More stories

  • in

    Distinct gut microbiomes in two polar bear subpopulations inhabiting different sea ice ecoregions

    1.Ley, R. E. et al. Evolution of mammals and their gut microbes. Science 320, 1647–1651. https://doi.org/10.1126/science.1155725 (2008).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    2.Hale, V. L. et al. Diet versus phylogeny: a comparison of gut microbiota in captive colobine monkey species. Microb. Ecol. 75, 515–527. https://doi.org/10.1007/s00248-017-1041-8 (2018).Article 
    PubMed 

    Google Scholar 
    3.Pickard, J. M., Zeng, M. Y., Caruso, R. & Núñez, G. Gut microbiota: role in pathogen colonization, immune responses, and inflammatory disease. Immunol. Rev. 279, 70–89 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    4.Ley, R. E., Peterson, D. A. & Gordon, J. I. Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell 124, 837–848 (2006).CAS 
    PubMed 

    Google Scholar 
    5.Pascoe, E. L., Hauffe, H. C., Marchesi, J. R. & Perkins, S. E. Network analysis of gut microbiota literature: an overview of the research landscape in non-human animal studies. ISME J. 11, 2644–2651. https://doi.org/10.1038/ismej.2017.133 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    6.Hauffe, H. C. & Barelli, C. Conserve the germs: the gut microbiota and adaptive potential. Conserv. Genet. 20, 19–27. https://doi.org/10.1007/s10592-019-01150-y (2019).Article 

    Google Scholar 
    7.Ellegaard, K. M. & Engel, P. Beyond 16S rRNA Community profiling: intra-species diversity in the gut microbiota. Front. Microbiol. 7, doi:https://doi.org/10.3389/fmicb.2016.01475 (2016).8.Sugden, S., Sanderson, D., Ford, K., Stein, L. Y. & St. Clair, C. C. An altered microbiome in urban coyotes mediates relationships between anthropogenic diet and poor health. Sci. Rep. 10, 22207, doi:https://doi.org/10.1038/s41598-020-78891-1 (2020).9.Góngora, E., Elliott, K. H. & Whyte, L. Gut microbiome is affected by inter-sexual and inter-seasonal variation in diet for thick-billed murres (Uria lomvia). Sci. Rep. 11, 1200. https://doi.org/10.1038/s41598-020-80557-x (2021).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    10.Muegge, B. D. et al. Diet drives convergence in gut microbiome functions across mammalian phylogeny and within humans. Science 332, 970. https://doi.org/10.1126/science.1198719 (2011).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    11.Bik, E. M. et al. Marine mammals harbor unique microbiotas shaped by and yet distinct from the sea. Nature Commun 7, 10516 (2016).ADS 
    CAS 

    Google Scholar 
    12.McKenzie, V. J. et al. The effects of captivity on the mammalian gut microbiome. Integr. Comp. Biol. 57, 690–704 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    13.Des Roches, S. et al. The ecological importance of intraspecific variation. Nat. Ecol. Evol. 2, 57–64, doi:https://doi.org/10.1038/s41559-017-0402-5 (2018).14.Des Roches, S., Pendleton, L. H., Shapiro, B. & Palkovacs, E. P. Conserving intraspecific variation for nature’s contributions to people. Nat. Ecol. Evol. 5, 574–582, doi:https://doi.org/10.1038/s41559-021-01403-5 (2021).15.Wasimuddin, et al. Gut microbiomes of free-ranging and captive Namibian cheetahs: diversity, putative functions and occurrence of potential pathogens. Mol. Ecol. 26, 5515–5527. https://doi.org/10.1111/mec.14278 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    16.Alfano, N. et al. Variation in koala microbiomes within and between individuals: effect of body region and captivity status. Sci. Rep. 5, 10189. https://doi.org/10.1038/srep10189 (2015).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    17.Schwab, C., Cristescu, B., Northrup, J. M., Stenhouse, G. B. & Gänzle, M. Diet and environment shape fecal bacterial microbiota composition and enteric pathogen load of grizzly bears. Plos One 6, e27905 (2011).18.Sommer, F. et al. The gut microbiota modulates energy metabolism in the hibernating brown bear Ursus arctos. Cell Rep 14, 1655–1661 (2016).CAS 
    PubMed 

    Google Scholar 
    19.Durner, G., Laidre, K. & York, G. Polar Bears: Proceedings of the 18th Working Meeting of the IUCN/SSC Polar Bear Specialist Group, 7–11 June 2016, Anchorage, Alaska. Gland, Switzerland and Cambridge, UK: IUCN. xxx+ 207pp (2018).20.Amstrup, S. C., Marcot, B. G. & Douglas, D. C. in Arctic sea ice decline: Observations, projections, mechanisms, and implications Geophysics monograph series (eds E.T. DeWeaver, C.M. Bitz, & L.-B. Tremblay) 213–268 (AGU, 2008).21.Thiemann, G. W., Iverson, S. J. & Stirling, I. Polar bear diets and arctic marine food webs: Insights from fatty acid analysis. Ecol. Monogr 78, 591–613 (2008).
    Google Scholar 
    22.McKinney, M. A. et al. Regional contamination versus regional dietary differences: Understanding geographic variation in brominated and chlorinated contaminant levels in polar bears. Environ. Sci. Technol. 45, 896–902 (2011).ADS 
    CAS 
    PubMed 

    Google Scholar 
    23.Laidre, K. L. et al. Arctic marine mammal population status, sea ice habitat loss, and conservation recommendations for the 21st century. Conserv. Biol. 29, 724–737 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    24.Stern, H. L. & Laidre, K. L. Sea-ice indicators of polar bear habitat. Cryosphere 10, 2027–2041. https://doi.org/10.5194/tc-10-2027-2016 (2016).ADS 
    Article 

    Google Scholar 
    25.Atwood, T. C. et al. Rapid environmental change drives increased land use by an Arctic marine predator. PLoS ONE 11, e0155932 (2016).26.Rode, K. D., Robbins, C. T., Nelson, L. & Amstrup, S. C. Can polar bears use terrestrial foods to offset lost ice-based hunting opportunities?. Front. Ecol. Environ. 13, 138–145 (2015).
    Google Scholar 
    27.Herreman, J. K. & Peacock, E. Polar bear use of a persistent food subsidy: insights from non-invasive genetic sampling in Alaska. Ursus 24, 148–163 (2013).
    Google Scholar 
    28.Glad, T. et al. Bacterial diversity in faeces from polar bear (Ursus maritimus) in Arctic Svalbard. BMC Microbiol. 10, doi:https://doi.org/10.1186/1471-2180-10-10 (2010).29.Watson, S. E. et al. Global change-driven use of onshore habitat impacts polar bear faecal microbiota. ISME J. https://doi.org/10.1038/s41396-019-0480-2 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    30.McKinney, M. A. et al. Global change effects on the long-term feeding ecology and contaminant exposures of East Greenland polar bears. Glob. Change Biol. 19, 2360–2372. https://doi.org/10.1111/gcb.12241 (2013).ADS 
    Article 

    Google Scholar 
    31.Ilinskaya, O. N., Ulyanova, V. V., Yarullina, D. R. & Gataullin, I. G. Secretome of Intestinal Bacilli: A Natural Guard against Pathologies. Front. Microbiol. 8, doi:https://doi.org/10.3389/fmicb.2017.01666 (2017).32.Cho, G.-S. et al. Quantification of Slackia and Eggerthella spp. in Human Feces and Adhesion of Representatives Strains to Caco-2 Cells. Front. Microbiol. 7, doi:https://doi.org/10.3389/fmicb.2016.00658 (2016).33.Astbury, S. et al. Lower gut microbiome diversity and higher abundance of proinflammatory genus Collinsella are associated with biopsy-proven nonalcoholic steatohepatitis. Gut Microbes 11, 569–580. https://doi.org/10.1080/19490976.2019.1681861 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    34.Gomez-Arango, L. F. et al. Low dietary fiber intake increases Collinsella abundance in the gut microbiota of overweight and obese pregnant women. Gut Microbes 9, 189–201 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    35.Jeong, Y. et al. Gut microbial composition and function are altered in patients with early rheumatoid arthritis. J. Clin. Med. 8, 693 (2019).CAS 
    PubMed Central 

    Google Scholar 
    36.Liu, X. et al. Blautia-a new functional genus with potential probiotic properties?. Gut microbes 13, 1–21. https://doi.org/10.1080/19490976.2021.1875796 (2021).CAS 
    Article 
    PubMed 

    Google Scholar 
    37.Claus, S. P. et al. Colonization-induced host-gut microbial metabolic interaction. MBio 2, e00271-e210 (2011).PubMed 
    PubMed Central 

    Google Scholar 
    38.Martínez, I. et al. Diet-induced metabolic improvements in a hamster model of hypercholesterolemia are strongly linked to alterations of the gut microbiota. Appl. Environ. Microbiol. 75, 4175–4184 (2009).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    39.Sergeant, M. J. et al. Extensive microbial and functional diversity within the chicken cecal microbiome. PLoS One 9, e91941 (2014).40.Zhang, X. et al. Human gut microbiota changes reveal the progression of glucose intolerance. PLoS One 8, e71108 (2013).41.Shetty, S. A., Marathe, N. P., Lanjekar, V., Ranade, D. & Shouche, Y. S. Comparative genome analysis of Megasphaera sp. reveals niche specialization and its potential role in the human gut. PLoS One 8, e79353 (2013).42.Jiang, X.-L., Su, Y. & Zhu, W.-Y. Fermentation characteristics of Megasphaera elsdenii J6 derived from pig feces on different lactate isomers. J. Integr. Agric. 15, 1575–1583. https://doi.org/10.1016/S2095-3119(15)61236-9 (2016).CAS 
    Article 

