1.
Wikramanayake, E. D. et al. An ecology-based method for defining priorities for large mammal conservation: the tiger as case study. Conserv. Biol. 12, 865–868 (1998).
Google Scholar
2.
Walston, J. et al. Bringing the tiger back from the brink—the six percent solution. PLoS Biol. 8(9), e1000485 (2010).
PubMed PubMed Central Google Scholar
3.
Smith, J. L. D. The role of dispersal in structuring the Chitwan tiger population. Behaviour 124(3–4), 165–195 (1993).
Google Scholar
4.
Dinerstein, E. et al. The fate of wild tigers. Bioscience 57, 508–514 (2007).
Google Scholar
5.
Sanderson, E. et al. Setting priorities for the conservation and recovery of wild tigers: 2005–2015. The technical assessment. In Tigers of the World. A Review of Tigers of the World: The Biology, Biopolitics, Management, and Conservation of an Endangered Species 2nd edn (eds Ronald, L. T. & Ulysses, S. S.) 143–161 (Elsevier, New York, 2006).
Google Scholar
6.
Jhala, Y. V., Qureshi, Q. & Gopal, R. Can the abundance of tigers be assessed from their signs?. J. Appl. Ecol. 48, 14–24 (2011).
Google Scholar
7.
IPCC. Global Warming of 15 °C. 26 (Intergovernmental Panel on Climate Change, Switzerland, 2018).
Google Scholar
8.
Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W. & Courchamp, F. Impacts of climate change on the future of biodiversity. Ecol. Lett. 15(4), 365–377 (2012).
PubMed PubMed Central Google Scholar
9.
Gaston, K. J. The structure and dynamics of geographic ranges (Oxford University Press, London, 2003).
Google Scholar
10.
Cahill, A. E. et al. How does climate change cause extinction?. Proc. R. Soc. B. 280, 20121890. https://doi.org/10.1098/rspb.2012.1890 (2012).
Article PubMed Google Scholar
11.
Gienapp, P., Teplitsky, C., Alho, J., Mills, J. & Merilä, J. Climate change and evolution: disentangling environmental and genetic responses. Mol. Ecol. 17(1), 167–178 (2008).
CAS PubMed Google Scholar
12.
Moritz, C. et al. Impact of a century of climate change on small-mammal communities in Yosemite National Park, USA. Science 322(5899), 261–264 (2008).
ADS CAS PubMed Google Scholar
13.
Myers, P., Lundrigan, B. L., Hoffman, S. M., Haraminac, A. P. & Seto, S. H. Climate induced changes in the small mammal communities of the northern Great Lakes region. Glob. Change Biol. 15(6), 1434–1454 (2009).
ADS Google Scholar
14.
Burns, C. E., Johnston, K. M. & Schmitz, O. J. Global climate change and mammalian species diversity in US national parks. PNAS 100(20), 11474–11477 (2003).
ADS CAS PubMed Google Scholar
15.
Bradter, U., Kunin, W. E., Altringham, J. D., Thom, T. J. & Benton, T. G. Identifying appropriate spatial scales of predictors in species distribution models with the random forest algorithm. Methods Ecol. Evol. 4, 167–174 (2013).
Google Scholar
16.
Wiens, J. A. Spatial scaling in ecology. Funct. Ecol. 3, 385–397 (1989).
Google Scholar
17.
Cunningham, M. A. & Johnson, D. H. Proximate and landscape factors influence grassland bird distributions. Ecol. Appl. 16, 1062–1075 (2006).
PubMed Google Scholar
18.
Thogmartin, W. E. & Knutson, M. G. Scaling local species-habitat relations to the larger landscape with a hierarchical spatial count model. Landsc. Ecol. 22, 61–75 (2007).
Google Scholar
19.
Wasserman, T. N., Cushman, S. A., Wallin, D. O. & Hayden, J. Multi Scale Habitat Relationships of Martes americana in Northern Idaho, USA (US Department of Agriculture and Forest Service Rocky Mountain Research Station, Fort Collins, 2012).
Google Scholar
20.
Mateo Sanchez, M. C., Cushman, S. A. & Saura, S. Scale dependence in habitat selection: the case of the endangered brown bear (Ursus arctos) in the Cantabrian Range (NW Spain). Int. J. Geogr. Inf. Sci. 28(8), 1531–1546 (2013).
Google Scholar
21.
Vergara, M., Cushman, S. A., Urra, F. & Ruiz-Gonzalez, A. Shaken but not stirred: multiscale habitat suitability modeling of sympatric marten species (Martes martes and Martes foina) in the northern Iberian Peninsula. Landsc. Ecol. 31(6), 1241–1260 (2016).
