The direct effects of climate warming on a threatened desert lizard are mediated by their activity phase and burrow system. J. Anim. Ecol. 87, 660–671 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    21.Bladon, A. J. et al. Behavioural thermoregulation and climatic range restriction in the globally threatened ethiopian bush-crow Zavattariornis stresemanni. Ibis 161(3), 546–558. https://doi.org/10.1111/ibi.12660 (2019).Article 

    Google Scholar 
    22.Conradie, S. R., Woodborne, S. M., Cunningham, S. J. & McKechnie, A. E. Chronic, sublethal effects of high temperatures will cause severe declines in southern African arid-zone birds during the 21st century. Proc. Natl. Acad. Sci. USA 116, 14065–14070 (2019).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    23.Enriquez-Urzelai, U. et al. The roles of acclimation and behaviour in buffering climate change impacts along elevational gradients. J. Anim. Ecol. 89, 1722–1734 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    24.Albright, T. P. et al. Mapping evaporative water loss in desert passerines reveals an expanding threat of lethal dehydration. Proc. Natl. Acad. Sci. USA 114, 2283–2288 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    25.Dawson, W. R. Evaporative losses of water by birds. Comp. Biochem. Physiol. Part A Physiol. 71, 495–509 (1982).Article 
    CAS 

    Google Scholar 
    26.Wolf, B. O. & Walsberg, G. E. Respiratory and cutaneous evaporative water loss at high environmental temperatures in a small bird. J. Exp. Biol. 199, 451–457 (1996).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    27.Calder, W. A. & Smichdt-Nielsen, K. Evaporative cooling and respiratory alkalosis in the pigeon. Proc. Natl. Acad. Sci. USA 55(4), 750–756. https://doi.org/10.1073/pnas.55.4.750 (1966).ADS 
    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    28.Bartholomew, G. A. The role of behavior in the temperature regulation of the masked booby. Condor 68, 523–535. https://doi.org/10.2307/1366261 (1966).Article 

    Google Scholar 
    29.Bryant, D. M. Heat stress in tropical birds: behavioural thermoregulation during flight. Ibis (Lond. 1859). 125, 313–323 (1983).30.Tattersall, G. J., Andrade, D. V. & Abe, A. S. Heat exchange from the toucan bill reveals a controllable vascular thermal radiator. Science (80-. ). 325, 468–470 (2009).31.Van De Ven, T. M. F. N., Martin, R. O., Vink, T. J. F., McKechnie, A. E. & Cunningham, S. J. Regulation of heat exchange across the hornbill beak: Functional similarities with toucans?. PLoS ONE 11, 1–14 (2016).
    Google Scholar 
    32.Van Vuuren, A. K., Kemp, L. V. & McKechnie, A. E. The beak and unfeathered skin as heat radiators in the southern ground-hornbill. J. Avian Biol. 51, 1–7 (2020).
    Google Scholar 
    33.Winkler, D.W., Billerman, S.M. & Lovette, I.J. Storks (Ciconiidae), version 1.0. In Birds of the World (S. M. Billerman, B. K. Keeney, P. G. Rodewald, and T. S. Schulenberg, Editors). Cornell Lab of Ornithology (2020) https://doi.org/10.2173/bow.ciconi2.0134.Kahl, P. M. Thermoregulation in the wood stork, with special reference to the role of the legs. Physiol Zool. 36(2), 141–151 (1963).Article 

    Google Scholar 
    35.Steen, I. & Steen, J. B. The Importance of the Legs in the Thermoregulation of Birds. Acta Physiol. Scand. 63, 285–291 (1965).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    36.Hainsworth, F. R. Saliva spreading, activity and body temperature regulation in the rat. Am J Physiol. 212, 1288–1292 (1967).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    37.Gentry, R. L. Thermoregulatory behavior of eared seals. Behaviour 46(2), 73–93. https://doi.org/10.1163/156853973×00175 (1973).Article 
    PubMed 
    CAS 
    PubMed Central 

    Google Scholar 
    38.Sturbaum, B. A. & Riedesel, M. L. Dissipation of stored body heat by the ornate box turtle, Terrapene ornata. Comp. Biochem. Physiol. Part A Physiol. 58, 93–97 (1977).Article 

    Google Scholar 
    39.Marder, J., Porat, I., Raber, P. & Adler, J. Acid-base balance and body temperature regulation of heat stressed Psammomys obesus (Gerbillinae): The effect of bicarbonate loss via saliva spreading. Physiol Zool. 56(3), 389–396. https://doi.org/10.1086/physzool.56.3.30152603 (1983).Article 

    Google Scholar 
    40.Hatch, D. E. Energy conserving and heat dissipating mechanisms of the turkey vulture. Auk 87(1), 111–124. https://doi.org/10.2307/4083662 (1970).Article 

    Google Scholar 
    41.Cooper, J. & Siegfried, W. R. Behavioural responses of young cape gannets Sula capensis to high ambient temperatures. Mar. Behav. Physiol. 3, 211–220 (1976).Article 

    Google Scholar 
    42.Thomas, B. T. Maguari Stork Nesting: Juvenile Growth and Behavior. Auk 101, 812–823 (1984).Article 

    Google Scholar 
    43.Hancock, J.A., Kushlan, J.A. & Kahl, M.P. Storks, Ibises and Spoonbills of the World (Academic Press, 1992).44.Townsend, H., Huyvaert, K. P., Hodum, P. J. & Anderson, D. J. Nesting distributions of Galapagos boobies (Aves: Sulidae): an apparent case of amensalism. Oecologia 132, 419–427. https://doi.org/10.1007/s00442-002-0992-7 (2002).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    45.Finkelstein, M., Kuspa, Z., Snyder, N.F. & Schmitt, N.J. California condor (Gymnogyps californianus), version 2.0. In The Birds of North America (P. G. Rodewald, Editor). Cornell Lab of Ornithology (2015). https://doi.org/10.2173/bna.61046.Czenze, Z. J. et al. Regularly drinking desert birds have greater evaporative cooling capacity and higher heat tolerance limits than non-drinking species. Funct. Ecol. 34, 1589–1600 (2020).Article 

    Google Scholar 
    47.Nudds, R. L. & Oswald, S. A. An interspecific test of Allen’s rule: Evolutionary implications for endothermic species. Evolution (N. Y). 61, 2839–2848 (2007).48.Symonds, M. R. E. & Tattersall, G. J. Geographical variation in bill size across bird species provides evidence for Allen’s rule. Am. Nat. 176, 188–197 (2010).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    49.Galván, I., Rodríguez-Martínez, S. & Carrascal, L. M. Dark pigmentation limits thermal niche position in birds. Funct. Ecol. 32, 1531–1540 (2018).Article 

    Google Scholar 
    50.Wilman, H. et al. EltonTraits 1 . 0 : Species-level foraging attributes of the world ’ s birds and mammals. Ecology 95, 2027 (2014).51.Brooke, M. D. L. Ecological factors influencing the occurrence of ‘flash marks’ in wading birds. Funct. Ecol. 12, 339–346 (1998).Article 

    Google Scholar 
    52.Maclean, I. M. D., Mosedale, J. R. & Bennie, J. J. Microclima: An r package for modelling meso- and microclimate. Methods Ecol Evol. 10(2), 280–290. https://doi.org/10.1111/2041-210X.13093 (2019).Article 

    Google Scholar 
    53.Hadfield, A. J. Package ‘ MCMCglmm ’. https://cran.r-project.org/web/packages/MCMCglmm/ (2019)54.Jetz, W., Thomas, G.H., Joy, J.B., Hartmann, K. & Mooers, A.O. 2012. The global diversity of birds in space and time. Nature. 491(7424): 444–448 (2012). https://doi.org/10.1038/nature1163155.Revell, M.L.J. Package ‘ phytools ’ https://cran.r-project.org/web/packages/phytools/ (2020)56.Freckleton, R. P., Harvey, P. H. & Pagel, M. Phylogenetic analysis and comparative data: A test and review of evidence. Am. Nat. 160, 712–726 (2002).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    57.Bates, D., Mächler, M., Bolker, B. M. & Walker, S. C. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, (2015).58.Crawley, M.J. The R Book (John Wiley & Sons, 2013).59.Barton, K. Package MuMin: Multi-model Inference https://cran.r-project.org/web/packages/MuMIn/index.html (2020).60.Grueber, C. E., Nakagawa, S., Laws, R. J. & Jamieson, I. G. Multimodel inference in ecology and evolution: Challenges and solutions. J. Evol. Biol. 24, 699–711 (2011).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    61.Symonds, M. R. E. & Moussalli, A. A brief guide to model selection, multimodel inference and model averaging in behavioural ecology using Akaike’s information criterion. Behav. Ecol. Sociobiol. 65, 13–21 (2011).Article 

    Google Scholar 
    62.R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/ (2020).63.Bakken, G. S. & Angilletta, M. J. How to avoid errors when quantifying thermal environments. Funct. Ecol. 28, 96–107 (2014).Article 