    Google Scholar 
    43.Hobson, K. A. & Stirling, I. Low variation in blood delta C-13 among Hudson Bay polar bears: implications for metabolism and tracing terrestrial foraging. Mar. Mammal Sci 13, 359–367 (1997).
    Google Scholar 
    44.Hobson, K. A., Stirling, I. & Andriashek, D. S. Isotopic homogeneity of breath CO2 from fasting and berry-eating polar bears: implications for tracing reliance on terrestrial foods in a changing Arctic. Can. J. Zool 87, 50–55 (2009).CAS 

    Google Scholar 
    45.Sakamoto, M. & Ohkuma, M. Reclassification of Xylanibacter oryzae Ueki et al. 2006 as Prevotella oryzae comb. nov., with an emended description of the genus Prevotella. Int. J. Syst. Evol. Microbiol. 62, 2637–2642 (2012).46.Ley, R. E. Obesity and the human microbiome. Curr. Opin. Gastroenterol. 26, 5–11 (2010).PubMed 

    Google Scholar 
    47.Rajilić-Stojanović, M. et al. Global and deep molecular analysis of microbiota signatures in fecal samples from patients with irritable bowel syndrome. Gastroenterology 141, 1792–1801 (2011).PubMed 

    Google Scholar 
    48.Larsen, N. et al. Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS One 5, e9085 (2010).49.Le Chatelier, E. et al. Richness of human gut microbiome correlates with metabolic markers. Nature 500, 541–546 (2013).
    Google Scholar 
    50.Rajilić-Stojanović, M. & de Vos, W. M. The first 1000 cultured species of the human gastrointestinal microbiota. FEMS Microbiol. Rev. 38, 996–1047. https://doi.org/10.1111/1574-6976.12075 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    51.do Nascimento Silva, A., de Avila, E. D., Nakano, V. & Avila-Campos, M. J. Pathogenicity and genetic profile of oral Porphyromonas species from canine periodontitis. Arch. Oral Biol. 83, 20–24 (2017).52.Acuña-Amador, L. & Barloy-Hubler, F. Porphyromonas spp. have an extensive host range in ill and healthy individuals and an unexpected environmental distribution: a systematic review and meta-analysis. Anaerobe 66, 102280, doi:https://doi.org/10.1016/j.anaerobe.2020.102280 (2020).53.Solé, C. et al. Alterations in gut microbiome in cirrhosis as assessed by quantitative metagenomics: relationship with acute-on-chronic liver failure and prognosis. Gastroenterology 160, 206–218. e213 (2021).54.Osman, M. A. et al. Parvimonas micra, Peptostreptococcus stomatis, Fusobacterium nucleatum and Akkermansia muciniphila as a four-bacteria biomarker panel of colorectal cancer. Sci. Rep. 11, 2925. https://doi.org/10.1038/s41598-021-82465-0 (2021).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    55.Murphy, E. C. & Frick, I.-M. Gram-positive anaerobic cocci – commensals and opportunistic pathogens. FEMS Microbiol. Rev. 37, 520–553. https://doi.org/10.1111/1574-6976.12005 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    56.Vitali, B., Abruzzo, A. & Mastromarino, P. in The Microbiota in Gastrointestinal Pathophysiology (eds Martin H. Floch, Yehuda Ringel, & W. Allan Walker) 399–407 (Academic Press, 2017).57.Costello, E. K., Stagaman, K., Dethlefsen, L., Bohannan, B. J. & Relman, D. A. The application of ecological theory toward an understanding of the human microbiome. Science 336, 1255–1262 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    58.Kapourchali, F. R. & Cresci, G. A. M. Early-life gut microbiome—the importance of maternal and infant factors in its establishment. Nutr. Clin. Pract. 35, 386–405. https://doi.org/10.1002/ncp.10490 (2020).Article 
    PubMed 

    Google Scholar 
    59.Guo, G. et al. The Gut Microbial Community Structure of the North American River Otter (Lontra canadensis) in the Alberta Oil Sands Region in Canada: relationship with local environmental variables and metal body burden. Environ. Toxicol. Chem. https://doi.org/10.1002/etc.4876 (2020).Article 
    PubMed 

    Google Scholar 
    60.Haworth, S. E., White, K. S., Côté, S. D. & Shafer, A. B. A. Space, time and captivity: quantifying the factors influencing the fecal microbiome of an alpine ungulate. FEMS microbiology ecology 95, doi:https://doi.org/10.1093/femsec/fiz095 (2019).61.McKinney, M. A., Atwood, T. C., Iverson, S. J. & Peacock, E. Temporal complexity of southern Beaufort Sea polar bear diets during a period of increasing land use. Ecosphere 8, e01633. https://doi.org/10.1002/ecs2.1633 (2017).Article 

    Google Scholar 
    62.Atwood, T. C. et al. Rapid environmental change drives increased land use by an arctic marine predator. PLoS ONE 11, e0155932–e0155932. https://doi.org/10.1371/journal.pone.0155932 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    63.Laidre, K. L., Stirling, I., Estes, J. A., Kochnev, A. & Roberts, J. Historical and potential future importance of large whales as food for polar bears. Front. Ecol. Environ. 16, 515–524. https://doi.org/10.1002/fee.1963 (2018).Article 

    Google Scholar 
    64.Bromaghin, J. F. et al. Polar bear population dynamics in the southern Beaufort Sea during a period of sea ice decline. Ecol. Appl. 25, 634–651. https://doi.org/10.1890/14-1129.1 (2015).Article 
    PubMed 

    Google Scholar 
    65.Atwood, T. C. et al. Environmental and behavioral changes may influence the exposure of an Arctic apex predator to pathogens and contaminants. Sci. Rep. 7, doi:https://doi.org/10.1038/s41598-017-13496-9 (2017).66.Bowen, W. D. & Iverson, S. J. Methods of estimating marine mammal diets: a review of validation experiments and sources of bias and uncertainty. Mar. Mamm. Sci. 29, 719–754. https://doi.org/10.1111/j.1748-7692.2012.00604.x (2013).Article 

    Google Scholar 
    67.Sonsthagen, S. A. et al. DNA metabarcoding of feces to infer summer diet of Pacific walruses. Mar. Mamm. Sci. https://doi.org/10.1111/mms.12717 (2020).Article 

    Google Scholar 
    68.Michaux, J., Dyck, M., Boag, P., Lougheed, S. & Van Coeverden de Groot, P. New insights on polar bear (Ursus maritimus) diet from faeces based on next-generation sequencing technologies. ARCTIC 74, 87–99, doi:https://doi.org/10.14430/arctic72239 (2021).69.Bourque, J., Atwood, T. C., Divoky, G. J., Stewart, C. & McKinney, M. A. Fatty acid-based diet estimates suggest ringed seal remain the main prey of southern Beaufort Sea polar bears despite recent use of onshore food resources. Ecol. Evol. 10, 2093–2103. https://doi.org/10.1002/ece3.6043 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    70.Dominianni, C. et al. Sex, Body Mass Index, and Dietary Fiber Intake Influence the Human Gut Microbiome. PLoS One 10, doi: https://doi.org/10.1371/journal.pone.0124599 (2015).71.Bennett, G. et al. Host age, social group, and habitat type influence the gut microbiota of wild ring-tailed lemurs (Lemur catta). Am. J. Primatol. 78, 883–892. https://doi.org/10.1002/ajp.22555 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    72.Peng, C. et al. Sex-specific association between the gut microbiome and high-fat diet-induced metabolic disorders in mice. Biol. Sex Differ. 11, 5. https://doi.org/10.1186/s13293-020-0281-3 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    73.Markle, J. G. et al. Sex differences in the gut microbiome drive hormone-dependent regulation of autoimmunity. Science 339, 1084–1088 (2013).ADS 
    CAS 
    PubMed 

    Google Scholar 
    74.Kaliannan, K. et al. Estrogen-mediated gut microbiome alterations influence sexual dimorphism in metabolic syndrome in mice. Microbiome 6, 205. https://doi.org/10.1186/s40168-018-0587-0 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    75.Park, M. J. et al. Reproductive senescence and ischemic stroke remodel the gut microbiome and modulate the effects of estrogen treatment in female rats. Transl. Stroke Res., 1–19 (2019).76.Thiemann, G. W., Budge, S. M., Iverson, S. J. & Stirling, I. Unusual fatty acid biomarkers reveal age- and sex-specific foraging in polar bears (Ursus maritimus). Can. J. Zool. 85, 505–517. https://doi.org/10.1139/Z07-028 (2007).CAS 
    Article 

    Google Scholar 
    77.Stirling, I. & Derocher, A. E. Effects of climate warming on polar bears: a review of the evidence. Glob. Change Biol. 18, 2694–2706. https://doi.org/10.1111/j.1365-2486.2012.02753.x (2012).ADS 
    Article 

    Google Scholar 
    78.Miller, S., Wilder, J. & Wilson, R. R. Polar bear–grizzly bear interactions during the autumn open-water period in Alaska. J. Mammal. 96, 1317–1325 (2015).
    Google Scholar 
    79.Mshelia, E. S. et al. The association between gut microbiome, sex, age and body condition scores of horses in Maiduguri and its environs. Microb. Pathog. 118, 81–86. https://doi.org/10.1016/j.micpath.2018.03.018 (2018).Article 
    PubMed 

    Google Scholar 
    80.Falony, G. et al. Population-level analysis of gut microbiome variation. Science 352, 560. https://doi.org/10.1126/science.aad3503 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    81.Walters, W. A., Xu, Z. & Knight, R. Meta-analyses of human gut microbes associated with obesity and IBD. FEBS Lett. 588, 4223–4233 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    82.Feng, P. et al. A review on gut remediation of selected environmental contaminants: possible roles of probiotics and gut microbiota. Nutrients 11, 22 (2019).CAS 