Google Scholar
22.
Elith, J. Quantitative methods for modeling species habitat: comparative performance and an application to Australian plants. In Quantitative Methods for Conservation Biology (eds Ferson, S. & Burgman, M.) 39–58 (Springer, New York, 2002).
Google Scholar
23.
Elith, J. et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29, 129–151 (2006).
Google Scholar
24.
Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190, 231–259 (2006).
Google Scholar
25.
Phillips, S. J. & Dudik, M. Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31, 161–175 (2008).
Google Scholar
26.
Breiman, L. Random forests. Mach. Learn. 45(1), 5–32 (2001).
MATH Google Scholar
27.
Breiman, L., Friedman, J. H., Olshen, R. A. & Stone, C. J. Classification and Regression Trees (Chapman and Hall/CRC Press, Boca Raton, 1984).
Google Scholar
28.
Cushman, S. A. & Wasserman, T. N. Landscape applications of machine learning: comparing random forests and logistic regression in multi-scale optimized predictive modeling of American marten occurrence in northern Idaho, USA. In Machine Learning for Ecology and Sustainable Natural Resource Management (eds Humpshires, G., Magness, D. et al.) 185–203 (Springer, New York, 2018).
Google Scholar
29.
Cushman, S. A., Gutzwiller, K., Evans, J. S. & McGarigal, K. The gradient paradigm: a conceptual and analytical framework for landscape ecology. In Spatial Complexity, Informatics, and Wildlife Conservation (eds Cushman, S. A. & Huettman, F.) 83–108 (Springer, Tokyo, 2010).
Google Scholar
30.
Evans, J. S., Murphy, M. A., Holden, Z. A. & Cushman, S. A. Modeling species distribution and change using random forest. In Predictive Species and Habitat Modeling in Landscape Ecology: Concepts and Applications (eds Drew, C. A. et al.) 139–159 (Springer, New York, 2011).
Google Scholar
31.
Drew, C. A., Wiersma, Y. F. & Huettmann, F. Predictive Species and Habitat Modeling in Landscape Ecology: Concepts and Applications (Springer, New York, 2010).
Google Scholar
32.
Rodriguez-Galiano, V. F., Ghimire, B., Rogan, J., Chica-Olmo, M. & Rigol-Sanchez, J. P. An assessment of the effectiveness of a random forest classifier for land-cover classification. ISPRS J. Photogramm. 67, 93–104 (2012).
Google Scholar
33.
Schneider, A. Monitoring land cover change in urban and peri-urban areas using dense time stacks of Landsat satellite data and a data mining approach. Remote Sens. Environ. 124, 689–704 (2012).
ADS Google Scholar
34.
Cushman, S. A., Macdonald, E. A., Landguth, E. L., Halhi, Y. & Macdonald, D. W. Multiple-scale prediction of forest-loss risk across Borneo. Landsc. Ecol. 32, 1581–1598 (2017).
Google Scholar
35.
Buermann, W. et al. Predicting species distributions across the Amazonian and Andean regions using remote sensing data. J. Biogeogr. 35, 1160–1176 (2008).
Google Scholar
36.
Lentz, D. L., Bye, R. & Sánchez-Cordero, V. Ecological niche modeling and distribution of wild sunflower (Helianthus annuus L.) in Mexico. Int. J. Plant Sci. 169(4), 541–549 (2008).
Google Scholar
37.
Warren, D. L., Glor, R. E. & Turelli, M. Environmental niche equivalency versus conservatism: quantitative approaches to niche evolution. Evolution 62, 2868–3288 (2008).
PubMed Google Scholar
38.
Peterson, A. T., Soberon, J. & Sanchez-Cordero, V. Conservatism of ecological niches in evolutionary time. Science 285, 1265–1267 (1999).
CAS PubMed Google Scholar
39.
Graham, C. H., Ron, S. R., Santos, J. C., Schneider, C. J. & Moritz, C. Integrating phylogenetics and environmental niche models to explore speciation mechanisms in dendrobatid frogs. Evolution 58, 1781–1793 (2004).
PubMed Google Scholar
40.
Pearman, P. B., Guisan, A., Broennimann, O. & Randin, C. F. Niche dynamics in space and time. Trends Ecol. Evol. 23, 149–158 (2008).
PubMed Google Scholar
41.
Warren, D. L., Glor, R. E. & Turelli, M. ENMTools: a toolbox for comparative studies of environmental niche models. Ecography 33, 607–611 (2010).