    Google Scholar 
    64.van Dyk, M., Noakes, M. J. & McKechnie, A. E. Interactions between humidity and evaporative heat dissipation in a passerine bird. J. Comp. Physiol. B. 189, 299–308. https://doi.org/10.1007/s00360-019-01210-2 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    65.Webster, M.D., Campbell, G.S. & King, J.R. Cutaneous resistance to water-vapor diffusion in pigeons and the role of the plumage. Physiol. Zool. 58(1): 58–70 (1985). http://www.jstor.org/stable/30161220.66.Battley, P. F., Rogers, D. I., Piersma, T. & Koolhaas, A. Behavioural evidence for heat-load problems in Great Knots in tropical Australia fuelling for long-distance flight. Emu 103, 97–103 (2003).Article 

    Google Scholar 
    67.Piersma, T. & van Gils, J.A. The Flexible Phenotype: A Body-Centered Integration of Ecology, Physiology, and Behavior (Oxford University Press, 2011).68.Fitzpatrick, M. J., Mathewson, P. D. & Porter, W. P. Validation of a mechanistic model for non-invasive study of ecological energetics in an endangered wading bird with counter-current heat exchange in its legs. PLoS ONE 10, 1–34 (2015).Article 
    CAS 

    Google Scholar 
    69.Lustick, S., Battersby, B. & Kelty, M. Effects of insolation on juvenile herring gull energetics and behavior. Ecologia. 60(4), 673–678. https://doi.org/10.2307/1936603 (1979).Article 

    Google Scholar 
    70.Ward, J. M., Blount, J. D., Ruxton, G. D. & Houston, D. C. The adaptive significance of dark plumage for birds in desert environments. Ardea 90, 311–323 (2002).
    Google Scholar 
    71.Nicolaï, M. P. J., Shawkey, M. D., Porchetta, S., Claus, R. & D’Alba, L. Exposure to UV radiance predicts repeated evolution of concealed black skin in birds. Nat. Commun. 11, (2020).72.Mitchell, D. et al. Revisiting concepts of thermal physiology: Predicting responses of mammals to climate change. J. Anim. Ecol. 87, 956–973 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    73.Walsberg, G. E., Campbell, G. S. & King, J. R. Animal coat color and radiative heat gain: A re-evaluation. J. Comp. Physiol. B 126, 211–222 (1978).Article 

    Google Scholar 
    74.McFarland, D. J. & Baher, E. Factors affecting feather posture in the barbary dove. Anim. Behav. 16, 171–177 (1968).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    75.Hohtola, E., Rintamäki, H. & Hissa, R. Shivering and ptiloerection as complementary cold defense responses in the pigeon during sleep and wakefulness. J Comp Physiol. 136, 77–81. https://doi.org/10.1007/BF00688626 (1980).Article 

    Google Scholar 
    76.Kahl, P. M. Spread-wing postures and their possible functions in the Ciconiidae. Auk 88(4), 715–722. https://doi.org/10.2307/4083833 (1971).Article 

    Google Scholar 
    77.Dawson, T. J., Robertshaw, D. & Taylor, C. R. Sweating in the kangaroo: A cooling mechanism during exercise, but not in the heat. Am J Physiol. 227(2), 494–498. https://doi.org/10.1152/ajplegacy.1974.227.2.494 (1974).Article 
    PubMed 
    CAS 
    PubMed Central 

    Google Scholar 
    78.Hoffman, T. C. M., Walsberg, G. E. & DeNardo, D. F. Cloacal evaporation: an important and previously undescribed mechanism for avian thermoregulation. J. Exp. Biol. 210, 741–749 (2007).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    79.Graves, G. R. Urohidrosis and tarsal color in Cathartes vultures (Aves: Cathartidae). Proc. Biol. Soc. Washingt. 132, 56–64 (2019).Article 

    Google Scholar 
    80.Torres, R. & Velando, A. Male preference for female foot colour in the socially monogamous blue-footed booby, Sula nebouxii.. Anim. Behav. 69, 59–65 (2005).Article 

    Google Scholar 
    81.López-Rull, I., Lifshitz, N., Macías Garcia, C., Graves, J. A. & Torres, R. Females of a polymorphic seabird dislike foreign-looking males. Anim. Behav. 113, 31–38 (2016).82.Gutiérrez, J. S. & Soriano-Redondo, A. Laterality in foraging phalaropes promotes phenotypically assorted groups. Behav. Ecol. 31, 1429–1435 (2021).Article 

    Google Scholar 
    83.Jarić, I. et al. iEcology: Harnessing large online resources to generate ecological insights. Trends Ecol. Evol. 35, 630–639 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    84.Vrettos, M., Reynolds, C. & Amar, A. Malar stripe size and prominence in peregrine falcons vary positively with solar radiation: support for the solar glare hypothesis. Biol. Lett. 17, 20210116. https://doi.org/10.1098/rsbl.2021.0116 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    SNP markers reveal relationships between fruit paternity, fruit quality and distance from a cross-pollen source in avocado orchards

    1.Ashman, T.-L. et al. Pollen limitation of plant reproduction: Ecological and evolutionary causes and consequences. Ecology 85, 2408–2421 (2004).Article 

    Google Scholar 
    2.Ricketts, T. H. et al. Landscape effects on crop pollination services: Are there general patterns?. Ecol. Lett. 11, 499–515 (2008).Article 

    Google Scholar 
    3.Rollin, O. & Garibaldi, L. A. Impacts of honeybee density on crop yield: A meta-analysis. J. Appl. Ecol. 56, 1152–1163. https://doi.org/10.1111/1365-2664.13355 (2019).Article 

    Google Scholar 
    4.Bennett, J. M. et al. Land use and pollinator dependency drives global patterns of pollen limitation in the Anthropocene. Nat. Commun. 11, 3999. https://doi.org/10.1038/s41467-020-17751-y (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    5.Aizen, M. A. & Harder, L. D. Expanding the limits of the pollen-limitation concept: Effects of pollen quantity and quality. Ecology 88, 271–281 (2007).Article 

    Google Scholar 
    6.Igic, B. & Kohn, J. R. The distribution of plant mating systems: Study bias against obligately outcrossing species. Evolution 60, 1098–1103 (2006).Article 

    Google Scholar 
    7.Abrol, D. P. Pollination Biology: Biodiversity and Conservation and Agricultural Production. Applied Pollination: Present Scenario 55–83 (Springer, 2012).
    Google Scholar 
    8.Frankel, R. & Galun, E. Pollination Mechanisms, Reproduction and Plant Breeding Vol. 2 (Springer Verlag, 1977).Book 

    Google Scholar 
    9.Schneider, D., Goldway, M., Rotman, N., Adato, I. & Stern, R. A. Cross-pollination improves ‘Orri’ mandarin fruit yield. Sci. Hortic. 122, 380–384 (2009).Article 

    Google Scholar 
    10.Fattahi, R., Mohammadzedeh, M. & Khadivi-Khub, A. Influence of different pollen sources on nut and kernel characteristics of hazelnut. Sci. Hortic. 173, 15–19 (2014).Article 

    Google Scholar 
    11.Żurawicz, E., Studnicki, M., Kubik, J. & Pruski, K. A careful choice of compatible pollinizers significantly improves the size of fruits in red raspberry (Rubus idaeus L.). Sci. Hortic. 235, 253–257 (2018).Article 

    Google Scholar 
    12.Garibaldi, L. A. et al. Wild pollinators enhance fruit set of crops regardless of honey bee abundance. Science 339, 1608–1611. https://doi.org/10.1126/science.1230200 (2013).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    13.Willcox, B. K., Aizen, M. A., Cunningham, S. A., Mayfield, M. M. & Rader, R. Deconstructing pollinator community effectiveness. Curr. Opin. Insect. Sci. 21, 98–104. https://doi.org/10.1016/j.cois.2017.05.012 (2017).Article 
    PubMed 

    Google Scholar 
    14.Richards, T. E. et al. Relationships between nut size, kernel quality, nutritional composition and levels of outcrossing in three macadamia cultivars. Plants 9, 228 (2020).CAS 
    Article 

    Google Scholar 
    15.van Nocker, S. & Gardiner, S. E. Breeding better cultivars, faster: Applications of new technologies for the rapid deployment of superior horticultural tree crops. Hortic. Res. 1, 14022. https://doi.org/10.1038/hortres.2014.22 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    16.Isaacs, R. & Kirk, A. K. Pollination services provided to small and large highbush blueberry fields by wild and managed bees. J. Appl. Ecol. 47, 841–849 (2010).Article 

    Google Scholar 
    17.Brittain, C., Kremen, C., Garber, A. & Klein, A.-M. Pollination and plant resources change the nutritional quality of almonds for human health. PLoS ONE 9, e90082. https://doi.org/10.1371/journal.pone.0090082 (2014).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    18.Klatt, B. K. et al. Bee pollination improves crop quality, shelf life and commercial value. Proc. R. Soc. B 281, 20132440 (2014).Article 