    Google Scholar 
    83.Vasemägi, A., Visse, M. & Kisand, V. Effect of environmental factors and an emerging parasitic disease on gut microbiome of wild salmonid fish. MSphere 2 (2017).84.Kreisinger, J., Bastien, G. r., Hauffe, H. C., Marchesi, J. & Perkins, S. E. Interactions between multiple helminths and the gut microbiota in wild rodents. Philos. Trans. R. Soc. B: Biol. Sci. 370, doi:https://doi.org/10.1098/rstb.2014.0295 (2015).85.Faust, K. & Raes, J. Microbial interactions: from networks to models. Nat. Rev. Microbiol. 10, 538–550 (2012).CAS 
    PubMed 

    Google Scholar 
    86.Baldo, L. et al. Convergence of gut microbiotas in the adaptive radiations of African cichlid fishes. ISME J. 11, 1975–1987 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    87.Yan, D. et al. Effects of Chronic Stress on the Fecal Microbiome of Malayan Pangolins (Manis javanica) Rescued from the Illegal Wildlife Trade. Curr. Microbiol. 78, 1017–1025. https://doi.org/10.1007/s00284-021-02357-4 (2021).CAS 
    Article 
    PubMed 

    Google Scholar 
    88.Schirmer, M. et al. Linking the human gut microbiome to inflammatory cytokine production capacity. Cell 167, 1125-1136.e1128. https://doi.org/10.1016/j.cell.2016.10.020 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    89.Mallott, E. K., Borries, C., Koenig, A., Amato, K. R. & Lu, A. Reproductive hormones mediate changes in the gut microbiome during pregnancy and lactation in Phayre’s leaf monkeys. Sci. Rep. 10, 9961. https://doi.org/10.1038/s41598-020-66865-2 (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    90.Burokas, A., Moloney, R. D., Dinan, T. G. & Cryan, J. F. Microbiota regulation of the mammalian gut–brain axis. Adv. Appl. Microbiol. 91, 1–62 (2015).CAS 
    PubMed 

    Google Scholar 
    91.Bercik, P. et al. Chronic gastrointestinal inflammation induces anxiety-like behavior and alters central nervous system biochemistry in mice. Gastroenterology 139, 2102–2112 (2010).92.Walter, J. M., Bagi, A. & Pampanin, D. M. Insights into the potential of the Atlantic cod gut microbiome as biomarker of oil contamination in the marine environment. Microorganisms 7, 209 (2019).CAS 
    PubMed Central 

    Google Scholar 
    93.Xia, J. et al. Effects of short term lead exposure on gut microbiota and hepatic metabolism in adult zebrafish. Comput. Biochem. Physiol. C: Toxicol. Pharmacol. 209, 1–8 (2018).CAS 

    Google Scholar 
    94.Breton, J. et al. Ecotoxicology inside the gut: impact of heavy metals on the mouse microbiome. BMC Pharmacol. Toxicol. 14, 1–11 (2013).
    Google Scholar 
    95.Schliebe, S. et al. Effects of sea ice extent and food availability on spatial and temporal distribution of polar bears during the fall open-water period in the Southern Beaufort Sea. Polar Biol. 31, 999–1010 (2008).
    Google Scholar 
    96.Bahrndorff, S., Alemu, T., Alemneh, T. & Lund Nielsen, J. The microbiome of animals: implications for conservation biology. Int J Genomics 2016, 5304028–5304028, doi:https://doi.org/10.1155/2016/5304028 (2016).97.McKenney, E., Koelle, K., Dunn, R. & Yoder, A. The ecosystem services of animal microbiomes. Mol. Ecol. 27, 2164–2172 (2018).CAS 
    PubMed 

    Google Scholar 
    98.Calvert, W. & Ramsay, M. A. Evaluation of age determination of polar bears by counts of cementum growth layer groups. Ursus 10, 449–453 (1998).
    Google Scholar 
    99.Iverson, S. J., Field, C., Bowen, W. D. & Blanchard, W. Quantitative fatty acid signature analysis: a new method of estimating predator diets. Ecol. Monogr 74, 211–235 (2004).
    Google Scholar 
    100.Galicia, M. P., Thiemann, G. W., Dyck, M. G. & Ferguson, S. H. Characterization of polar bear (Ursus maritimus) diets in the Canadian High Arctic. Polar Biol. 38, 1983–1992 (2015).
    Google Scholar 
    101.Bourque, J. et al. Feeding habits of a new Arctic predator: Insight from full-depth blubber fatty acid signatures of Greenland, Faroe Islands, Denmark, and managed-care killer whales Orcinus orca. Mar. Ecol. Prog. Ser. 603, 1–12 (2018).ADS 
    CAS 

    Google Scholar 
    102.Budge, S. M., Iverson, S. J. & Koopman, H. N. Studying trophic ecology in marine ecosystems using fatty acids: a primer on analysis and interpretation. Mar. Mamm. Sci. 22, 759–801 (2006).
    Google Scholar 
    103.Aitchison, J. The statistical analysis of compositional data. J. R. Stat. Soc.: Ser. B (Methodol.) 44, 139–160 (1982).MathSciNet 
    MATH 

    Google Scholar 
    104.R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, Austria, 2019).105.Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583. https://doi.org/10.1038/nmeth.3869 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    106.Davis, N. M., Proctor, D. M., Holmes, S. P., Relman, D. A. & Callahan, B. J. Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data. Microbiome 6, 1–14 (2018).
    Google Scholar 
    107.Chong, J., Liu, P., Zhou, G. & Xia, J. Using MicrobiomeAnalyst for comprehensive statistical, functional, and meta-analysis of microbiome data. Nat. Protoc. 15, 799–821. https://doi.org/10.1038/s41596-019-0264-1 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    108.McMurdie, P., Holmes, S., Kindt, R., Legendre, P. & O’Hara, R. P. an R package for reproducible interactive analysis and graphics of microbiome census data. Watson M, editor. PLoS One [Internet]. Public Library of Science (2013).109.McMurdie, P. J. & Holmes, S. Waste Not, Want Not: Why Rarefying Microbiome Data Is Inadmissible. PLoS Comput. Biol. 10, e1003531. https://doi.org/10.1371/journal.pcbi.1003531 (2014).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    110.Oksanen, J. et al. The vegan package. Commun. Ecol. Package 10, 719 (2007).
    Google Scholar 
    111.Anderson, M. J. Distance-based tests for homogeneity of multivariate dispersions. Biometrics 62, 245–253 (2006).MathSciNet 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 
    112.Lin, H. & Peddada, S. D. Analysis of compositions of microbiomes with bias correction. Nat. Commun. 11, 3514. https://doi.org/10.1038/s41467-020-17041-7 (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    113.Rode, K. D. et al. Identifying reliable indicators of fitness in polar bears. PLoS ONE 15, e0237444. https://doi.org/10.1371/journal.pone.0237444 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    114.Burnham, K. P., Anderson, D. R. & Huyvaert, K. P. AIC model selection and multimodel inference in behavioral ecology: some background, observations, and comparisons. Behav. Ecol. Sociobiol. 65, 23–35 (2011).
    Google Scholar  More

