Climate driven spatiotemporal variations in seabird bycatch hotspots and implications for seabird bycatch mitigation
1.BirdLife International. State of the World’s Birds: Taking the Pulse of the Planet (BirdLife International, 2018).
Google Scholar
2.Dias, M. P. et al. Threats to seabirds: A global assessment. Biol. Conserv. 237, 525–537 (2019).Article
Google Scholar
3.Gales, R. in Albatross Biology and Conservation (eds Robertson, G. & Gales, R.) 20–45 (Surrey Beatty and Sons, Chipping Norton, 1998).4.Gales, R., Brothers, N. & Reid, T. Seabird mortality in the Japanese tuna longline fishery around Australia, 1988–1995. Biol. Conserv. 86, 37–56 (1998).Article
Google Scholar
5.Anderson, O. R. et al. Global seabird bycatch in longline fisheries. Endanger. Species Res. 14, 91–106 (2011).Article
Google Scholar
6.Warham, J. The Petrels: Their Ecology and Breeding Systems (Academic Press, 1990).
Google Scholar
7.Warham, J. The Behaviour, Population Biology and Physiology of the Petrels (Academic Press, 1996).
Google Scholar
8.Dietrich, K. S., Parrish, J. K. & Melvin, E. F. Understanding and addressing seabird bycatch in Alaska demersal longline fisheries. Biol. Conserv. 142, 2642–2656 (2009).Article
Google Scholar
9.Zhou, C., Jiao, Y. & Browder, J. A. Seabird bycatch vulnerability to pelagic longline fisheries: Ecological traits matter. Aquat. Conserv.: Mar. Freshw. Ecosyst. https://doi.org/10.1002/aqc.3066 (2019).Article
Google Scholar
10.Brothers, N. The incidental catch of seabirds by longline fisheries: Worldwide review and technical guidelines for mitigation. FAO Fish. Circ. 937, 1–100 (1999).ADS
Google Scholar
11.Gilman, E. Integrated management to address the incidental mortality of seabirds in longline fisheries. Aquat. Conserv.: Mar. Freshw. Ecosyst. 11, 391–414 (2001).Article
Google Scholar
12.Li, Y. & Jiao, Y. Modeling spatial patterns of rare species using eigenfunction-based spatial filters: An example of modified delta model for zero-inflated data. Ecol. Model. 299, 51–63 (2015).Article
Google Scholar
13.Li, Y., Jiao, Y. & Browder, J. A. Assessment of seabird bycatch in the US Atlantic pelagic longline fishery, with an extra exploration on modeling spatial variation. ICES J. Mar. Sci. 73, 2687–2694 (2016).Article
Google Scholar
14.Brothers, N. Albatross mortality and associated bait loss in the Japanese longline fishery in the Southern Ocean. Biol. Conserv. 55, 255–268 (1991).Article
Google Scholar
15.Croxall, J. P. & Nicol, S. Management of Southern Ocean fisheries: Global forces and future sustainability. Antarct. Sci. 16, 569–584 (2004).ADS
Article
Google Scholar
16.Løkkeborg, S. Best practices to mitigate seabird bycatch in longline, trawl and gillnet fisheries – efficiency and practical applicability. Mar. Ecol. Prog. Ser. 435, 285–303 (2011).ADS
Article
Google Scholar
17.Beerkircher, L. R., Brown, C. J., Abercrombie, D. L. & Lee, D. W. Overview of the SEFSC pelagic observer program in the Northwest Atlantic from 1992–2002. ICCAT CVSP 58, 1729–1748 (2005).
Google Scholar
18.Diaz, G. A., Beerkircher, L. R. & Restrepo, V. R. Description of the US pelagic observer program (POP). ICCAT CVSP 64, 2415–2426 (2009).