Google Scholar
42.
Broennimann, O. et al. Measuring ecological niche overlap from occurrence and spatial environmental data. Glob. Ecol. Biogeogr. 21, 481–497 (2012).
Google Scholar
43.
Cola, Di. et al. ecospat: an R package to support spatial analyses and modeling of species niches and distributions. Ecography 40, 774–787 (2017).
Google Scholar
44.
Brown, J. L. & Carnaval, A. C. A tale of two niches: methods, concepts and evolution. Front. Biogeogr. 11, 44158. https://doi.org/10.21425/F5FBG44158 (2019).
Article Google Scholar
45.
Qiao, H., Escobar, L. E. & Peterson, A. T. Accessible areas in ecological niche comparisons of invasive species: recognized but still overlooked. Sci. Rep. 7, 1213 (2017).
ADS PubMed PubMed Central Google Scholar
46.
Wan, J. Z., Wang, C. J., Tan, J. F. & Yu, F. H. Climatic niche divergence and habitat suitability of eight alien invasive weeds in China under climate change. Ecol. Evol. 7(5), 1541–1552 (2017).
PubMed PubMed Central Google Scholar
47.
Khosravi, R., Hemani, M. R. & Cushman, S. A. Multi-scale niche modeling of three sympatric felids of conservation importance in central Iran. Landsc. Ecol. 34, 2451–2467 (2019).
Google Scholar
48.
Hayward, M. W., Jędrzejewski, W. & Jêdrzejewska, B. Prey preferences of the tiger. J. Zool. (London) 286, 221–231 (2012).
Google Scholar
49.
Wilson, D. E. M. & Russell, A. Handbook of the Mammals of the World Vol. 2 (Lynx Edicions, Barcelona, 2009).
Google Scholar
50.
Myers, N. Conservation of Africa’s cats: problems and opportunities. In Cats of the World (eds Miller, S. D. & Everett, D. D.) 437–457 (National Wildlife Federation, Washington, DC, 1986).
Google Scholar
51.
Hamilton, P.H. The movements of leopards in Tsavo National Park, Kenya, as determined by radio-tracking. M.Sc. Thesis (University of Nairobi, Kenya 1976).
52.
Odden, M., Wegge, P. & Fredriksen, T. Do tigers displace leopards? If so, why?. Ecol. Res. 25, 875–881 (2010).
Google Scholar
53.
Bagchi, S., Goyal, S. P. & Sankar, K. Prey abundance and prey selection by tigers (Panthera tigris) in a semi-arid, dry deciduous forests in western India. J. Zool. (London) 260(3), 285–290 (2003).
Google Scholar
54.
Johnsingh, A. J. T. Large mammalian predators in Bandipur. J. Bombay Nat. Hist. Soc. 80, 1–57 (1983).
Google Scholar
55.
Khan, J. A., Chellam, R., Rodgers, W. A. & Johnsingh, A. J. T. Ungulate densities and biomass in the tropical dry deciduous forests of Gir, Gujarat, India. J. Trop. Ecol. 12(01), 149–162 (1996).
Google Scholar
56.
Wilson, D. E. & Russell, A. Handbook of the Mammals of the World. Carnivores Vol. 1 (Lynx Edicions, Barcelona, 2009).
Google Scholar
57.
Singh, H. S. Status of the leopard Panthera pardus in India. Cat News 42, 15–17 (2005).
Google Scholar
58.
Athreya, V. Is relocation a viable management option for unwanted animals? The case of the leopard in India. Conserv. Soc. 4, 419–423. https://www.conservationandsociety.org/text.asp?2006/4/3/419/49275 (2006).
59.
Karanth, K. U. & Stith, B. M. Prey depletion as a critical determinant of tiger population viability. In Riding the Tiger: Tiger Conservation in Human Dominated Landscapes (eds Seidensticker, J., Christie, S. et al.) 100–113 (Cambridge University Press, Cambridge, 1999).
Google Scholar
60.
Rowe, K. C. et al. Spatially heterogeneous impact of climate change on small mammals of montane California. Proc. R. Soc. 282, 20141857. https://doi.org/10.1098/rspb.2014.1857 (2015).
Article Google Scholar
61.
Pandey, R. & Papeş, M. Changes in future potential distributions of apex predator and mesopredator mammals in North America. Reg. Environ. Change 18, 1223–1233 (2018).
Google Scholar
62.