  • in

    Tundra vegetation change and impacts on permafrost

    1.Meredith, M. et al. in IPCC Special Report on the Ocean and Cryosphere in a Changing Climate Ch. 3 (eds Pörtner, H.-O. et al.) (Intergovernmental Panel on Climate Change, 2019).2.Blok, D. et al. Shrub expansion may reduce summer permafrost thaw in Siberian tundra. Glob. Change Biol. 16, 1296–1305 (2010). A field study in which dwarf-shrub canopies were removed experimentally, resulting in increased thaw depths, thereby, underscoring the protective role of vegetation cover on permafrost.
    Google Scholar 
    3.van Huissteden, J. Thawing Permafrost: Permafrost Carbon in a Warming Arctic (Springer, 2020).4.Jorgenson, M. et al. Resilience and vulnerability of permafrost to climate change. Can. J. For. Res. 40, 1219–1236 (2010).
    Google Scholar 
    5.Kropp, H. et al. Shallow soils are warmer under trees and tall shrubs across Arctic and Boreal ecosystems. Environ. Res. Lett. 16, 015001 (2020).
    Google Scholar 
    6.Myers-Smith, I. H. & Hik, D. S. Shrub canopies influence soil temperatures but not nutrient dynamics: an experimental test of tundra snow–shrub interactions. Ecol. Evol. 3, 3683–3700 (2013).
    Google Scholar 
    7.Sturm, M. et al. Snow–shrub interactions in Arctic tundra: a hypothesis with climatic implications. J. Clim. 14, 336–344 (2001).
    Google Scholar 
    8.Sturm, M. et al. Winter biological processes could help convert arctic tundra to shrubland. BioScience 55, 17–26 (2005).
    Google Scholar 
    9.Chapin, F. S. et al. Role of land-surface changes in Arctic summer warming. Science 310, 657–660 (2005).
    Google Scholar 
    10.Loranty, M. M. et al. Reviews and syntheses: Changing ecosystem influences on soil thermal regimes in northern high-latitude permafrost regions. Biogeosciences 15, 5287–5313 (2018). Review article showing how Arctic ecosystem processes can influence soil thermal dynamics in permafrost soil.
    Google Scholar 
    11.Shur, Y. L. & Jorgenson, M. T. Patterns of permafrost formation and degradation in relation to climate and ecosystems. Permafr. Periglac. Process. 18, 7–19 (2007).
    Google Scholar 
    12.Chadburn, S. E. et al. An observation-based constraint on permafrost loss as a function of global warming. Nat. Clim. Change 7, 340–344 (2017).
    Google Scholar 
    13.Smith, S. L., O’Neill, H. B., Isaksen, K., Noetzli, J. & Romanovsky, V. E. The changing thermal state of permafrost. Nat. Rev. Earth. Environ. 3 https://doi.org/10.1038/s43017-021-00240-1 (2022).14.Ksenofontov, S., Backhaus, N. & Schaepman-Strub, G. ‘There are new species’: indigenous knowledge of biodiversity change in Arctic Yakutia. Polar Geogr. 42, 34–57 (2019).
    Google Scholar 
    15.Schuur, E. A. et al. Vulnerability of permafrost carbon to climate change: implications for the global carbon cycle. BioScience 58, 701–714 (2008).
    Google Scholar 
    16.Kokelj, S. V. & Jorgenson, M. Advances in thermokarst research. Permafr. Periglac. Process. 24, 108–119 (2013).
    Google Scholar 
    17.Keuper, F. et al. A frozen feast: thawing permafrost increases plant-available nitrogen in subarctic peatlands. Glob. Change Biol. 18, 1998–2007 (2012).
    Google Scholar 
    18.Salmon, V. G. et al. Nitrogen availability increases in a tundra ecosystem during five years of experimental permafrost thaw. Glob. Change Biol. 22, 1927–1941 (2016).
    Google Scholar 
    19.Blume-Werry, G., Milbau, A., Teuber, L. M., Johansson, M. & Dorrepaal, E. Dwelling in the deep–strongly increased root growth and rooting depth enhance plant interactions with thawing permafrost soil. New Phytol. 223, 1328–1339 (2019).
    Google Scholar 
    20.Wang, P. et al. Above- and below-ground responses of four tundra plant functional types to deep soil heating and surface soil fertilization. J. Ecol. 105, 947–957 (2017).
    Google Scholar 
    21.Nauta, A. L. et al. Permafrost collapse after shrub removal shifts tundra ecosystem to a methane source. Nat. Clim. Change 5, 67–70 (2015).
    Google Scholar 
    22.Osterkamp, T. et al. Physical and ecological changes associated with warming permafrost and thermokarst in interior Alaska. Permafr. Periglac. Process. 20, 235–256 (2009).
    Google Scholar 
    23.Schuur, E. A. et al. Climate change and the permafrost carbon feedback. Nature 520, 171–179 (2015).
    Google Scholar 
    24.Koven, C. D. et al. Permafrost carbon-climate feedbacks accelerate global warming. Proc. Natl Acad. Sci. USA 108, 14769–14774 (2011).
    Google Scholar 
    25.Abbott, B. W. & Jones, J. B. Permafrost collapse alters soil carbon stocks, respiration, CH4, and N2O in upland tundra. Glob. Change Biol. 21, 4570–4587 (2015).
    Google Scholar 
    26.Voigt, C. et al. Warming of subarctic tundra increases emissions of all three important greenhouse gases – carbon dioxide, methane, and nitrous oxide. Glob. Change Biol. 23, 3121–3138 (2017).
    Google Scholar 
    27.Lenton, T. M. et al. Climate tipping points – too risky to bet against. Nature 575, 592–595 (2019).
    Google Scholar 
    28.Miner, K. R. Permafrost carbon emissions in a changing Arctic. Nat. Rev. Earth Environ. https://doi.org/10.1038/s43017-021-00230-3 (2022).Article 