    Google Scholar 
    19.Crane, J. et al. in The Avocado: Botany, Production and Uses (eds. Schaffer, B., Wolstenholme, B. N. & Whiley, A. W.) 200–233 (CABI, 2013).20.Duarte, P. F., Chaves, M. A., Borges, C. D. & Mendonça, C. R. B. Avocado: Characteristics, health benefits and uses. Ciênc. Rural 46, 747–754. https://doi.org/10.1590/0103-8478cr20141516 (2016).CAS 
    Article 

    Google Scholar 
    21.Dreher, M. L. & Davenport, A. J. Hass avocado composition and potential health effects. Crit. Rev. Food Sci. Nutr. 53, 738–750. https://doi.org/10.1080/10408398.2011.556759 (2013).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    22.Araújo, R. G., Rodriguez-Jasso, R. M., Ruiz, H. A., Pintado, M. M. E. & Aguilar, C. N. Avocado by-products: Nutritional and functional properties. Trends Food Sci. Technol. 80, 51–60. https://doi.org/10.1016/j.tifs.2018.07.027 (2018).CAS 
    Article 

    Google Scholar 
    23.Lerman-Garber, I., Ichazo-Cerro, S., Zamora-González, J., Cardoso-Saldaña, G. & Posadas-Romero, C. Effect of a high-monounsaturated fat diet enriched with avocado in NIDDM patients. Diabetes Care 17, 311–315. https://doi.org/10.2337/diacare.17.4.311 (1994).CAS 
    Article 
    PubMed 

    Google Scholar 
    24.López, L. R. et al. Monounsaturated fatty acid (avocado) rich diet for mild hypercholesterolemia. Arch. Med. Res. 27, 519–523 (1996).
    Google Scholar 
    25.Kris-Etherton, P. M. et al. High-monounsaturated fatty acid diets lower both plasma cholesterol and triacylglycerol concentrations. Am. J. Clin. Nutr. 70, 1009–1015 (1999).CAS 
    Article 

    Google Scholar 
    26.Trueman, S. J., Richards, S., McConchie, C. A. & Turnbull, C. G. N. Relationships between kernel oil content, fruit removal force and abscission in macadamia. Aust. J. Exp. Agric. 40, 859–866 (2000).Article 

    Google Scholar 
    27.Stout, A. B. A Study in Cross-Pollination of Avocados in Southern California (New York Botanical Garden, 1923).
    Google Scholar 
    28.Blanke, M. M. & Lovatt, C. J. Anatomy and transpiration of the avocado inflorescence. Ann. Bot. 71, 543–547. https://doi.org/10.1006/anbo.1993.1070 (1993).Article 

    Google Scholar 
    29.Salazar-García, S., Garner, L. C. & Lovatt, C. J. in The Avocado: Botany, Production and Uses. Reproductive Biology (eds. Schaffer, B., Wolstenholme, B. N. & Whiley, A. W.) 118–167 (CABI, 2013).30.Garner, L. C. & Lovatt, C. J. The relationship between flower and fruit abscission and alternate bearing of ‘Hass’ avocado. J. Am. Soc. Hortic. Sci. 133, 3–10. https://doi.org/10.21273/jashs.133.1.3 (2008).Article 

    Google Scholar 
    31.Vithanage, V. The role of the European honeybee (Apis mellifera L.) in avocado pollination. J. Hortic. Sci. 65, 81–86. https://doi.org/10.1080/00221589.1990.11516033 (1990).Article 

    Google Scholar 
    32.Perez-Balam, J. et al. The contribution of honey bees, flies and wasps to avocado (Persea americana) pollination in southern Mexico. J. Pollinat. Ecol. 8, 42–47 (2012).Article 

    Google Scholar 
    33.Ying, Z., Davenport, T. L. R., Zhang, T., Schnell, R. J. & Tondo, C. L. Selection of highly informative microsatellite markers to identify pollen donors in “Hass” avocado orchards. Plant Mol. Biol. Rep. 27, 374–380 (2009).CAS 
    Article 

    Google Scholar 
    34.Alcaraz, M. & Hormaza, J. Influence of physical distance between cultivars on yield, outcrossing rate and selective fruit drop in avocado (Persea americana, Lauraceae). Ann. Appl. Biol. 158, 354–361 (2011).Article 

    Google Scholar 
    35.Borrone, J. W. et al. Outcrossing in Florida avocados as measured using microsatellite markers. J. Am. Soc. Hortic. Sci. 133, 255–261 (2008).Article 

    Google Scholar 
    36.Schnell, R. J. et al. Outcrossing between ‘Bacon’ pollinizers and adjacent ‘Hass’ avocado trees and the description of two new lethal mutants. HortScience 44, 1522. https://doi.org/10.21273/hortsci.44.6.1522 (2009).Article 

    Google Scholar 
    37.Degani, C., Goldring, A., Adato, I., El-Batsri, R. & Gazit, S. Pollen parent effect on outcrossing rate, yield, and fruit characteristics of `Fuerte’ avocado. HortScience 25, 471. https://doi.org/10.21273/hortsci.25.4.471 (1990).Article 

    Google Scholar 
    38.Sedgley, M. & Annells, C. M. Flowering and fruit-set response to temperature in the avocado cultivar ‘Hass’. Sci. Hortic. 14, 27–33. https://doi.org/10.1016/0304-4238(81)90075-3 (1981).Article 

    Google Scholar 
    39.Degani, C., El-Batsri, R. & Gazit, S. Outcrossing rate, yield, and selective fruit abscission in “Ettinger” and “Ardith” avocado plots. J. Am. Soc. Hortic. Sci. 122, 813–817 (1997).Article 

    Google Scholar 
    40.Ying, Z. et al. Re-evaluation of the roles of honeybees and wind on pollination in avocado. J. Hortic. Sci. Biotechnol. 84, 255–260. https://doi.org/10.1080/14620316.2009.11512513 (2009).Article 

    Google Scholar 
    41.Sapir, G. et al. Synergistic effects between bumblebees and honey bees in apple orchards increase cross pollination, seed number and fruit size. Sci. Hortic. 219, 107–117. https://doi.org/10.1016/j.scienta.2017.03.010 (2017).Article 

    Google Scholar 
    42.Stern, R., Eisikowitch, D. & Dag, A. Sequential introduction of honeybee colonies and doubling their density increases cross-pollination, fruit-set and yield in ‘Red Delicious’ apple. J. Hortic. Sci. Biotechnol. 76, 17–23. https://doi.org/10.1080/14620316.2001.11511320 (2001).Article 

    Google Scholar 
    43.Kämper, W., Trueman, S. J., Ogbourne, S. M. & Wallace, H. M. Pollination services in macadamia depend on across-orchard transport of cross pollen. J. Appl. Ecol. (under review).44.Robbertse, P. J., Coetzer, L. A., Johannsmeier, M. F., Köhne, J. S. & Morudu, T. M. Hass Yield and Fruit Size as Influenced by Pollination and Pollen Donor—A Joint Progress Report 63–67 (South African Avocado Growers’ Association Yearbook, 1996).
    Google Scholar 
    45.Araújo, E., Costa, M., Chaud-Netto, J. & Fowler, H. G. Body size and flight distance in stingless bees (Hymenoptera: Meliponini): Inference of flight range and possible ecological implications. Braz. J. Biol. 64, 563–568 (2004).Article 

    Google Scholar 
    46.Jalali-Khanabadi, B.-A., Mozaffari-Khosravi, H. & Parsaeyan, N. Effects of almond dietary supplementation on coronary heart disease lipid risk factors and serum lipid oxidation parameters in men with mild hyperlipidemia. J. Altern. Complement. Med. 16, 1279–1283 (2010).Article 

    Google Scholar 
    47.Kaiser, C. & Wolstenholme, B. N. Aspects of delayed harvest of ‘Hass’ avocado (Persea americana Mill.) fruit in a cool subtropical climate. I. Fruit lipid and fatty acid accumulation. J. Hortic. Sci. 69, 437–445. https://doi.org/10.1080/14620316.1994.11516473 (1994).CAS 
    Article 

    Google Scholar 
    48.Smil, V. Phosphorus in the environment: Natural flows and human interferences. Annu. Rev. Environ. Resour. 25, 53–88. https://doi.org/10.1146/annurev.energy.25.1.53 (2000).Article 

    Google Scholar 
    49.Bangerth, F. Calcium-related physiological disorders of plants. Annu. Rev. Phytopathol. 17, 97–122. https://doi.org/10.1146/annurev.py.17.090179.000525 (1979).CAS 
    Article 

    Google Scholar 
    50.Witney, G. W., Hofman, P. J. & Wolstenholme, B. N. Effect of cultivar, tree vigour and fruit position on calcium accumulation in avocado fruits. Sci. Hortic. 44, 269–278. https://doi.org/10.1016/0304-4238(90)90127-Z (1990).CAS 
    Article 

    Google Scholar 
    51.Matoh, T. & Kobayashi, M. Boron and calcium, essential inorganic constituents of pectic polysaccharides in higher plant cell walls. J. Plant Res. 111, 179–190 (1998).CAS 
    Article 