Google Scholar
19.Lee, D. W. & Brown, C. J. SEFSC pelagic observer program data summary for 1992–1996. US Department of Commerce, National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Southeast Fisheries Science Center (1998).20.Lo, N. C., Jacobson, L. D. & Squire, J. L. Indices of relative abundance from fish spotter data based on delta-lognornial models. Can. J. Fish. Aquat. Sci. 49, 2515–2526 (1992).Article
Google Scholar
21.Martin, T. G. et al. Zero tolerance ecology: improving ecological inference by modelling the source of zero observations. Ecol. Lett. 8, 1235–1246 (2005).PubMed
Article
PubMed Central
Google Scholar
22.Winter, A., Jiao, Y. & Browder, J. A. Modeling low rates of seabird bycatch in the US Atlantic longline fishery. Waterbirds 34, 289–303 (2011).Article
Google Scholar
23.Cortés, V., Arcos, J. M. & González-Solís, J. Seabirds and demersal longliners in the northwestern Mediterranean: Factors driving their interactions and bycatch rates. Mar. Ecol. Prog. Ser. 565, 1–16 (2017).ADS
Article
Google Scholar
24.Bi, R., Jiao, Y., Zhou, C. & Hallerman, E. M. A Bayesian spatiotemporal approach to inform management unit appropriateness. Can. J. Fish. Aquat. Sci. 76, 217–237 (2018).Article
Google Scholar
25.Wikle, C. K. Hierarchical models in environmental science. Int. Stat. Rev. 71, 181–199 (2003).MATH
Article
Google Scholar
26.Cressie, N., Calder, C. A., Clark, J. S., Hoef, J. M. V. & Wikle, C. K. Accounting for uncertainty in ecological analysis: The strengths and limitations of hierarchical statistical modeling. Ecol. Appl. 19, 553–570 (2009).PubMed
Article
PubMed Central
Google Scholar
27.Banerjee, S., Carlin, B. P. & Gelfand, A. E. Hierarchical Modeling and Analysis for Spatial Data (CRC Press, 2014).MATH
Book
Google Scholar
28.Besag, J., York, J. & Mollié, A. Bayesian image restoration, with two applications in spatial statistics. Ann. Inst. Stat. Math. 43, 1–20 (1991).MathSciNet
MATH
Article
Google Scholar
29.Rue, H. & Held, L. Gaussian Markov Random Fields: Theory and Applications (CRC Press, 2005).MATH
Book
Google Scholar
30.Rue, H., Martino, S. & Chopin, N. Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations. J. R. Stat. Soc. Ser. B Stat. Methodol. 71, 319–392 (2009).MathSciNet
MATH
Article
Google Scholar
31.Held, L., Schrödle, B. & Rue, H. in Statistical Modelling and Regression Structures (eds Kneib, T. & Tutz, G.) 91–110 (Springer, Berlin Heidelberg, 2010).32.Lindgren, F., Rue, H. & Lindström, J. An explicit link between Gaussian fields and Gaussian Markov random fields: The stochastic partial differential equation approach. J. R. Stat. Soc. Ser. B Stat. Methodol. 73, 423–498 (2011).MathSciNet
MATH
Article
Google Scholar
33.Bakka, H., Vanhatalo, J., Illian, J. B., Simpson, D. & Rue, H. Non-stationary Gaussian models with physical barriers. Spat. Stat. 29, 268–288 (2019).MathSciNet
Article
Google Scholar
34.NCAR (National Center for Atmospheric Research). The Climate Data Guide: Hurrell North Atlantic Oscillation (NAO) Index (PC-based). Available from: https://climatedataguide.ucar.edu/climate-data/hurrell-north-atlantic-oscillation-nao-index-pc-based. Retrieved: March 1, 2019.35.ESRL (Earth Science Research Laboratory, NOAA). Climate timeseries: AMO (Atlantic Multidecadal Oscillation) Index. Available from: http://www.esrl.noaa.gov/psd/data/timeseries/AMO/. Retrieved: March 1, 2019.36.Spiegelhalter, D. J., Best, N. G., Carlin, B. P. & Van Der Linde, A. Bayesian measures of model complexity and fit. J. R. Stat. Soc. Ser. B Stat. Methodol. 64, 583–639 (2002).MathSciNet
MATH
Article
Google Scholar
37.Watanabe, S. Asymptotic equivalence of Bayes cross validation and widely applicable information criterion in singular learning theory. J. Mach. Learn. Res. 11, 3571–3594 (2010).MathSciNet
MATH
Google Scholar
38.Shumway, R. H. & Stoffer, D. S. Time Series Analysis and Its Applications (Springer, 2011).MATH
Book
Google Scholar
39.Bi, R., Jiao, Y., Bakka, H. & Browder, J. A. Long-term climate ocean oscillations inform seabird bycatch from pelagic longline fishery. ICES J. Mar. Sci. 77, 668–679 (2020).Article
Google Scholar
40.Lear, W. H. History of fisheries in the Northwest Atlantic: The 500 year perspective. J. Northwest Atl. Fish. Sci. 23, 41–73 (1998).Article
Google Scholar
41.Veit, R. R., Goyert, H. F., White, T. P., Martin, M. C., Manne, L. L. & Gilbert, A. Pelagic Seabirds off the East Coast of the United States 2008–2013. US Dept. of the Interior, Bureau of Ocean Energy Management, Office of Renewable Energy Programs, Sterling, VA. OCS Study BOEM, 24, 186 (2015).42.Harrison, P. Seabirds, an identification guide (Houghton Mifflin, 1983).
Google Scholar
43.Onley, D. & Scofield, P. Albatrosses, petrels and shearwaters of the world (Princeton University Press, 2013).