    Google Scholar 
    29.Peterson, K. & Billings, W. Tundra vegetational patterns and succession in relation to microtopography near Atkasook, Alaska. Arct. Alp. Res. 12, 473–482 (1980).
    Google Scholar 
    30.Bliss, L. in North American Terrestrial Vegetation (eds Barbour, M. G. & Billings W. D.) (Cambridge Univ. Press, 1988).31.Walker, D. A. et al. The circumpolar Arctic vegetation map. J. Veg. Sci. 16, 267–282 (2005).
    Google Scholar 
    32.Frost, G. V., Epstein, H. E. & Walker, D. A. Regional and landscape-scale variability of Landsat-observed vegetation dynamics in northwest Siberian tundra. Environ. Res. Lett. 9, 025004 (2014).
    Google Scholar 
    33.Walker, D. A. et al. Environment, vegetation and greenness (NDVI) along the North America and Eurasia Arctic transects. Environ. Res. Lett. 7, 015504 (2012).
    Google Scholar 
    34.Raynolds, M. K. et al. A raster version of the Circumpolar Arctic Vegetation Map (CAVM). Remote Sens. Environ. 232, 111297 (2019).
    Google Scholar 
    35.Chernov, Y. I. & Matveyeva, N. in Polar Alpine Tundra (ed. Wielgolaski, F. E.) 361–507 (Elsevier, 1997).36.Elvebakk, A. in The Species Concept in the High North: A Panarctic Flora Initiative (eds Nordal, I. & Razzhivin, V. Y.) 81–112 (The Norwegian Academy of Science and Letters, 1999).37.Yurtsev, B. A. Floristic division of the Arctic. J. Veg. Sci. 5, 765–776 (1994).
    Google Scholar 
    38.Elmendorf, S. C. et al. Plot-scale evidence of tundra vegetation change and links to recent summer warming. Nat. Clim. Change 2, 453–457 (2012). A meta-analysis of field-observed vegetation changes from 46 polar sites indicating widespread increases of shrub vegetation and increased plant size.
    Google Scholar 
    39.Iversen, C. M. et al. The unseen iceberg: plant roots in arctic tundra. New Phytol. 205, 34–58 (2015).
    Google Scholar 
    40.Hobbie, J. E. & Hobbie, E. A. 15N in symbiotic fungi and plants estimates nitrogen and carbon flux rates in Arctic tundra. Ecology 87, 816–822 (2006).
    Google Scholar 
    41.Nielsen, U. N. & Wall, D. H. The future of soil invertebrate communities in polar regions: different climate change responses in the Arctic and Antarctic? Ecol. Lett. 16, 409–419 (2013).
    Google Scholar 
    42.Clemmensen, K. E. et al. A tipping point in carbon storage when forest expands into tundra is related to mycorrhizal recycling of nitrogen. Ecol. Lett. 24, 1193–1204 (2021).
    Google Scholar 
    43.Minke, M., Donner, N., Karpov, N., de Klerk, P. & Joosten, H. Patterns in vegetation composition, surface height and thaw depth in polygon mires in the Yakutian Arctic (NE Siberia): a microtopographical characterisation of the active layer. Permafr. Periglac. Process. 20, 357–368 (2009).
    Google Scholar 
    44.Liljedahl, A. K. et al. Pan-Arctic ice-wedge degradation in warming permafrost and its influence on tundra hydrology. Nat. Geosci. 9, 312–318 (2016).
    Google Scholar 
    45.Grunberg, I., Wilcox, E. J., Zwieback, S., Marsh, P. & Boike, J. Linking tundra vegetation, snow, soil temperature, and permafrost. Biogeosciences 17, 4261–4279 (2020). A field study reporting that large variations in soil temperatures and thaw depths can be explained by vegetation-mediated differences in snow height.
    Google Scholar 
    46.Magnússon, R. I. et al. Rapid vegetation succession and coupled permafrost dynamics in Arctic thaw ponds in the Siberian lowland tundra. J. Geophys. Res. Biogeosci. 125, e2019JG005618 (2020).
    Google Scholar 
    47.Jorgenson, M. et al. Role of ground ice dynamics and ecological feedbacks in recent ice wedge degradation and stabilization. J. Geophys. Res. Earth Surf. 120, 2280–2297 (2015). Outlines the role of ground ice and vegetation succession in thermokarst terrain, including first estimates of recovery times.
    Google Scholar 
    48.Bjorkman, A. D. et al. Status and trends in Arctic vegetation: evidence from experimental warming and long-term monitoring. Ambio 49, 678–692 (2020). A meta-analysis of plant species responses to experimental climate warming across Arctic sites, finding that shrubs and graminoids generally responded positively to warming, whereas lichens and bryophytes responded more negatively.
    Google Scholar 
    49.Frost, G. V. et al. Arctic Report Card 2020: Tundra Greenness. https://doi.org/10.25923/46rm-0w23 (NOAA, 2020). Provides an annual update of Arctic NDVI, offering a long-standing record of Arctic greening and browning.50.Myers-Smith, I. H. et al. Complexity revealed in the greening of the Arctic. Nat. Clim. Change 10, 106–117 (2020). Review article outlining complexity in Arctic greening and browning dynamics. The temporal and spatial scale of spectral data and the role of non-vegetation-related processes and ground-truthing remains essential.
    Google Scholar 
    51.Berner, L. T. et al. Summer warming explains widespread but not uniform greening in the Arctic tundra biome. Nat. Commun. 11, 4621 (2020).
    Google Scholar 
    52.Sistla, S. A. et al. Long-term warming restructures Arctic tundra without changing net soil carbon storage. Nature 497, 615–618 (2013).
    Google Scholar 
    53.Bhatt, U. S. et al. Circumpolar Arctic Tundra vegetation change is linked to sea ice decline. Earth Interact. 14, 1–20 (2010).
    Google Scholar 
    54.Oechel, W. C. & Billings, W. in Arctic Ecosystems in a Changing Climate: an Ecophysiological Perspective (eds Chapin, F. S. III et al.) 139–168 (Academic Press, 1992).55.Shaver, G. R. et al. Species composition interacts with fertilizer to control long-term change in tundra productivity. Ecology 82, 3163–3181 (2001).
    Google Scholar 
    56.Bret-Harte, M. S., Shaver, G. R. & Chapin, F. S. III Primary and secondary stem growth in arctic shrubs: implications for community response to environmental change. J. Ecol. 90, 251–267 (2002).
    Google Scholar 
    57.Mack, M. C., Schuur, E. A. G., Bret-Harte, M. S., Shaver, G. R. & Chapin, F. S. Ecosystem carbon storage in arctic tundra reduced by long-term nutrient fertilization. Nature 431, 440–443 (2004).
    Google Scholar 
    58.Myers-Smith, I. H. et al. Climate sensitivity of shrub growth across the tundra biome. Nat. Clim. Change 5, 887–891 (2015).
    Google Scholar 
    59.McGuire, A. D. et al. Sensitivity of the carbon cycle in the Arctic to climate change. Ecol. Monogr. 79, 523–555 (2009).
    Google Scholar 
    60.van der Kolk, H.-J., Heijmans, M. M., van Huissteden, J., Pullens, J. W. & Berendse, F. Potential Arctic tundra vegetation shifts in response to changing temperature, precipitation and permafrost thaw. Biogeosciences 13, 6229–6245 (2016).
    Google Scholar 
    61.Myers-Smith, I. H. et al. Eighteen years of ecological monitoring reveals multiple lines of evidence for tundra vegetation change. Ecol. Monogr. 89, e01351 (2019).
    Google Scholar 
    62.Leffler, A. J., Klein, E. S., Oberbauer, S. F. & Welker, J. M. Coupled long-term summer warming and deeper snow alters species composition and stimulates gross primary productivity in tussock tundra. Oecologia 181, 287–297 (2016).
    Google Scholar 
    63.Euskirchen, E. et al. Importance of recent shifts in soil thermal dynamics on growing season length, productivity, and carbon sequestration in terrestrial high-latitude ecosystems. Glob. Change Biol. 12, 731–750 (2006).
    Google Scholar 
    64.McGuire, A. D. et al. Dependence of the evolution of carbon dynamics in the northern permafrost region on the trajectory of climate change. Proc. Natl Acad. Sci. USA 115, 3882–3887 (2018).
    Google Scholar 
    65.National Academies of Sciences, Engineering, and Medicine. Understanding Northern Latitude Vegetation Greening and Browning: Proceedings of a Workshop (The National Academies Press, 2019).66.Phoenix, G. K. & Bjerke, J. W. Arctic browning: extreme events and trends reversing arctic greening. Glob. Change Biol. 22, 2960–2962 (2016).
    Google Scholar 
    67.Bokhorst, S. et al. Impacts of extreme winter warming in the sub-Arctic: growing season responses of dwarf shrub heathland. Glob. Change Biol. 14, 2603–2612 (2008).
    Google Scholar 
    68.Bret-Harte, M. S. et al. The response of Arctic vegetation and soils following an unusually severe tundra fire. Philos. Trans. R. Soc. B Biol. Sci. 368, 20120490 (2013).
    Google Scholar 
    69.Farquharson, L. M. et al. Climate change drives widespread and rapid thermokarst development in very cold permafrost in the Canadian High Arctic. Geophys. Res. Lett. 46, 6681–6689 (2019).
    Google Scholar 
    70.Turetsky et al. Permafrost collapse is accelerating carbon release. Nature 569, 32–34 (2019). Reveals that abrupt thaw of permafrost could double the estimated future release of greenhouse gases from permafrost soils compared with scenarios of gradual thaw.
    Google Scholar 
    71.Bokhorst, S. F., Bjerke, J. W., Tømmervik, H., Callaghan, T. V. & Phoenix, G. K. Winter warming events damage sub-Arctic vegetation: consistent evidence from an experimental manipulation and a natural event. J. Ecol. 97, 1408–1415 (2009).
    Google Scholar 
    72.Bjerke, J. W. et al. Record-low primary productivity and high plant damage in the Nordic Arctic Region in 2012 caused by multiple weather events and pest outbreaks. Environ. Res. Lett. 9, 084006 (2014).
    Google Scholar 
    73.Treharne, R., Bjerke, J. W., Tømmervik, H., Stendardi, L. & Phoenix, G. K. Arctic browning: impacts of extreme climatic events on heathland ecosystem CO2 fluxes. Glob. Change Biol. 25, 489–503 (2019).
    Google Scholar 
    74.Olofsson, J., Tommervik, H. & Callaghan, T. V. Vole and lemming activity observed from space. Nat. Clim. Change 2, 880–883 (2012).
    Google Scholar 
    75.Lara, M. J., Nitze, I., Grosse, G., Martin, P. & McGuire, A. D. Reduced arctic tundra productivity linked with landform and climate change interactions. Sci. Rep. 8, 2345 (2018).
    Google Scholar 
    76.Verdonen, M., Berner, L. T., Forbes, B. C. & Kumpula, T. Periglacial vegetation dynamics in Arctic Russia: decadal analysis of tundra regeneration on landslides with time series satellite imagery. Environ. Res. Lett. 15, 105020 (2020).
    Google Scholar 
    77.Assmann, J. J., Myers-Smith, I. H., Kerby, J. T., Cunliffe, A. M. & Daskalova, G. N. Drone data reveal heterogeneity in tundra greenness and phenology not captured by satellites. Environ. Res. Lett. 15, 125002 (2020).
    Google Scholar 
    78.Raynolds, M. K. & Walker, D. A. Increased wetness confounds Landsat-derived NDVI trends in the central Alaska North Slope region, 1985–2011. Environ. Res. Lett. 11, 085004 (2016).
    Google Scholar 
    79.Magnússon, R. Í. et al. Shrub decline and expansion of wetland vegetation revealed by very high resolution land cover change detection in the Siberian lowland tundra. Sci. Total Environ. 782, 146877 (2021).
    Google Scholar 
    80.Nitze, I. & Grosse, G. Detection of landscape dynamics in the Arctic Lena Delta with temporally dense Landsat time-series stacks. Remote Sens. Environ. 181, 27–41 (2016).
    Google Scholar 
    81.Chen, Y., Hu, F. S. & Lara, M. J. Divergent shrub-cover responses driven by climate, wildfire, and permafrost interactions in Arctic tundra ecosystems. Glob. Change Biol. 27, 652–663 (2021).
    Google Scholar 
    82.Huete, A. et al. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 83, 195–213 (2002).
    Google Scholar 
    83.Siewert, M. B. & Olofsson, J. Scale-dependency of Arctic ecosystem properties revealed by UAV. Environ. Res. Lett. 15, 094030 (2020).
    Google Scholar 
    84.Beamish, A. et al. Recent trends and remaining challenges for optical remote sensing of Arctic tundra vegetation: a review and outlook. Remote Sens. Environ. 246, 111872 (2020).
    Google Scholar 
    85.Blok, D. et al. The response of Arctic vegetation to the summer climate: relation between shrub cover, NDVI, surface albedo and temperature. Environ. Res. Lett. 6, 035502 (2011).
    Google Scholar 
    86.Boelman, N. T., Gough, L., McLaren, J. R. & Greaves, H. Does NDVI reflect variation in the structural attributes associated with increasing shrub dominance in arctic tundra? Environ. Res. Lett. 6, 035501 (2011).
    Google Scholar 
    87.Sturm, M., Racine, C. & Tape, K. Climate change – increasing shrub abundance in the Arctic. Nature 411, 546–547 (2001).
    Google Scholar 
    88.Tape, K., Sturm, M. & Racine, C. The evidence for shrub expansion in Northern Alaska and the Pan-Arctic. Glob. Change Biol. 12, 686–702 (2006).
    Google Scholar 
    89.Jorgenson, J. C., Raynolds, M. K., Reynolds, J. H. & Benson, A. M. Twenty-five year record of changes in plant cover on tundra of northeastern Alaska. Arct. Antarctic Alp. Res. 47, 785–806 (2015).
    Google Scholar 
    90.Jorgenson, J. C., Jorgenson, M. T., Boldenow, M. L. & Orndahl, K. M. Landscape change detected over a half century in the Arctic National Wildlife Refuge using high-resolution aerial imagery. Remote Sens. 10, 1305 (2018).
    Google Scholar 
    91.Hobbie, J. E. et al. Ecosystem responses to climate change at a Low Arctic and a High Arctic long-term research site. Ambio 46, 160–173 (2017).
    Google Scholar 
    92.Virkkala, A.-M., Abdi, A. M., Luoto, M. & Metcalfe, D. B. Identifying multidisciplinary research gaps across Arctic terrestrial gradients. Environ. Res. Lett. 14, 124061 (2019).
    Google Scholar 
    93.Ropars, P. & Boudreau, S. Shrub expansion at the forest-tundra ecotone: spatial heterogeneity linked to local topography. Environ. Res. Lett. 7, 015501 (2012).
    Google Scholar 
    94.Ropars, P., Levesque, E. & Boudreau, S. How do climate and topography influence the greening of the forest-tundra ecotone in northern Québec? A dendrochronological analysis of Betula glandulosa. J. Ecol. 103, 679–690 (2015).
    Google Scholar 
    95.Tremblay, B., Levesque, E. & Boudreau, S. Recent expansion of erect shrubs in the Low Arctic: evidence from Eastern Nunavik. Environ. Res. Lett. 7, 035501 (2012).
    Google Scholar 
    96.Boulanger-Lapointe, N., Levesque, E., Boudreau, S., Henry, G. H. R. & Schmidt, N. M. Population structure and dynamics of Arctic willow (Salix arctica) in the High Arctic. J. Biogeogr. 41, 1967–1978 (2014).
    Google Scholar 
    97.Frost, G. V., Epstein, H. E., Walker, D. A., Matyshak, G. & Ermokhina, K. Patterned-ground facilitates shrub expansion in Low Arctic tundra. Environ. Res. Lett. 8, 015035 (2013).
    Google Scholar 
    98.Lantz, T. C., Kokelj, S. V., Gergel, S. E. & Henry, G. H. Relative impacts of disturbance and temperature: persistent changes in microenvironment and vegetation in retrogressive thaw slumps. Glob. Change Biol. 15, 1664–1675 (2009).
    Google Scholar 
    99.Huebner, D. C. & Bret-Harte, M. S. Microsite conditions in retrogressive thaw slumps may facilitate increased seedling recruitment in the Alaskan Low Arctic. Ecol. Evol. 9, 1880–1897 (2019).
    Google Scholar 
    100.Lantz, T. C., Marsh, P. & Kokelj, S. V. Recent shrub proliferation in the Mackenzie Delta uplands and microclimatic implications. Ecosystems 16, 47–59 (2013).
    Google Scholar 
    101.Hu, F. S. et al. Arctic tundra fires: natural variability and responses to climate change. Front. Ecol. Environ. 13, 369–377 (2015).
    Google Scholar 
    102.Harris, I., Osborn, T. J., Jones, P. & Lister, D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data 7, 109 (2020).
    Google Scholar 
    103.Didan, K. MYD13Q1 MODIS/Aqua vegetation indices 16-day L3 global 250 m SIN grid V006. NASA EOSDIS Land Processes DAAC https://doi.org/10.5067/MODIS/MYD13Q1.006 (2015).Article 