    Google Scholar 
    52.Hopkirk, G., White, A., Beever, D. J. & Forbes, S. K. Influence of postharvest temperatures and the rate of fruit ripening on internal postharvest rots and disorders of New Zealand ‘Hass’ avocado fruit. N. Z. J. Crop Hortic. Sci. 22, 305–311. https://doi.org/10.1080/01140671.1994.9513839 (1994).Article 

    Google Scholar 
    53.Meir, S. et al. Prolonged storage of `Hass’ avocado fruit using modified atmosphere packaging. Postharvest Biol. Technol. 12, 51–60. https://doi.org/10.1016/S0925-5214(97)00038-0 (1997).CAS 
    Article 

    Google Scholar 
    54.Flitsanov, U., Mizrach, A., Liberzon, A., Akerman, M. & Zauberman, G. Measurement of avocado softening at various temperatures using ultrasound. Postharvest Biol. Technol. 20, 279–286 (2000).Article 

    Google Scholar 
    55.Hofman, P. J., Bower, J. & Woolf, A. in The Avocado: Botany, Production and Uses. Harvesting, Packing, Postharvest Technology, Transport and Processing (eds. Schaffer, B., Wolstenholme, B. N. & Whiley, A. W.) 489–540 (CABI, 2013).56.McGeehan, S. L. & Naylor, D. V. Automated instrumental analysis of carbon and nitrogen in plant and soil samples. Commun. Soil Sci. Plant Anal. 19, 493–505. https://doi.org/10.1080/00103628809367953 (1988).CAS 
    Article 

    Google Scholar 
    57.Rayment, G. E. & Higginson, F. R. Australian Laboratory Handbook of Soil and Water Chemical Methods (Inkata, 1992).
    Google Scholar 
    58.Munter, R. C. & Grande, R. A. in Developments in Atomic Plasma Spectrochemical Analysis. Plant Tissue and Soil Extract Analysis by ICP-Atomic Emission Spectrometry (ed. Byrnes, R. M.) 653–672 (Heyden, 1981).59.Martinie, G. D. & Schilt, A. A. Wet oxidation efficiencies of perchloric acid mixtures for various organic substances and the identities of residual matter. Anal. Chem. 48, 70–74. https://doi.org/10.1021/ac60365a032 (1976).CAS 
    Article 

    Google Scholar 
    60.Bai, S. H. et al. Nutritional quality of almond, canarium, cashew and pistachio and their oil photooxidative stability. J. Food Sci. Technol. 56, 792–798. https://doi.org/10.1007/s13197-018-3539-6 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    61.Ivanova, N. V., Fazekas, A. J. & Hebert, P. D. N. Semi-automated, membrane-based protocol for DNA isolation from plants. Plant Mol. Biol. Rep. 26, 186–198 (2008).CAS 
    Article 

    Google Scholar 
    62.Kämper, W., Cooke, J., Trueman, S. J. & Ogbourne, S. M. Detection of single nucleotide polymorphisms (SNPs) in avocado cultivars, Persea americana (Lauraceae). Appl. Plant Sci. (submitted).63.Jordon-Thaden, I. E. et al. A basic ddRADseq two-enzyme protocol performs well with herbarium and silica-dried tissues across four genera. Appl. Plant Sci. 8, e11344–e11344. https://doi.org/10.1002/aps3.11344 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    64.Sharon, D. et al. An integrated genetic linkage map of avocado. Theor. Appl. Genet. 95, 911–921 (1997).CAS 
    Article 

    Google Scholar 
    65.Borrone, J. W., Schnell, R. J., Violi, H. A. & Ploetz, R. C. Seventy microsatellite markers from Persea americana Miller (avocado) expressed sequence tags. Mol. Ecol. Resour. 7, 439–444 (2007).CAS 
    Article 

    Google Scholar 
    66.R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2015).
    Google Scholar 
    67.Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. lmerTest package: Tests in linear mixed effects models. J. Stat. Softw. 82, 1–26 (2017).Article 

    Google Scholar  More

  • in

    Decrease in volume and density of foraminiferal shells with progressing ocean acidification

    1.Collins, M. et al. Long-term climate change: Projections, commitments and irreversibility. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, 2013).2.Kawahata, H. et al. Perspective of the response by marine calcifiers to global warming and ocean acidification –Behavior of corals and foraminifers in the high CO2 world in “hot house”. Prog. Earth Planet Sci. 6, 5 (2019).Article 

    Google Scholar 
    3.Kroeker, K. J., Kordas, R. L., Crim, R. N. & Singh, G. G. Meta-analysis reveals negative yet variable effects of ocean acidification on marine organisms. Ecol. Lett. 13, 1419–1434 (2010).Article 

    Google Scholar 
    4.Orr, J. C. et al. Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437, 681–686 (2005).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    5.Schiebel, R. Planktic foraminiferal sedimentation and the marine calcite budget. Glob. Biogeochem. Cycles 16, 1065 (2002).ADS 
    Article 
    CAS 

    Google Scholar 
    6.Keul, N., Langer, G., de Nooijer, L. J. & Bijma, J. Effect of ocean acidification on the benthic foraminifera Ammonia sp. is caused by a decrease in carbonate ion concentration. Biogeosciences 10, 6185–6198 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    7.Doo, S. S., Fujita, K., Byrne, M. & Uthicke, S. Fate of calcifying tropical symbiont-bearing large benthic Foraminifera: Living sands in a changing ocean. Biol. Bull. 226, 169–186 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    8.Prazeres, M., Uthicke, S. & Pandolfi, J. M. Ocean acidification induces biochemical and morphological changes in the calcification process of large benthic foraminifera. Proc. R. Soc. B 282, 20142782 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    9.Iwasaki, S. et al. Sensitivity of planktic foraminiferal test bulk density to ocean acidification. Sci. Rep. 9, 9803 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    10.Hohenegger, J., Kinoshita, S., Briguglio, A., Eder, W. & Wöger, J. Lunar cycles and rainy seasons drive growth and reproduction in nummulitid foraminifera, important producers of carbonate buildups. Sci. Rep. 9, 8286 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    11.Kinoshita, S. et al. Temperature effects on the shell growth of a larger benthic foraminifer (Sorites orbiculus): Results from culture experiments and micro X-ray computed tomography. Mar. Micropaleontol. 163, 101960 (2021).ADS 
    Article 

    Google Scholar 
    12.Fujita, K. & Fujimura, H. Organic and inorganic carbon production by algal symbiont-bearing foraminifera on northwest Pacific coral-reef flat. J. Foraminifer. Res. 38, 117–126 (2008).Article 

    Google Scholar 
    13.Raja, R., Saraswati, P. K., Rogers, K. & Iwao, K. Magnesium and strontium compositions of recent symbiont-bearing benthic foraminifera. Mar. Micropaleontol. 58, 31–44 (2005).ADS 
    Article 

    Google Scholar 
    14.Narayan, G. R. et al. Response of large benthic foraminifera to climate and local changes: Implications for future carbonate production. Sedimentology. 12858. https://doi.org/10.1111/sed.12858 (2021).
    15.Morse, J. W., Andersson, A. J. & Mackenzie, F. T. Initial responses of carbonate-rich shelf sediments to rising atmospheric pCO2 and “ocean acidification”: Role of high Mg-calcites. Geochim. Cosmochim. Acta 70, 5814–5830 (2006).ADS 
    CAS 
    Article 

    Google Scholar 
    16.Fujita, K., Nishi, H. & Saito, T. Population dynamics of Marginopora kudakajimaensis Gudmundsson (Foraminifera: Soritidae) in the Ryukyu Islands, the tropical northwest Pacific. Mar. Micropaleontol. 38, 267–284 (2000).ADS 
    Article 

    Google Scholar 
    17.Kuroyanagi, A., Kawahata, H., Suzuki, A., Fujita, K. & Irie, T. Impacts of ocean acidification on large benthic foraminifers: Results from laboratory experiments. Mar. Micropaleontol. 73, 190–195 (2009).ADS 
    Article 

    Google Scholar 
    18.Barker, S. & Elderfield, H. Foraminiferal calcification response to glacial–interglacial changes in atmospheric CO2. Science 297, 833–836 (2002).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    19.Osborne, E. B. et al. Calcification of the planktonic foraminifera Globigerina bulloides and carbonate ion concentration: Results from the Santa Barbara Basin. Paleoceanography 31, 1083–1102 (2016).ADS 
    Article 

    Google Scholar 
    20.Mollica, N. R. et al. Ocean acidification affects coral growth by reducing skeletal density. Proc. Natl. Acad. Sci. 115, 1754–1759 (2018).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    21.Schmidt, C., Kucera, M. & Uthicke, S. Combined effects of warming and ocean acidification on coral reef Foraminifera Marginopora vertebralis and Heterostegina depressa. Coral Reefs 33, 805–818 (2014).ADS 
    Article 

    Google Scholar 
    22.Sinutok, S., Hill, R., Kühl, M., Doblin, M. & Ralph, P. Ocean acidification and warming alter photosynthesis and calcification of the symbiont-bearing foraminifera Marginopora vertebralis. Mar. Biol. 161, 2143–2154 (2014).CAS 
    Article 