Google Scholar
44.Gladics, A. J. et al. Fishery-specific solutions to seabird bycatch in the U.S. West Coast sablefish fishery. Fish. Res. 196, 85–95 (2017).Article
Google Scholar
45.Grieve, B. D., Hare, J. A. & Saba, V. S. Projecting the effects of climate change on Calanus finmarchicus distribution within the U.S. Northeast Continental Shelf. Sci. Rep. 7, 6264 (2017).ADS
PubMed
PubMed Central
Article
CAS
Google Scholar
46.Petersen, S. L., Honig, M. B., Ryan, P. G. & Underhill, L. G. Seabird bycatch in the pelagic longline fishery off southern Africa. Afr. J. Mar. Sci. 31, 191–204 (2009).Article
Google Scholar
47.Arcos, J. M. & Oro, D. Significance of fisheries discards for a threatened Mediterranean seabird, the Balearic shearwater Puffinus mauretanicus. Mar. Ecol. Prog. Ser. 239, 209–220 (2002).ADS
Article
Google Scholar
48.Furness, R., Edwards, A. & Oro, D. Influence of management practices and of scavenging seabirds on availability of fisheries discards to benthic scavengers. Mar. Ecol. Prog. Ser. 350, 235–244 (2007).ADS
Article
Google Scholar
49.Grémillet, D. et al. A junk-food hypothesis for gannets feeding on fishery waste. Proc. Biol. Sci. 275, 1149–1156 (2008).PubMed
PubMed Central
Google Scholar
50.Skov, H. & Durinck, J. Seabird attraction to fishing vessels is a local process. Mar. Ecol. Prog. Ser. 214, 289–298 (2001).ADS
Article
Google Scholar
51.Chapman, D. C., Barth, J. A., Beardsley, R. C. & Fairbanks, R. G. On the continuity of mean flow between the Scotian Shelf and the Middle Atlantic Bight. J. Phys. Oceanogr. 16, 758–772 (1986).ADS
Article
Google Scholar
52.Steimle, F. W. & Zetlin, C. Reef habitats in the middle Atlantic bight: Abundance, distribution, associated biological communities, and fishery resource use. Mar. Fish. Rev. 62, 24–42 (2000).
Google Scholar
53.Lee, D. S. Pelagic seabirds and the proposed exploration for fossil fuels off North Carolina: A test for conservation efforts of a vulnerable international resource. J. Elisha Mitchell Sci. Soc. 115, 294–315 (1999).
Google Scholar
54.Kai, E. T. et al. Top marine predators track Lagrangian coherent structures. Proc. Natl. Acad. Sci. 106, 8245–8250 (2009).ADS
CAS
Article
Google Scholar
55.Li, Y., Browder, J. A. & Jiao, Y. Hook effects on seabird bycatch in the United States Atlantic pelagic longline fishery. Bull. Mar. Sci. 88, 559–569 (2012).Article
Google Scholar
56.Taylor, A. H. & Stephens, J. A. The North Atlantic Oscillation and the latitude of the Gulf Stream. Tellus 50, 134–142 (1998).Article
Google Scholar
57.Hobday, A. J., Hartog, J. R., Spillman, C. M. & Alves, O. Seasonal forecasting of tuna habitat for dynamic spatial management. Can. J. Fish. Aquat. Sci. 68, 898–911 (2011).Article
Google Scholar
58.FAO (Food and Agriculture Organization of the United Nations). Guidelines to reduce sea turtle mortality in fishing operations. FAO Technical Guidelines for Responsible Fisheries Prepared by Gilman, E., Bianchi, G. FAO: Rome. ISBN 978-92-106226-5 (2009).59.Bethoney, N. D., Schondelmeier, B. P., Kneebone, J. & Hoffman, W. S. Bridges to best management: Effects of a voluntary bycatch avoidance program in a mid-water trawl fishery. Mar. Policy 83, 172–178 (2017).Article
Google Scholar
60.Lindgren, F. & Rue, H. Bayesian spatial modelling with R-INLA. J. Stat. Softw. 63, 19 (2015).Article
Google Scholar
61.R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ (2019).62.Rue, H., Martino, S. & Lindgren, F. INLA: Functions which allow to perform a full Bayesian analysis of structured (geo-)additive models using integrated nested Laplace approximation. R package version 0.0., GNU General Public License, version 3 (2009).63.Simpson, D., Rue, H., Riebler, A., Martins, T. G. & Sørbye, S. H. Penalising model component complexity: A principled, practical approach to constructing priors (with discussion). Stat. Sci. 32, 1–28 (2017).MATH
Google Scholar
64.Fuglstad, G.-A., Simpson, D., Lindgren, F. & Rue, H. Constructing priors that penalize the complexity of Gaussian random fields. J. Am. Stat. Assoc. 114, 445–452 (2018).MathSciNet
MATH
Article
CAS
Google Scholar
65.Plummer, M. Penalized loss functions for Bayesian model comparison. Biostat. 9, 523–539 (2008).MATH
Article
Google Scholar
66.Gelman, A., Hwang, J. & Vehtari, A. Understanding predictive information criteria for Bayesian models. Stat. Comput. 24, 997–1016 (2014).MathSciNet
MATH
Article
Google Scholar More