    Google Scholar 
    104.Didan, K. MOD13Q1 MODIS/Terra vegetation indices 16-day L3 global 250 m SIN grid V006. NASA EOSDIS Land Processes DAAC https://doi.org/10.5067/MODIS/MOD13Q1.006 (2015).Article 

    Google Scholar 
    105.Dorigo, W. et al. ESA CCI Soil Moisture for improved Earth system understanding: State-of-the art and future directions. Remote Sens. Environ. 203, 185–215 (2017).
    Google Scholar 
    106.Brown, J., Ferrians, O. Jr, Heginbottom, J. A. & Melnikov, E. Circum-Arctic Map of Permafrost and Ground-ice Conditions (US Geological Survey, 1997).107.Jones, G. A. & Henry, G. H. Primary plant succession on recently deglaciated terrain in the Canadian High Arctic. J. Biogeogr. 30, 277–296 (2003).
    Google Scholar 
    108.Cornelissen, J. H. C. et al. Global change and arctic ecosystems: is lichen decline a function of increases in vascular plant biomass? J. Ecol. 89, 984–994 (2001).
    Google Scholar 
    109.Aguirre, D., Benhumea, A. E. & McLaren, J. R. Shrub encroachment affects tundra ecosystem properties through their living canopy rather than increased litter inputs. Soil Biol. Biochem. 153, 108121 (2021).
    Google Scholar 
    110.Gornall, J. L., Jonsdottir, I. S., Woodin, S. J. & Van der Wal, R. Arctic mosses govern below-ground environment and ecosystem processes. Oecologia 153, 931–941 (2007).
    Google Scholar 
    111.Soudzilovskaia, N. A., Bodegom, P. M. & Cornelissen, J. H. Dominant bryophyte control over high-latitude soil temperature fluctuations predicted by heat transfer traits, field moisture regime and laws of thermal insulation. Funct. Ecol. 27, 1442–1454 (2013).
    Google Scholar 
    112.Blok, D. et al. The cooling capacity of mosses: controls on water and energy fluxes in a Siberian tundra site. Ecosystems 14, 1055–1065 (2011).
    Google Scholar 
    113.Belke-Brea, M., Domine, F., Barrere, M., Picard, G. & Arnaud, L. Impact of shrubs on winter surface albedo and snow specific surface area at a low Arctic site: In situ measurements and simulations. J. Clim. 33, 597–609 (2020).
    Google Scholar 
    114.Wilcox, E. J. et al. Tundra shrub expansion may amplify permafrost thaw by advancing snowmelt timing. Arct. Sci. 5, 202–217 (2019).
    Google Scholar 
    115.Frost, G. V., Epstein, H. E., Walker, D. A., Matyshak, G. & Ermokhina, K. Seasonal and long-term changes to active-layer temperatures after tall shrubland expansion and succession in Arctic tundra. Ecosystems 21, 507–520 (2018).
    Google Scholar 
    116.Wilson, M. A., Burn, C. & Humphreys, E. in Cold Regions Engineering 2019 (eds Bilodeau, J.-P., Nadeau, D. F., Fortier, D. & Conciatori, D.) 687–695 (American Society of Civil Engineers, 2019).117.Liljedahl, A. K., Timling, I., Frost, G. V. & Daanen, R. P. Arctic riparian shrub expansion indicates a shift from streams gaining water to those that lose flow. Commun. Earth Environ. 1, 50 (2020).
    Google Scholar 
    118.Paradis, M., Lévesque, E. & Boudreau, S. Greater effect of increasing shrub height on winter versus summer soil temperature. Environ. Res. Lett. 11, 085005 (2016).
    Google Scholar 
    119.Beringer, J., Chapin, F. S., Thompson, C. C. & McGuire, A. D. Surface energy exchanges along a tundra-forest transition and feedbacks to climate. Agric. For. Meteorol. 131, 143–161 (2005).
    Google Scholar 
    120.Kemppinen, J. et al. Dwarf shrubs impact tundra soils: drier, colder, and less organic carbon. Ecosystems 24, 1378–1392 (2021). Quantifies the effects of shrub abundance on the soil thermal regime using a distinction between a rough, tall-shrub canopy and an aerodynamic, dwarf-shrub canopy.
    Google Scholar 
    121.Jorgenson, M. T., Ely, C. & Terenzi, J. in Shared Science Needs: Report from the Western Alaska Landscape Conservation Cooperative Science Workshop (eds Reynolds, J. H. & Wiggins, H. V.) 130–137 (2012).122.Sturm, M., Douglas, T., Racine, C. & Liston, G. E. Changing snow and shrub conditions affect albedo with global implications. J. Geophys. Res. Biogeosci. 110, G01004 (2005).
    Google Scholar 
    123.Zhang, T. Influence of the seasonal snow cover on the ground thermal regime: an overview. Rev. Geophys. 43, RG4002 (2005).
    Google Scholar 
    124.Domine, F., Barrere, M. & Morin, S. The growth of shrubs on high Arctic tundra at Bylot Island: impact on snow physical properties and permafrost thermal regime. Biogeosciences 13, 6471–6486 (2016).
    Google Scholar 
    125.Lawrence, D. M. & Swenson, S. C. Permafrost response to increasing Arctic shrub abundance depends on the relative influence of shrubs on local soil cooling versus large-scale climate warming. Environ. Res. Lett. 6, 045504 (2011).
    Google Scholar 
    126.Barrere, M., Domine, F., Belke-Brea, M. & Sarrazin, D. Snowmelt events in autumn can reduce or cancel the soil warming effect of snow–vegetation interactions in the Arctic. J. Clim. 31, 9507–9518 (2018).
    Google Scholar 
    127.Loranty, M. M., Goetz, S. J. & Beck, P. S. Tundra vegetation effects on pan-Arctic albedo. Environ. Res. Lett. 6, 024014 (2011).
    Google Scholar 
    128.Bonfils, C. et al. On the influence of shrub height and expansion on northern high latitude climate. Environ. Res. Lett. 7, 015503 (2012).
    Google Scholar 
    129.Williamson, S. N., Barrio, I. C., Hik, D. S. & Gamon, J. A. Phenology and species determine growing-season albedo increase at the altitudinal limit of shrub growth in the sub-Arctic. Glob. Change Biol. 22, 3621–3631 (2016).
    Google Scholar 
    130.Juszak, I., Eugster, W., Heijmans, M. & Schaepman-Strub, G. Contrasting radiation and soil heat fluxes in Arctic shrub and wet sedge tundra. Biogeosciences 13, 4049–4064 (2016).
    Google Scholar 
    131.Göckede, M. et al. Negative feedback processes following drainage slow down permafrost degradation. Glob. Change Biol. 25, 3254–3266 (2019).
    Google Scholar 
    132.Bonan, G. Ecological Climatology: Concepts and Applications (Cambridge Univ. Press, 2015).133.Eugster, W. et al. Land–atmosphere energy exchange in Arctic tundra and boreal forest: available data and feedbacks to climate. Glob. Change Biol. 6, 84–115 (2000).
    Google Scholar 
    134.Liljedahl, A. et al. Nonlinear controls on evapotranspiration in arctic coastal wetlands. Biogeosciences 8, 3375–3389 (2011).
    Google Scholar 
    135.Zwieback, S., Chang, Q., Marsh, P. & Berg, A. Shrub tundra ecohydrology: rainfall interception is a major component of the water balance. Environ. Res. Lett. 14, 055005 (2019).
    Google Scholar 
    136.Subin, Z. M. et al. Effects of soil moisture on the responses of soil temperatures to climate change in cold regions. J. Clim. 26, 3139–3158 (2013).
    Google Scholar 
    137.Aalto, J., Scherrer, D., Lenoir, J., Guisan, A. & Luoto, M. Biogeophysical controls on soil-atmosphere thermal differences: implications on warming Arctic ecosystems. Environ. Res. Lett. 13, 074003 (2018).
    Google Scholar 
    138.Asmus, A. L. et al. Shrub shading moderates the effects of weather on arthropod activity in arctic tundra. Ecol. Entomol. 43, 647–655 (2018).
    Google Scholar 
    139.Hinkel, K., Paetzold, F., Nelson, F. & Bockheim, J. Patterns of soil temperature and moisture in the active layer and upper permafrost at Barrow, Alaska: 1993–1999. Glob. Planet. Change 29, 293–309 (2001).
    Google Scholar 
    140.Douglas, T. A., Turetsky, M. R. & Koven, C. D. Increased rainfall stimulates permafrost thaw across a variety of Interior Alaskan boreal ecosystems. NPJ Clim. Atmos. Sci. 3, 28 (2020).
    Google Scholar 
    141.Neumann, R. B. et al. Warming effects of spring rainfall increase methane emissions from thawing permafrost. Geophys. Res. Lett. 46, 1393–1401 (2019).
    Google Scholar 
    142.Aartsma, P., Asplund, J., Odland, A., Reinhardt, S. & Renssen, H. Microclimatic comparison of lichen heaths and shrubs: shrubification generates atmospheric heating but subsurface cooling during the growing season. Biogeosciences 18, 1577–1599 (2021).