    Google Scholar 
    23.ter Kuile, B., Erez, J. & Padan, R. Mechanisms for the uptake of inorganic carbon by two species of symbiont-bearing foraminifera. Mar. Biol. 103, 241–251 (1989).Article 

    Google Scholar 
    24.Nijweide, P. J., Kawilarang-de Haas, E. W. & Wassenaar, A. M. Alkaline phosphatase and calcification, correlated or not?. Metab. Bone Dis. Relat. Res. 3, 61–66 (1981).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    25.Guo, M. K. & Messer, H. H. A comparison of Ca2+-, Mg2+-ATPase and alkaline phosphatase activities of rat incisor pulp. Calc. Tissue Res. 26, 33–38 (1978).CAS 
    Article 

    Google Scholar 
    26.Vogel, N. & Uthicke, S. Calcification and photobiology in symbiont-bearing benthic foraminifera and responses to a high CO2 environment. J. Exp. Mar. Biol. Ecol. 424–425, 15–24 (2012).Article 
    CAS 

    Google Scholar 
    27.Schiebel, R. & Hemleben, C. Planktic Foraminifers in the Modern Ocean (Springer, 2017).Book 

    Google Scholar 
    28.Bassinot, F. C., Mélières, F., Gehlen, M., Levi, C. & Labeyrie, L. Crystallinity of foraminifera shells: A proxy to reconstruct past botto m water CO3= changes?. Geochem. Geophys. Geosyst. 5, Q08D10 (2004).Article 

    Google Scholar 
    29.Broecker, W. & Clark, E. Shell weights from the South Atlantic. Geochem. Geophys. Geosyst. 5, Q03003 (2004).ADS 
    Article 

    Google Scholar 
    30.Beer, C. J., Schiebel, R. & Wilson, P. A. Testing planktic foraminiferal shell weight as a surface water [CO32−] proxy using plankton net samples. Geology 38, 103–106 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    31.Naik, S. S., Naidu, P. D., Govil, P. & Godad, S. Relationship between weights of planktonic foraminifer shell and surface water CO3= concentration during the Holocene and Last Glacial Period. Mar. Geol. 275, 278–282 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    32.Moy, A. D., Howard, W. R., Bray, S. G. & Trull, T. W. Reduced calcification in modern Southern Ocean planktonic foraminifera. Nat. Geosci. 2, 276–280 (2009).ADS 
    CAS 
    Article 

    Google Scholar 
    33.Gonzalez-Mora, B., Sierro, F. J. & Flores, J. A. Controls of shell calcification in planktonic foraminifers. Quat. Sci. Rev. 27, 956–961 (2008).ADS 
    Article 

    Google Scholar 
    34.Marr, J. P. et al. Ecological and temperature controls on Mg/Ca ratios of Globigerina bulloides from the southwest Pacific Ocean. Paleoceanography 26, PA2209 (2011).ADS 
    Article 

    Google Scholar 
    35.de Villiers, S. A 425 ka record of foraminiferal shell weight variability in the western Equatorial Pacific. Paleoceanography 18, 1080 (2003).ADS 

    Google Scholar 
    36.de Villiers, S. Occupation of an ecological niche as the fundamental control on the shell-weight of calcifying planktonic foraminifera. Mar. Biol. 144, 45–50 (2004).Article 

    Google Scholar 
    37.Reymond, C. E., Lloyd, A., Kline, D. I., Dove, S. G. & Pandolfi, J. M. Decline in growth of foraminifer Marginopora rossi under eutrophication and ocean acidification scenarios. Glob. Change Biol. 19, 291–302 (2013).ADS 
    Article 

    Google Scholar 
    38.Weinkauf, M. F. G., Moller, T., Koch, M. C. & Kucera, M. Calcification intensity in planktic foraminifera reflects ambient conditions irrespective of environmental stress. Biogeosciences 10, 6639–6655 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    39.Doo, S. S. et al. Amelioration of ocean acidification and warming effects through physiological buffering of a macroalgae. Ecol. Evol. 10, 8465–8475 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    40.Hikami, M. et al. Contrasting calcification responses to ocean acidification between two reef foraminifers harboring different algal symbionts. Geophys. Res. Lett. 38, L19601 (2011).ADS 
    Article 
    CAS 

    Google Scholar 
    41.Sanyal, A. et al. Oceanic pH control on the boron isotopic composition of foraminifera: Evidence from culture experiments. Paleoceanography 11, 513–517 (1996).ADS 
    Article 

    Google Scholar 
    42.Anagnostou, E. et al. Changing atmospheric CO2 concentration was the primary driver of early Cenozoic climate. Nature 533, 380–384 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    43.Foster, G. L. & Rae, J. W. B. Reconstructing ocean pH with boron isotopes in foraminifera. Annu. Rev. Earth Planet. Sci. 44, 207–237 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    44.Kroeker, K. J. et al. Impacts of ocean acidification on marine organisms: Quantifying sensitivities and interaction with warming. Glob. Change Biol. 19, 1884–1896 (2013).ADS 
    Article 

    Google Scholar 
    45.Dove, S. G. et al. Future reef decalcification under a business-as-usual CO2 emission scenario. Proc. Nat. Acad. Sci. 110, 15342–15347 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    46.Cornwall, C. E. et al. Global declines in coral reef calcium carbonate production under ocean acidification and warming. Proc. Nat. Acad. Sci. 118, 2015265118 (2021).Article 
    CAS 

    Google Scholar 
    47.Langer, M. R., Silk, M. T. & Lipps, J. H. Global ocean carbonate and carbon dioxide production: the role of reef foraminifera. J. Foraminifer. Res 27, 271–277 (1997).Article 

    Google Scholar 
    48.Pierrot, D., Lewis E. D. & Wallace, D.W. MS EXCEL Program Developed for CO2 System Calculations. ORNL/CDIAC-105a. (Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, 2006). https://doi.org/10.3334/cdiac/otg.co2sys_xls_cdiac105a.49.Shapiro, S. S. & Wilk, M. B. An analysis of variance test for normality (complete samples). Biometrika 52, 591–611 (1965).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    50.Bartlett, M. S. Properties of sufficiency and statistical test. Proc. R. Soc. A 160, 268–282 (1937).ADS 
    MATH 

    Google Scholar  More

  • in

    Reliably quantifying the evolving worldwide dynamic state of the COVID-19 outbreak from death records, clinical parametrization, and demographic data