Tian, Y., Wu, J., Wang, T. & Ge, J. Climate change and landscape fragmentation jeopardize the population viability of Siberian tiger (Panthera tigris altaica). Landsc. Ecol. 29, 621–637 (2014).
CAS Google Scholar
63.
Ashrafzadeh, M. R., Naghipour, A. A., Haidarian, M. & Igor, K. Modeling the response of an endangered flagship predator to climate in Iran. Mamm. Res. 64(1), 39–51 (2019).
Google Scholar
64.
Karanth, K. U., Nichols, J. D., Kumar, N. S., Link, W. A. & Hines, J. E. Tigers and their prey: predicting carnivore densities from prey abundance. PNAS 101(14), 4854–4858 (2004).
ADS CAS PubMed Google Scholar
65.
Seidensticker, J. On the ecological separation between tigers and leopards. Biotropica 8(4), 225–234 (1976).
Google Scholar
66.
McDougal, C. Leopard and tiger interactions at Royal Chitwan National Park, Nepal. J. Bombay Nat. Hist. Soc. 85, 609–610 (1988).
Google Scholar
67.
Seidensticker, J., Sunquist, M. E. & McDougal, C. Leopards living at the edge of the Royal Chitwan National Park, Nepal. In Conservation in Developing Countries: Problems and Prospects (eds Daniel, J. C. & Serrao, J. S.) 415–423 (Bombay Natural History Society and Oxford University Press, Bombay, 1990).
Google Scholar
68.
Schoener, T. W. Resource partitioning in ecological communities. Science 185, 27–39 (1974).
ADS CAS PubMed Google Scholar
69.
Schoener, T. W. Field experiments on interspecific competition. Am. Nat. 122, 240–285 (1983).
Google Scholar
70.
Fedriani, J. M. et al. Niche relations among three sympatric Mediterranean carnivores. Oecologia 121, 138–148 (1999).
ADS PubMed Google Scholar
71.
Loveridge, A. J. & Macdonald, D. W. Niche separation in sympatric jackals (Canis mesomelas and Canis adustus). J. Zool. 259, 143–153 (2003).
Google Scholar
72.
Vieira, E. M. & Port, D. Niche overlap and resource partitioning between two sympatric fox species in southern Brazil. J. Zool. 272, 57–63 (2007).
Google Scholar
73.
Champion, H. G. & Seth, S. K. A Revised Survey of the Forest Types of India (Government of India Press, New Delhi, 1968).
Google Scholar
74.
Johnsingh, A. J. T. Prey selection in three sympatric carnivores in Bandipur. Mammalia 56, 517–526 (1992).
Google Scholar
75.
Karanth, K. U. & Sunquist, M. E. Prey selection by tiger, leopard and dhole in tropical forests. J. Appl. Ecol. 64, 439–450 (1995).
Google Scholar
76.
Andheria, A., Karanth, K. U. & Kumar, N. Diet and prey profiles of three sympatric large carnivores in Bandipur Tiger Reserve, India. J. Zool. 273, 169–175 (2007).
Google Scholar
77.
Brown, J. L. SDMtoolbox: a python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses. Methods Ecol. Evol. 5(7), 694–700 (2014).
Google Scholar
78.
Titeux, N. Modelling species distribution when habitat occupancy depart from suitability. Application to birds in a landscape context. Ph.D. thesis (Universite´ Catholique de Louvain, Louvain-la-Neuve, 2006).
79.
Mateo, R. G., Croat, T. B., Felicisimo, A. M. & Munoz, J. Profile or group discriminative techniques? Generating reliable pseudo-absences and target-group absences from natural history collections. Divers. Distrib. 16, 84–94 (2010).
Google Scholar
80.
Graham, C. H. & Hijmans, R. J. A comparison of methods for mapping species richness. Glob. Ecol. Biogeogr. 15, 578–587 (2006).
Google Scholar
81.
Liaw, A. & Wiener, M. Classification and regression by randomForest. R News 2, 3, 18–22 https://www.R-project.org (2002)
82.
R core Team. R: A language and environment for statistical computing. R Foundation for statistical computing, Vienna https://www.R-project.org/ (2019).
83.
Dormann, C. F. et al. Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36(1), 27–46 (2013).
Google Scholar
84.
Heikkinen, R. K. et al. Methods and uncertainties in bioclimatic envelope modelling under climate change. Prog. Phys. Geogr. 30(6), 751–777 (2006).
Google Scholar
85.
Farr, T. G. et al. The Shuttle Radar Topography Mission. Rev. Geophys. 45, RG2004. https://doi.org/10.1029/2005RG000183 (2007).