    Google Scholar 
    143.Fisher, J. P. et al. The influence of vegetation and soil characteristics on active-layer thickness of permafrost soils in boreal forest. Glob. Change Biol. 22, 3127–3140 (2016).
    Google Scholar 
    144.Van Cleve, K. et al. Taiga ecosystems in interior Alaska. BioScience 33, 39–44 (1983).
    Google Scholar 
    145.Kade, A., Romanovsky, V. & Walker, D. The n-factor of nonsorted circles along a climate gradient in Arctic Alaska. Permafr. Periglac. Process. 17, 279–289 (2006).
    Google Scholar 
    146.Atchley, A. L., Coon, E. T., Painter, S. L., Harp, D. R. & Wilson, C. J. Influences and interactions of inundation, peat, and snow on active layer thickness. Geophys. Res. Lett. 43, 5116–5123 (2016).
    Google Scholar 
    147.Klene, A. E., Nelson, F. E., Shiklomanov, N. I. & Hinkel, K. M. The n-factor in natural landscapes: variability of air and soil-surface temperatures, Kuparuk River Basin, Alaska, USA. Arct. Antarct. Alp. Res. 33, 140–148 (2001).
    Google Scholar 
    148.van Everdingen, R. O. Multi-Language Glossary of Permafrost and Related Ground-Ice Terms (National Snow and Ice Data Center/World Data Center for Glaciology, 2005).149.Iwahana, G. et al. Geocryological characteristics of the upper permafrost in a tundra-forest transition of the Indigirka River Valley, Russia. Polar Sci. 8, 96–113 (2014).
    Google Scholar 
    150.Lewkowicz, A. G. & Way, R. G. Extremes of summer climate trigger thousands of thermokarst landslides in a High Arctic environment. Nat. Commun. 10, 1329 (2019).
    Google Scholar 
    151.Kanevskiy, M. et al. Degradation and stabilization of ice wedges: implications for assessing risk of thermokarst in northern Alaska. Geomorphology 297, 20–42 (2017).
    Google Scholar 
    152.Olefeldt, D. et al. Circumpolar distribution and carbon storage of thermokarst landscapes. Nat. Commun. 7, 13043 (2016).
    Google Scholar 
    153.Jorgenson, M., Shur, Y. L. & Pullman, E. R. Abrupt increase in permafrost degradation in Arctic Alaska. Geophys. Res. Lett. 33, L02503 (2006).
    Google Scholar 
    154.Stieglitz, M., Déry, S., Romanovsky, V. & Osterkamp, T. The role of snow cover in the warming of arctic permafrost. Geophys. Res. Lett. 30, 1721 (2003).
    Google Scholar 
    155.Anisimov, O. & Zimov, S. Thawing permafrost and methane emission in Siberia: Synthesis of observations, reanalysis, and predictive modeling. Ambio 50, 2050–2059 (2021).
    Google Scholar 
    156.Tei, S. et al. An extreme flood caused by a heavy snowfall over the Indigirka River basin in Northeastern Siberia. Hydrol. Process. 34, 522–537 (2020).
    Google Scholar 
    157.Jones, B. M. et al. Recent Arctic tundra fire initiates widespread thermokarst development. Sci. Rep. 5, 15865 (2015).
    Google Scholar 
    158.Fraser, R. H. et al. Climate sensitivity of high Arctic permafrost terrain demonstrated by widespread ice-wedge thermokarst on Banks Island. Remote Sens. 10, 954 (2018).
    Google Scholar 
    159.Kokelj, S. V., Lantz, T. C., Tunnicliffe, J., Segal, R. & Lacelle, D. Climate-driven thaw of permafrost preserved glacial landscapes, northwestern Canada. Geology 45, 371–374 (2017).
    Google Scholar 
    160.Raynolds, M. K. et al. Cumulative geoecological effects of 62 years of infrastructure and climate change in ice-rich permafrost landscapes, Prudhoe Bay Oilfield, Alaska. Glob. Change Biol. 20, 1211–1224 (2014).
    Google Scholar 
    161.Yang, M., Nelson, F. E., Shiklomanov, N. I., Guo, D. & Wan, G. Permafrost degradation and its environmental effects on the Tibetan Plateau: a review of recent research. Earth Sci. Rev. 103, 31–44 (2010).
    Google Scholar 
    162.Payette, S., Delwaide, A., Caccianiga, M. & Beauchemin, M. Accelerated thawing of subarctic peatland permafrost over the last 50 years. Geophys. Res. Lett. 31, L18208 (2004).
    Google Scholar 
    163.French, H. & Shur, Y. The principles of cryostratigraphy. Earth Sci. Rev. 101, 190–206 (2010).
    Google Scholar 
    164.Burn, C. R. & Friele, P. Geomorphology, vegetation succession, soil characteristics and permafrost in retrogressive thaw slumps near Mayo, Yukon Territory. Arctic 42, 31–40 (1989).
    Google Scholar 
    165.Walvoord, M. A. & Kurylyk, B. L. Hydrologic impacts of thawing permafrost — a review. Vadose Zone J. 15, vzj2016-01 (2016).
    Google Scholar 
    166.Zona, D. et al. Characterization of the carbon fluxes of a vegetated drained lake basin chronosequence on the Alaskan Arctic Coastal Plain. Glob. Change Biol. 16, 1870–1882 (2010).
    Google Scholar 
    167.Jorgenson, M. T. & Shur, Y. Evolution of lakes and basins in northern Alaska and discussion of the thaw lake cycle. J. Geophys. Res. Earth Surf. 112, F02S17 (2007).
    Google Scholar 
    168.Cray, H. A. & Pollard, W. H. Vegetation recovery patterns following permafrost disturbance in a Low Arctic setting: case study of Herschel Island, Yukon, Canada. Arct. Antarct. Alp. Res. 47, 99–113 (2015).
    Google Scholar 
    169.Baltzer, J. L., Veness, T., Chasmer, L. E., Sniderhan, A. E. & Quinton, W. L. Forests on thawing permafrost: fragmentation, edge effects, and net forest loss. Glob. Change Biol. 20, 824–834 (2014).
    Google Scholar 
    170.Scheffer, M., Hirota, M., Holmgren, M., Van Nes, E. H. & Chapin, F. S. Thresholds for boreal biome transitions. Proc. Natl Acad. Sci. USA 109, 21384–21389 (2012).
    Google Scholar 
    171.Nitze, I., Grosse, G., Jones, B. M., Romanovsky, V. E. & Boike, J. Remote sensing quantifies widespread abundance of permafrost region disturbances across the Arctic and Subarctic. Nat. Commun. 9, 5423 (2018).
    Google Scholar 
    172.Elmendorf, S. C. et al. Global assessment of experimental climate warming on tundra vegetation: heterogeneity over space and time. Ecol. Lett. 15, 164–175 (2012).
    Google Scholar 
    173.Strauss, J. et al. Deep Yedoma permafrost: a synthesis of depositional characteristics and carbon vulnerability. Earth Sci. Rev. 172, 75–86 (2017).
    Google Scholar 
    174.Hjort, J. E. A. Impacts of permafrost degradation on infrastructure. Nat. Rev. Earth. Environ. 3 https://doi.org/10.1038/s43017-021-00247-8 (2022).175.Kumpula, T., Pajunen, A., Kaarlejärvi, E., Forbes, B. C. & Stammler, F. Land use and land cover change in Arctic Russia: Ecological and social implications of industrial development. Glob. Environ. Change 21, 550–562 (2011).
    Google Scholar 
    176.Nitzbon, J. et al. Fast response of cold ice-rich permafrost in northeast Siberia to a warming climate. Nat. Commun. 11, 2201 (2020).
    Google Scholar 
    177.Lawrence, D. M., Koven, C. D., Swenson, S. C., Riley, W. J. & Slater, A. Permafrost thaw and resulting soil moisture changes regulate projected high-latitude CO2 and CH4 emissions. Environ. Res. Lett. 10, 094011 (2015).
    Google Scholar 
    178.Bintanja, R. & Andry, O. Towards a rain-dominated Arctic. Nat. Clim. Change 7, 263–267 (2017).
    Google Scholar 
    179.Mekonnen, Z. A., Riley, W. J., Grant, R. F. & Romanovsky, V. E. Changes in precipitation and air temperature contribute comparably to permafrost degradation in a warmer climate. Environ. Res. Lett. 16, 024008 (2021).
    Google Scholar 
    180.Mikhailov, I. Changes in the soil-plant cover of the high Arctic of Eastern Siberia. Eurasian Soil. Sci. 53, 715–723 (2020).
    Google Scholar 
    181.Frost, G. V. et al. Multi-decadal patterns of vegetation succession after tundra fire on the Yukon-Kuskokwim Delta, Alaska. Environ. Res. Lett. 15, 025003 (2020).
    Google Scholar 
    182.Whitley, M. A. et al. Assessment of LiDAR and spectral techniques for high-resolution mapping of sporadic permafrost on the Yukon-Kuskokwim Delta, Alaska. Remote Sens. 10, 258 (2018).
    Google Scholar  More