    Infection-age structured dynamicsFor the description of the dynamics, we follow the customary infection-age structured approach (for details see for instance Refs.4,10,11,12). Explicitly, we consider the infection-age structured dynamics of the number of individuals ({u}_{I}left(t,tau right)) at time (t) who were infected at time (t-tau) given by$$begin{array}{c}frac{partial }{partial t}{u}_{I}left(t,tau right)+frac{partial }{partial tau }{u}_{I}left(t,tau right)=0end{array}$$
    (7)
    with boundary condition$$begin{array}{c}{u}_{I}left(t,0right)=jleft(tright).end{array}$$
    (8)
    Here, (tau) is the time elapsed after infection, referred to as infection age, and (jleft(tright)={int }_{0}^{infty }{k}_{I}(t,tau ){u}_{I}left(t,tau right)dtau) is the incidence, with ({k}_{I}(t,tau )) being the rate of secondary transmissions per single primary case.The solution is obtained through the method of characteristics32 as$$begin{array}{c}{u}_{I}left(t,tau right)=jleft(t-tau right)end{array}$$
    (9)
    for (tge tau) and ({u}_{I}left(t,tau right)=0) for (t1 for countries and for US locations.The daily death counts (Delta {n}_{W}left(tright)={n}_{W}left(tright)-{n}_{W}left(t-1right)) are considered to contain reporting artifacts if they are negative or if they are unrealistically large. This last condition is defined explicitly as larger than 4 times its previous 14-day average value plus 10 deaths, (Delta {n}_{W}left(tright) >10+4times frac{1}{14}left({n}_{W}left(tright)-{n}_{W}left(t-14right)right)), from a non-sparse reporting schedule with at least 2 consecutive non-zero values before and after the time (t), (Delta {n}_{W}left(tright)ne frac{1}{5}left({n}_{W}left(t+2right)-{n}_{W}left(t-3right)right)).Reporting artifacts identified at time (t) are considered to be the result of previous miscounting. The excess or lack of deaths are imputed proportionally to previous death counts. Explicitly, death counts are updated as$$begin{array}{c}{n}_{W}left(t-1-iright)leftarrow {n}_{W}left(t-1-iright)frac{{n}_{W}{left(t-1right)}_{estimated}}{{n}_{W}left(t-1right)}end{array}$$
    (32)
    with ({n}_{W}{left(t-1right)}_{estimated}={n}_{W}left(tright)-frac{1}{7}left({n}_{W}left(t-1right)-{n}_{W}left(t-8right)right)) for all (ige 0). In this way, (Delta {n}_{W}left(tright)) is assigned its previous seven-day average value.The expected daily deaths, (Delta {n}_{D}(t)), are obtained through a density estimation multiscale functional, ({f}_{de}), as (Delta {n}_{D}(t)={f}_{de}left(Delta {n}_{W}left(tright)right)), which leads to the estimation of the expected cumulative deaths at time (t) as ({n}_{D}left(tright)={n}_{W}left({t}_{0}right)+{sum }_{s={t}_{0}+1}^{t}Delta {n}_{D}(s)). Specifically,$$begin{array}{c}{f}_{de}left(Delta {n}_{W}left(tright)right)=left(1-{r}_{1}right)d{d}_{0}+{r}_{1}left(left(1-{r}_{2}right)d{d}_{1}+{r}_{2}d{d}_{2}right)end{array}$$
    (33)
    with$$begin{array}{c}{r}_{1} = {e}^{-0.3d{d}_{1}},end{array}$$
    (34)
    $$begin{array}{c}{r}_{2} = {e}^{-3d{d}_{2}},end{array}$$
    (35)
    $$begin{array}{c}d{d}_{0}={ma}_{14}left({ma}_{14}left(Delta {n}_{W}left(tright)right)right),end{array}$$
    (36)
    $$begin{array}{c}d{d}_{1}={rg}_{12}left({ma}_{14}left(Delta {n}_{W}left(tright)right)right),end{array}$$
    (37)
    $$begin{array}{c}d{d}_{2}={rg}_{48}left({ma}_{14}left(Delta {n}_{W}left(tright)right)right),end{array}$$
    (38)
    where ({ma}_{14}left(cdot right)) is a centered moving average with window size of 14 days and ({rg}_{sigma }left(cdot right)) is a centered rolling average through a Gaussian window with standard deviation (sigma). The specific value of the window size has been chosen to mitigate weekly reporting effects. The values of the standard deviations of the Gaussian windows have been selected to achieve a smooth representation of the expected death estimation for each country as shown in the bottom panels of Supplementary Fig. S1.Reporting delaysWe consider an average delay of two days between reporting a death and its occurrence. This value is obtained by comparing the daily death counts reported for Spain1 and their actual values33 from February 15 to March 31, 2020. The values of the root-mean-squared deviation between reported and actual deaths shifted by 0, 1, 2, 3, and 4 days are 77.9, 58.4, 38.5, 58.7, and 88.6 deaths respectively.Infection fatality rate ((IFR))The infection fatality rate is computed assuming homogeneous attack rate as$$begin{array}{c}IFR=frac{1}{{sum }_{a}{g}_{a}}{sum }_{a}{IFR}_{a}{g}_{a} ,end{array}$$
    (39)
    where ({mathrm{IFR}}_{a}) is the previously estimated (IFR) for the age group (a)5 and ({g}_{a}) is the population in the age group (a) as reported by the United Nations for countries18 and the US Census for states19.Clinical parametersWe obtained the values of the average ({tau }_{G}) and standard deviation ({sigma }_{G}) of the generation time from Ref.13, of the averages of the incubation ({tau }_{I}) and symptom onset-to-death ({tau }_{OD}) times from Refs.5,14, and of the average number of days (Delta {t}_{TP}) of positive testing by an infected individual from Refs.15,17. The average time at which an individual tested positive after infection ({tau }_{TP}) was computed as ({tau }_{TP}={tau }_{I}-2+Delta {t}_{TP}/2), where we have assumed that on average an individual started to test positive 2 days before symptom onset. The average seroconversion time after infection ({tau }_{SP}) was estimated as ({tau }_{I}) plus the 7 days of 50% seroconversion after symptom onset reported in Ref.16.Dynamical constraints implementation with discrete timeWe implemented the dynamical constraints to compute the infectious and infected population as outlined in the main text and as detailed in the previous section of this document, using days as time units. Time delays were rounded to days to assign daily values.The first derivative of the cumulative number of deaths is computed as$$begin{array}{c}frac{d{n}_{D}left(tright)}{dt}=Delta {n}_{D}left(tright),end{array}$$
    (40)
    with (Delta {n}_{D}left(tright)={n}_{D}left(tright)-{n}_{D}(t-1)).The growth rate was computed explicitly from the discrete time series as the centered 7-day difference$$begin{array}{c}{k}_{G}left(tright)=frac{1}{7}left({mathrm{ln}}left(Delta {n}_{D}left(t+4right)+Delta {n}_{D}left(t+3right)right)-{mathrm{ln}}left(Delta {n}_{D}left(t-3right)+Delta {n}_{D}left(t-4right)right)right).end{array}$$
    (41)
    The 7-day value was chosen to mitigate reporting artifacts.Confidence and credibility intervalsConfidence intervals associated with death counts were computed using bootstrapping with 10,000 realizations34. These confidence intervals were combined with the credibility intervals of the (IFR) in infectious and infected populations assuming independence and additivity on a logarithmic scale.Fold accuracyThe fold accuracy, ({F}_{A}), is explicitly computed as$$begin{array}{c}{mathrm{log}}{F}_{A}=frac{1}{N}{sum }_{i=1}^{N}left|{mathrm{log}}{x}_{i}^{obs}-{mathrm{log}}{x}_{i}^{est}right|,end{array}$$
    (42)
    where (left|cdot right|) is the absolute value function, ({x}_{i}^{obs}) is the ({i}^{th}) observation, ({x}_{i}^{est}) is its corresponding estimation, and (N) is the total number of observations.Inference and extrapolationBecause of the delay between infections and deaths, inference for the values of the growth rate and infectious populations ends on December 30, 2020 and for the values of the infected populations ends on December 26, 2020. Extrapolation to the current time (January 21, 2021) is carried out assuming the last growth rate computed.Reproduction numberThe quantities ({R}_{t}) and ({k}_{G}left(tright)) are related to each other through the Euler–Lotka equation, ({R}_{t}^{-1}={int }_{0}^{infty }{f}_{GT}left(tau right){e}^{-{k}_{G}left(tright)tau }dtau ,) which considers (jleft(t-tau right)simeq {e}^{-{k}_{G}left(tright)tau }jleft(tright)) in the renewal equation (jleft(tright)={int }_{0}^{infty }{k}_{I}left(t,tau right)jleft(t-tau right)dtau). Generation times can generally be described through a gamma distribution ({f}_{GT}left(tau right)=frac{{beta }^{alpha }}{Gamma left(alpha right)}{tau }^{alpha -1}{e}^{-beta tau }) with (alpha ={tau }_{G}^{2}/{sigma }_{G}^{2}) and (beta ={tau }_{G}/{sigma }_{G}^{2}), which leads to ({R}_{t}={left(1+{k}_{G}(t)/beta right)}^{alpha }) for ({k}_{G}(t) >-beta) and ({R}_{t}=0) for ({k}_{G}left(tright)le -beta). In the case of the exponentially distributed limit ((alpha simeq 1)) or small values of ({k}_{G}(t)/beta), it simplifies to ({R}_{t}=1+{k}_{G}left(tright){tau }_{G}) for ({k}_{G}left(tright) >-1/{tau }_{G}) and ({R}_{t}=0) for ({k}_{G}left(tright)le -1/{tau }_{G}). Global prevalence data were obtained from multiple data sources35,36,37,38,39,40,41,42, as described in Supplementary Table S1. More

  • in

    Wild meat consumption in tropical forests spares a significant carbon footprint from the livestock production sector

    1.Nasi, R., Taber, A. & van Vliet, N. Empty forests, empty stomachs? Wild meat and livelihoods in the Congo and Amazon Basins. Int. For. Rev. 13, 355–368. https://doi.org/10.1505/146554811798293872 (2011).Article 

    Google Scholar 
    2.van Vliet, N. “Bushmear crisis” and “Cultural imperialism” in wildlife management? Taking value orientations into account for a more sustainable and culturally acceptable wildmeat sector. Front. Ecol. Evol. 6, 112. https://doi.org/10.3389/fevo.2018.00112 (2018).ADS 
    Article 

    Google Scholar 
    3.Nunes, A. V., Peres, C. A., Constantino, P. A. L., Santos, B. A. & Fischer, E. Irreplaceable socioeconomic value of wild meat extraction to local food security in rural Amazonia. Biol. Conserv. 236, 171–179. https://doi.org/10.1016/j.biocon.2019.05.010 (2019).Article 

    Google Scholar 
    4.Peres, C. A., Emilio, T., Schietti, J., Desmoulière, S. J. & Levi, T. Dispersal limitation induces long-term biomass collapse in overhunted Amazonian forests. PNAS 113, 892–897. https://doi.org/10.1073/pnas.1516525113 (2016).ADS 
    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    5.Brodie, J. F. Carbon costs and bushmeat benefits of hunting in tropical forests. Ecol. Econ. 152, 22–26. https://doi.org/10.1016/j.ecolecon.2018.05.028 (2018).Article 