ADS Article Google Scholar
86.
Rabus, B., Eineder, M., Roth, A. & Bamler, R. The shuttle radar topography mission—a new class of digital elevation models acquired by spaceborne radar. ISPRS J. Photogramm. 57(4), 241–262 (2003).
Google Scholar
87.
Beaumont, L. J., Hughes, L. & Pitman, A. J. Why is the choice of future climate scenarios for species distribution modelling important?. Ecol. Lett. 11(11), 1135–1146 (2008).
PubMed Google Scholar
88.
Perkins, S., Pitman, A., Holbrook, N. & McAveney, J. Evaluation of the AR4 climate models’ simulated daily maximum temperature, minimum temperature and precipitation over Australia using probability density functions. J. Clim. 20, 4356–4376 (2007).
ADS Google Scholar
89.
Watanabe, M. et al. Improved Climate Simulation by MIROC5: mean states, variability, and climate sensitivity. J. Clim. 23(23), 6312–6335 (2010).
ADS Google Scholar
90.
Calvente, M. E. et al. Can gypsophytes distinguish different types of gypsum habitats?. Acta. Bot. Gallica. 156(1), 63–78 (2009).
Google Scholar
91.
van Vurren, D. P. et al. The representative concentration pathways: an overview. Clim. Change 109, 5. https://doi.org/10.1007/s10584-011-0148-z (2011).
ADS Article Google Scholar
92.
Wayne, G.P. The beginner’s guide to representative concentration pathways. Skeptical Science 25 https://skepticalscience.com/rcp.php (2013)
93.
Rogelj, J., Meinshausen, M. & Knutti, R. Global warming under old and new scenarios using IPCC climate sensitivity range estimates. Nat. Clim. Change 2, 248–253 (2012).
ADS Google Scholar
94.
Steffan-Dewenter, I., Munzenberg, U., Burger, C., Thies, C. & Tscharntke, T. Scale-dependent effects of landscape context on three pollinator guilds. Ecology 83, 1421–1432 (2002).
Google Scholar
95.
Holland, J. D., Bert, D. G. & Fahrig, L. Determining the spatial scale of species’ response to habitat. Bioscience 54, 227–233 (2004).
Google Scholar
96.
McGarigal, K., Wan, H. Y., Zeller, K. A., Timm, B. C. & Cushman, S. A. Multi-scale habitat modeling: a review and outlook. Landsc. Ecol. 31, 1161–1175 (2016).
Google Scholar
97.
Sandri, M. & Zuccolotto, P. Variable selection using random forests. In Data Analysis, Classification and the Forward Search (eds Zani, S. & Cerioli, A.) 263–270 (Springer, Berlin, 2005).
Google Scholar
98.
Diaz-Uriarte, R. & Alvarez de Andres, S. Gene selection and classification of microarray data using randomForest. BMC Bioinform. 7, 3 (2006).
Google Scholar
99.
Genuer, R., Poggi, J.-M. & Tuleau-Malot, C. Variable selection using random forests. Pattern Recognit. Lett. 31, 2225–2236 (2010).
Google Scholar
100.
Strobl, C., Boulesteix, A.-L., Kneib, T., Augustin, T. & Zeileis, A. Conditional variable importance for randomforests. BMC Bioinform. 9, 307 (2008).
Google Scholar
101.
Evans, J. S. & Cushman, S. A. Gradient modeling of conifer species using random forests. Landsc. Ecol. 24(5), 673–683 (2009).
Google Scholar
102.
Pontius, R. G. Jr. & Milones, M. Death to Kappa: Birth of quality disagreement and allocation disagreement for accuracy assessment. Int. J. Remote Sens. 32, 4407–4429 (2011).
ADS Google Scholar
103.
Pontius, R. G. Jr. & Si, K. The total operating characteristic to measure diagnostic ability for multiple thresholds. Int. J. Geogr. Inf. Sci. 28, 570–583 (2014).
Google Scholar
104.
Hof, C., Rahbek, C. & Araújo, M. B. Phylogenetic signals in the climatic niches of the world’s amphibians. Ecography 33, 242–250 (2010).
Google Scholar
105.
Guisan, A. & Thuiller, W. Predicting species distribution: offering more than simple habitat models. Ecol. Lett. 8, 993–1009 (2005).
Google Scholar
106.
Saupe, E. E. et al. Reconstructing ecological niche evolution when niches are incompletely characterized. Syst. Biol. 67, 428–438 (2017).
Google Scholar More