    Google Scholar 
    6.Wright, I. J. et al. Relationships among ecologically important dimensions of plant trait variation in seven neotropical forests. Ann. Bot. 99, 1003–1015. https://doi.org/10.1093/aob/mcl066 (2007).Article 
    PubMed 

    Google Scholar 
    7.Bunker, D. E. et al. Species loss and aboveground carbon storage in a tropical forest. Science 310, 1029–1031. https://doi.org/10.1126/science.1117682 (2005).ADS 
    Article 
    PubMed 
    CAS 

    Google Scholar 
    8.Harrison, R. D. et al. Consequences of defaunation for a tropica tree community. Ecol. Lett. 16, 687–694. https://doi.org/10.1111/ele.12102 (2013).Article 
    PubMed 

    Google Scholar 
    9.Bello, C. et al. Defaunation affects carbon storage in tropical forests. Sci. Adv. 1, e1501105. https://doi.org/10.1126/sciadv.1501105 (2015).ADS 
    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    10.Sarti, F. M. et al. Beyond protein intake: Bushmeat as source of micronutrients in the Amazon. Ecol. Soc. 20, 22 (2015).Article 

    Google Scholar 
    11.Goelden, C. D. et al. Benefits of wildlife consumption to child nutrition in a biodiversity hotspot. PNAS 108, 19653–19656. https://doi.org/10.1073/pnas.1112586108 (2011).ADS 
    Article 

    Google Scholar 
    12.Fa, J. E. et al. Disentangling the relative effects of bushmeat availability on human nutrition in central Africa. Sci. Rep. 5, 8168. https://doi.org/10.1038/srep08168 (2015).Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    13.Peres, C. A. Conservation in sustainable-use tropical forest reserves. Conserv. Biol. 25(1124–1129), 2011. https://doi.org/10.1111/j.1523-1739.2011.01770.x (2011).Article 

    Google Scholar 
    14.Ohl-Schacherer, J. et al. The sustainability of subsistence hunting by Matsigenka native communities in Manu National Park, Peru. Conserv. Biol. 21, 1174–1185. https://doi.org/10.1111/j.1523-1739.2007.00759.x (2007).Article 
    PubMed 

    Google Scholar 
    15.Constantino, P. A. L. et al. Indigenous collaborative research for wildlife management in Amazonia: The case of the Kaxinawá, Acre, Brazil. Biol. Conserv. 141, 2718–2729. https://doi.org/10.1016/j.biocon.2008.08.008 (2008).Article 

    Google Scholar 
    16.Weinbaum, K. Z., Brashares, J. S., Golden, C. D. & Getz, W. M. Searching for sustainability: Are assessments of wildlife harvests behind the times?. Ecol. Lett. 16, 99–111. https://doi.org/10.1111/ele.12008 (2013).Article 
    PubMed 

    Google Scholar 
    17.Novaro, A. J., Redford, K. H. & Bodmer, R. E. Effect of hunting in source-sink systems in the Neotropics. Conserv. Biol. 14, 713–721. https://doi.org/10.1046/j.1523-1739.2000.98452.x (2000).Article 

    Google Scholar 
    18.Constantino, P. A. C., Benchimol, M. & Antunes, A. P. Designing indigenous lands in Amazonia: Securing indigenous rights and wildlife conservation through hunting management. Land Use Policy 77, 652–660. https://doi.org/10.1016/j.landusepol.2018.06.016 (2018).Article 

    Google Scholar 
    19.Kaimowitz, D. & Angelsen, A. Will livestock intensification help save Latin America’s tropical forests?. J. Sustain. For. 27, 6–24. https://doi.org/10.1080/10549810802225168 (2008).Article 

    Google Scholar 
    20.Curtis, P. G., Slat, C. M., Harris, N. L., Tyukavina, A. & Hansen, M. C. Classifying drivers of global forest loss. Science 361, 1108–1111. https://doi.org/10.1126/science.aau3445 (2018).ADS 
    Article 
    PubMed 
    CAS 

    Google Scholar 
    21.De Sy, V. et al. Land use patterns and related carbon losses following deforestation in South America. Environ. Res. Lett. 10, 124004. https://doi.org/10.1088/1748-9326/10/12/124004 (2015).ADS 
    Article 

    Google Scholar 
    22.Hosonuma, N. et al. An assessment of deforestation and forest degradation drivers in developing countries. Environ. Res. Lett. 7, 044009. https://doi.org/10.1088/1748-9326/7/4/044009 (2012).ADS 
    Article 

    Google Scholar 
    23.Herrero, M. et al. Livestock and the environment—What have we learned in the past decade?. Annu. Rev. Environ. Resour. 40, 177–202. https://doi.org/10.1146/annurev-environ-031113-093503 (2015).Article 

    Google Scholar 
    24.Hong, C. et al. Global and regional drivers of land-use emissions in 1961–2017. Nature 589, 554–561. https://doi.org/10.6084/m9.figshare.12248735 (2021).ADS 
    Article 
    PubMed 
    CAS 

    Google Scholar 
    25.Steinfeld, H. et al. Livestock’s Long Shadow (FAO, 2006).
    Google Scholar 
    26.United Nations, Department of Economic and Social Affairs, Population Division. World Population Prospects 2019: Highlights (ST/ESA/SER.A/423) (2019).27.IPCC Climate Change 2014: Synthesis Report (eds. Core Writing Team, Pachauri, R. K. & Meyer L. A.) (IPCC, 2014).28.Wolf, C., Ripple, W. J., Levi, T. & Peres, C. A. Eating plants and planting forests for the climate. Glob. Chang. Biol. 25, 3995–3995. https://doi.org/10.1111/gcb.14835 (2019).ADS 
    Article 
    PubMed 

    Google Scholar 
    29.Pan, Y. et al. A large and persistent carbon sink in the world’s forests. Science 333, 988–993. https://doi.org/10.1126/science.1201609 (2011).ADS 
    Article 
    PubMed 
    CAS 

    Google Scholar 
    30.Potapov, P. et al. The last frontiers of wilderness: Tracking loss of intact forest landscapes from 2000 to 2013. Sci. Adv. 3, e1600821. https://doi.org/10.1126/sciadv.1600821 (2017).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    31.Maxwell, S. L. et al. Degradation and forgone removals increase the carbon imáct of intact forest loss by 626%. Sci. Adv. 5, eaax2546. https://doi.org/10.1126/sciadv.aax2546 (2019).ADS 
    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    32.Walker, W. S. et al. The role of forest conversion, degradation, and disturbance in the carbon dynamics of Amazon indigenous territories and protected areas. PNAS 117, 3015–3025. https://doi.org/10.1073/pnas.1913321117 (2020).ADS 
    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    33.Angelsen, A. et al. Environmental income and rural livelihoods: A global-comparative analysis. World Dev. 64, 12–28. https://doi.org/10.1016/j.worlddev.2014.03.006 (2010).Article 

    Google Scholar 
    34.UNFCCC. Adoption of the Paris Agreement-Draft Decision-/CP.21 (United Nations Framework Convention on Climate Change, 2015).
    Google Scholar 
    35.Hinsley, A., Entwistle, A. & Pio, D. V. Does the long-term success of REDD+ also depend on biodiversity?. Oryx 49, 216–221. https://doi.org/10.1017/S0030605314000507 (2015).Article 

    Google Scholar 
    36.Krause, T. & Nielsen, M. R. Not seeing the forest for the trees: The oversight of defaunation in REDD+ and global forest governance. Forests 10, 344. https://doi.org/10.3390/f10040344 (2019).Article 

    Google Scholar 
    37.Nardoto, G. B. et al. Frozen chicken for wild fish: Nutritional transition in the Brazilian Amazon region determined by carbon and nitrogen stable isotope ratios in fingernails. Am. J. Hum. Biol. 23, 642–650. https://doi.org/10.1002/ajhb.21192 (2011).Article 
    PubMed 

    Google Scholar 
    38.Farrel, D. The Role of Poultry in Human Nutrition. Poultry Development Review (FAO, 2013).
    Google Scholar 
    39.Poulsen, J. R., Clark, C. J. & Mavah, G. Wildlife management in a logging concession in Northern Congo: Can livelihoods be maintained through sustainable hunting? In Bushmeat and Livelihoods (eds Davies, G. & Brown, D.) 140–157 (Blackwell Publishing, 2007).
    Google Scholar 
    40.Nunes, A. V., Guariento, R. D., Santos, B. A. & Fischer, E. Wild meat sharing among non-indigenous people in the Southwestern Amazon. Behv. Ecol. Sociobiol. 73, 26. https://doi.org/10.1007/s00265-018-2628-x (2019).Article 

    Google Scholar 
    41.WHO/FAO/UNU Protein and Amino Acid Requirements in Human Nutrition; Report of a joint WHO/FAO/UNU Expert Consultation, WHO Tech Rep Ser no. 935 (WHO, 2007).42.FAO. FAOSTAT Agri-Environmental Indicators, Emissions Intensities. http://www.fao.org/faostat/en/#data/EI (2019).43.Opio, C. et al. Greenhouse Gas Emissions from Ruminant Supply Chains—A Global Life Cycle Assessment (Food and Agriculture Organization of the United Nations (FAO), 2013).
    Google Scholar 
    44.Poore, J. & Nemecek, T. Reducing food’s environmental impacts through producers and consumers. Science 360, 987–992. https://doi.org/10.1126/science.aaq0216 (2018).ADS 
    Article 
    PubMed 
    CAS 

    Google Scholar 
    45.ICAO. International Civil Aviation Organization. https://www.icao.int/environmental-protection/Carbonoffset/Pages/default.aspx (2016).46.Searchinger, T. D. et al. Assessing the efficiency of changes in land use for mitigating climate change. Nature 564, 249–253. https://doi.org/10.1038/s41586-018-0757-z (2018).ADS 
    Article 
    PubMed 
    CAS 

    Google Scholar 
    47.Ministério do Meio Ambiente (MMA). Programa áreas protegidas da Amazônia ARPA-Fase II (2010).48.Arensberg, W. W. Critical Ecosystem Partnership Fund Mid-Term Review (Critical Ecosystem Partnership Fund, 2003).49.Sistema Integrado de Planejamento e Orçamento (SIOP). Cadastro de Ações. Apoio à conservação Ambiental e à Erradicação da Extrema Pobreza Bolsa Verde (Secretaria de Orçamento Federal, Ministério do Planejamento, Orçamento e Gestão, 2014).50.World Bank. State and Trends of Carbon Pricing (World Bank, 2020). https://doi.org/10.1596/978-1-4648-1586-7.51.NASA (National Aeronautics and Space Administration). NASA Administrator Statement on Moon to Mars Initiative, fy 2021 Budget. https://www.nasa.gov/press-release/nasa-administrator-statement-on-moon-to-mars-initiative-fy-2021-budget.52.Peres, C. A. Synergistic effects of subsistence hunting and habitat fragmentation on Amazonian forest vertebrates. Conserv. Biol. 15, 1490–1505. https://doi.org/10.1046/j.1523-1739.2001.01089.x (2001).Article 

    Google Scholar 
    53.Griscom, B. W. et al. Natural climate solutions. PNAS 114, 11645–11650. https://doi.org/10.1073/pnas.1710465114 (2017).ADS 
    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    54.Reid, H., Faulkner, L. & Weiser, A. in IIED Climate Change Working Paper (eds. Fisher, S. & Reid, H.) 3–67 (2013).55.Munang, R., Andrews, J., Alverson, K. & Mebratu, D. Harnessing ecosystem-based adaptation to address the social dimensions of climate change. Environ.: Sci. Policy Sustain. Dev. 56, 18–24. https://doi.org/10.1080/00139157.2014.861676 (2013).Article 

    Google Scholar 
    56.Woroniecki, S. Enabling environments? Examining social co-benefits of ecosystem-based adaptation to climate change in Sri Lanka. Sustainability 11, 772. https://doi.org/10.3390/su11030772 (2019).Article 

    Google Scholar 
    57.Seddon, N. et al. Understanding the value and limits of nature-based solutions to climate change and other global challenges. Philos. Trans. R. Soc. Lond. B, Biol. Sci. 375, 20190120. https://doi.org/10.1098/rstb.2019.0120 (2020).Article 

    Google Scholar 
    58.Wilkie, D. S., Wieland, M. & Poulsen, J. R. Unsustainable vs. sustainable hunting for food in Gabon: Modeling short- and long- term gains and losses. Front. Ecol. Evol. 7, 357. https://doi.org/10.3389/fevo.2019.00357 (2019).Article 

    Google Scholar 
    59.Booth, H. et al. Assessing the impact of regulations on the use and trade of wildlife: An operational framework, with a case study on manta rays. Glob. Ecol. Conserv. 22, e00953 (2020).Article 

    Google Scholar 
    60.Dickman, A. et al. Trophy hunting bans imperil biodiversity. Science 365(6456), 874. https://doi.org/10.1126/science.aaz0735 (2019).ADS 
    Article 
    PubMed 
    CAS 

    Google Scholar 
    61.Marrocoli, S. et al. Using wildlife indicators to facilitate wildlife monitoring in hunter-self monitoring schemes. Ecol. Indic. 105, 254–263. https://doi.org/10.1016/j.ecolind.2019.05.050 (2019).Article 

    Google Scholar 
    62.van Vliet, N. et al. Frameworks regulating hunting for meat in tropical countries leave the sectos in the limbo. Front. Ecol. Evol. 7, 1–7. https://doi.org/10.3389/fevo.2019.00280 (2019).Article 

    Google Scholar 
    63.Ronchail, J. et al. Interannual rainfall variability in the Amazon basin and sea-surface temperatures in the equatorial Pacific and the tropical Atlantic oceans. Int. J. Climatol. 22, 1663–1686. https://doi.org/10.1002/joc.815 (2002).Article 

    Google Scholar 
    64.CSC. Climate Change Scenarios for the Congo Basin (Climate Service Centre Report No. 11, 2013).65.Akkermans, T., Thiery, W. & Lipzig, N. P. M. V. The regional climate impact of a realistic future deforestation scenario in the Congo Basin. J. Clim. 27, 2714–2734. https://doi.org/10.1175/JCLI-D-D13-00361.1 (2014).ADS 
    Article 

    Google Scholar 
    66.Siebert, A. Hydroclimate extrems in Africa: Variability, observations and modeled projectios. Geography 8, 351–367. https://doi.org/10.1111/gec3.12136 (2014).Article 

    Google Scholar 
    67.Feldpausch, T. R. et al. Tree height integrated into pantropical forest biomass estimates. Biogeosciences 9, 3381–3403. https://doi.org/10.5194/bg-9-3381-2012 (2012).ADS 
    Article 

    Google Scholar 
    68.Hansen, M. C. et al. High- resolution global maps of 21st-century forest cover change. Science 342, 850–853. https://doi.org/10.1126/science.1244693 (2013).ADS 
    Article 
    PubMed 
    CAS 

    Google Scholar 
    69.Mayaux, P. et al. Tropical forest cover change in the 1990s and options for future monitoring. Philos. Trans. R. Soc. B 360, 373–384. https://doi.org/10.1098/rstb.2004.1590 (2005).Article 

    Google Scholar 
    70.Zelazowski, P., Malhi, Y., Huntingford, C., Sitch, S. & Fisher, J. B. Changes in the potential distribution of humid tropical forests on a warmer planet. Philos. Trans. Soc. A 369, 137–160. https://doi.org/10.1098/rsta.2010.0238 (2011).ADS 
    Article 

    Google Scholar 
    71.Nkem, J., Idinoba, M., Brockhaus, M., Kalame, F. & Tas, A. Adaptation to Climate Change in Africa: Synergies with Biodiversity and Forest (CIFOR, 2008).
    Google Scholar 
    72.Ganzhorn, J. U., Lowry, P. P., Schatz, G. E. & Sommer, S. The biodiversity of Madagascar: One of the world’s hottest hotspots on its way out. Oryx 35, 346–348. https://doi.org/10.1046/j.1365-3008.2001.00201.x (2001).Article 

    Google Scholar 
    73.Kingdon, J. East African Mammals Vol. IIIA (Academic Press, 1977).
    Google Scholar 
    74.Dunning, J. B. CRC Handbook of Avian Body Masses 2nd edn. (CRC, 2008).
    Google Scholar 
    75.Rushton, J. et al. How important is bushmeat consumption in South America: Now and in the future?. Odi Wildl. Policy Brief. 11, 1–4 (2005).
    Google Scholar 
    76.Redford, K. H. & Robinson, J. G. The game of choice: Patterns of Indian and colonist hunting in the Neotropics. Am. Anthropol. 89, 650–667. https://doi.org/10.1525/aa.1987.89.3.02a00070 (1987).Article 

    Google Scholar 
    77.Ojasti, J. Wildlife Utilization in Latin America: Current Situation and Prospects for Sustainable Management (FAO, 1996).
    Google Scholar 
    78.Wilson, E. D., Fisher, K. H. & Garcia, P. A. Principles of Nutrition (Wiley, 1979).
    Google Scholar 
    79.Human energy requirements. Report of a Joint FAO/WHO/UNU Expert Consultation (2014).80.Soriano-Santos, J. in Handbook of Poultry Science and Technology (ed. Guerrero-Lagarreta, I.) 467–489 (2009).81.Eggleston, H. S. et al. (eds) 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Prepared by the National Greenhouse Gas Inventories Programme (IPCC, 2006).
    Google Scholar 
    82.Carbon Pricing Leadership Coalition (CPLC). Report of the High-Level Commission on Carbon Prices (World Bank Group, 2017).
    Google Scholar 
    83.Annual Report. Ending Poverty, Investing in Opportunity (World Bank Group, 2019).
    Google Scholar 
    84.Avitabile, M. V. et al. An integrated pan-tropical biomass map using multiple reference datasets. Glob. Chang. Biol. 22, 1406–1420. https://doi.org/10.1111/gcb.13139 (2016).ADS 
    Article 
    PubMed 

    Google Scholar  More