  • in

    Chromosome-level genome assembly of Bactrocera dorsalis reveals its adaptation and invasion mechanisms

    1.Qin, Y.-j. et al. Population structure of a global agricultural invasive pest, Bactrocera dorsalis (Diptera: Tephritidae). Evol. Appl. 11, 1990–2003 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    2.Christenson, L. D. & Foote, R. H. Biology of fruit flies. Annu. Rev. Entomol. 5, 171–192 (1960).
    Google Scholar 
    3.Clarke, A. R. et al. Invasive phytophagous pests arising through a recent tropical evolutionary radiation: the Bactrocera dorsalis complex of fruit flies. Annu. Rev. Entomol. 50, 293–319 (2005).CAS 
    PubMed 

    Google Scholar 
    4.Culliney, T. W. The aliens have landed: invasive species threaten Hawaii agriculture. Agric. Hawaii 3, 6–9 (2002).
    Google Scholar 
    5.Cantrell, B., Chadwick, B. & Cahill, A. Fruit Fly Fighters: Eradication of the Papaya Fruit Fly (CSIRO, Collingwood, 2002).6.Ekesi, S., De Meyer, M., Mohamed, S. A., Virgilio, M. & Borgemeister, C. Taxonomy, ecology, and management of native and exotic fruit fly species in Africa. Annu. Rev. Entomol. 61, 219–238 (2016).CAS 
    PubMed 

    Google Scholar 
    7.Duyck, P. F., David, P. & Quilici, S. A review of relationships between interspecific competition and invasions in fruit flies (Diptera: Tephritidae). Ecol. Entomol. 29, 511–520 (2004).
    Google Scholar 
    8.Liu, H., Zhang, C., Hou, B. H., Ou-Yang, G. C. & Ma, J. Interspecific competition between Ceratitis capitata and two Bactrocera spp. (Diptera: Tephritidae) evaluated via adult behavioral interference under laboratory conditions. J. Econ. Entomol. 110, 1145–1155 (2017).PubMed 

    Google Scholar 
    9.Li, F. et al. Insect genomes: progress and challenges. Insect Mol. Biol. 28, 739–758 (2019).CAS 
    PubMed 

    Google Scholar 
    10.Schutze, M. K. et al. Synonymization of key pest species within the Bactrocera dorsalis complex (Diptera: Tephritidae): taxonomic changes based on a review of 20 years of integrative morphological, molecular, cytogenetic, behavioural, and chemoecological data. Syst. Entomol. 40, 456–471 (2015).
    Google Scholar 
    11.Dudchenko, O. et al. De novo assembly of the Aedes aegypti genome using Hi-C yields chromosome-length scaffolds. Science 356, 92–95 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    12.Wu, N. et al. Fall webworm genomes yield insights into rapid adaptation of invasive species. Nat. Ecol. Evol. 3, 105–115 (2019).PubMed 

    Google Scholar 
    13.Papanicolaou, A. et al. The whole genome sequence of the Mediterranean fruit fly, Ceratitis capitata (Wiedemann), reveals insights into the biology and adaptive evolution of a highly invasive pest species. Genome Biol. 17, 192 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    14.Sim, S. B. & Geib, S. M. A chromosome-scale assembly of the Bactrocera cucurbitae genome provides insight to the genetic basis of white pupae. G3 (Bethesda) 7, 1927–1940 (2017).CAS 

    Google Scholar 
    15.Parra, G., Bradnam, K. & Korf, I. CEGMA: a pipeline to accurately annotate core genes in eukaryotic genomes. Bioinformatics 23, 1061–1067 (2007).CAS 
    PubMed 

    Google Scholar 
    16.Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31, 3210–3212 (2015).
    Google Scholar 
    17.Ashburner, M. et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet. 25, 25–29 (2000).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    18.Kanehisa, M., Goto, S., Sato, Y., Furumichi, M. & Tanabe, M. KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res. 40, 109–114 (2012).
    Google Scholar 
    19.Ting, C. T. et al. Gene duplication and speciation in Drosophila: evidence from the Odysseus locus. Proc. Natl Acad. Sci. USA 101, 12232–12235 (2004).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    20.Yuan, Y. W. & Wessler, S. R. The catalytic domain of all eukaryotic cut-and-paste transposase superfamilies. Proc. Natl Acad. Sci. USA 108, 7884–7889 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    21.Rappoport, N. & Linial, M. Trends in genome dynamics among major orders of insects revealed through variations in protein families. BMC Genomics 16, 583 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    22.Sackton, T. B. et al. Dynamic evolution of the innate immune system in Drosophila. Nat. Genet. 39, 1461–1468 (2007).CAS 
    PubMed 

    Google Scholar 
    23.Stephen, B. H. & David, L. H. Key evolutionary innovations and their ecological mechanisms. Hist. Biol. 10, 151–173 (1995).
    Google Scholar 
    24.Yu, G. C., Wang, L. G., Han, Y. Y. & He, Q. Y. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 16, 284–287 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    25.Lindquist, S. The heat-shock response. Annu. Rev. Biochem. 55, 1151–1191 (1986).CAS 
    PubMed 

    Google Scholar 
    26.Parsell, D. A. & Lindquist, S. The function of heat-shock proteins in stress tolerance-degradation and reactivation of damaged proteins. Annu. Rev. Genet. 27, 437–496 (1993).CAS 
    PubMed 

    Google Scholar 
    27.Feder, M. E. & Hofmann, G. E. Heat-shock proteins, molecular chaperones, and the stress response. Annu. Rev. Physiol. 61, 243–282 (1999).CAS 
    PubMed 

    Google Scholar 
    28.Iwama, G. K., Thomas, P. T., Forsyth, R. H. B. & Vijayan, M. M. Heat shock protein expression in fish. Rev. Fish. Biol. Fish. 8, 35–56 (1998).
    Google Scholar 
    29.Azad, P., Ryu, J. & Haddad, G. G. Distinct role of Hsp70 in Drosophila hemocytes during severe hypoxia. Free Radic. Biol. Med. 51, 530–538 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    30.Zhao, P. et al. Genome-wide analysis of the potato hsp20 gene family: identification, genomic organization and expression profiles in response to heat stress. BMC Genomics 19, 61 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    31.Weinstein, D. J. et al. The genome of a subterrestrial nematode reveals adaptations to heat. Nat. Commun. 10, 5268 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    32.Gu, X. et al. A transcriptional and functional analysis of heat hardening in two invasive fruit fly species, Bactrocera dorsalis, and Bactrocera correcta. Evol. Appl. 12, 1147–1163 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    33.Sorensen, J. G., Dahlgaard, J. & Loeschcke, V. Genetic variation in thermal tolerance among natural populations of drosophila buzzatii: down regulation of hsp70 expression and variation in heat stress resistance traits. Funct. Ecol. 15, 289–296 (2001).
    Google Scholar 
    34.Terblanche, J. S. et al. Ecologically relevant measures of tolerance to potentially lethal temperatures. J. Exp. Biol. 214, 3713–3725 (2011).PubMed 

    Google Scholar 
    35.Raza, M. F. et al. Gut microbiota promotes host resistance to low-temperature stress by stimulating its arginine and proline metabolism pathway in adult Bactrocera dorsalis. PLoS Pathog. 16, e1008441 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    36.Trempolec, N., Dave-Coll, N. & Nebreda, A. R. Snapshot: p38 MAPK signaling. Cell 152, 656–656.e1 (2013).CAS 
    PubMed 

    Google Scholar 
    37.Tatar, M. et al. A mutant Drosophila insulin receptor homolog that extends life-span and impairs neuroendocrine function. Science 292, 107–110 (2001).CAS 
    PubMed 

    Google Scholar 
    38.Vrailas-Mortimer, A. et al. A muscle-specific p38 MAPK/Mef2/MnSOD pathway regulates stress, motor function, and life span in Drosophila. Dev. Cell 21, 783–795 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    39.Li, F. F., Xia, J., Li, J. M., Liu, J. M. & Wang, X. W. P38 MAPK is a component of the signal transduction pathway triggering cold stress response in the med cryptic species of Bemisia tabaci. J. Integr. Agr. 11, 303–311 (2012).CAS 

    Google Scholar 
    40.Xiao, X. P. et al. A Mesh-Duox pathway regulates homeostasis in the insect gut. Nat. Microbiol. 2, 17020 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    41.Wan, F. et al. A chromosome-level genome assembly of Cydia pomonella provides insights into chemical ecology and insecticide resistance. Nat. Commun. 10, 4237–4237 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    42.Drew, R. & Yuval, B. Fruit Flies (Tephritidae): Phylogeny and Evolution of Behavior (eds Aluja, M. & Norrbom, A.) 731−749 (CRC Press, 2000).43.Dahanukar, A., Hallem, E. A. & Carlson, J. R. Insect chemoreception. Curr. Opin. Neurobiol. 15, 423–430 (2005).CAS 
    PubMed 

    Google Scholar 
    44.Bargmann, C. I. Comparative chemosensation from receptors to ecology. Nature 444, 295 (2006).CAS 
    PubMed 

    Google Scholar 
    45.Benton, R. Multigene family evolution: perspectives from insect chemoreceptors. Trends Ecol. Evol. 30, 590–600 (2015).PubMed 

    Google Scholar 
    46.Miyazaki, H. et al. Functional characterization of olfactory receptors in the Oriental fruit fly Bactrocera dorsalis that respond to plant volatiles. Insect Biochem. Mol. Biol. 101, 32–46 (2018).CAS 
    PubMed 

    Google Scholar 
    47.Ono, H. et al. Functional characterization of olfactory receptors in three Dacini fruit flies (Diptera: Tephritidae) that respond to 1-nonanol analogs as components in the rectal glands. Comp. Biochem. Physiol. B: Biochem. Mol. Biol. 239, 110346 (2020).
    Google Scholar 
    48.Harris, R. M. & Hofmann, H. A. Seeing is believing: dynamic evolution of gene families. Proc. Natl Acad. Sci. USA 112, 1252–1253 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    49.Nei, M., Niimura, Y. & Nozawa, M. The evolution of animal chemosensory receptor gene repertoires: roles of chance and necessity. Nat. Rev. Genet. 9, 951−963 (2008).50.Arguello, J. R. et al. Extensive local adaptation within the chemosensory system following Drosophila melanogaster’s global expansion. Nat. Commun. 7, 11855 (2016).
    Google Scholar 
    51.Li, S. et al. The genomic and functional landscapes of developmental plasticity in the American cockroach. Nat. Commun. 9, 1008 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    52.Vontas, J. et al. Insecticide resistance in Tephritid flies. Pestic. Biochem. Physiol. 100, 199–205 (2011).CAS 

    Google Scholar 
    53.Bergé, J. B., Feyereisen, R. & Amichot, M. Cytochrome P450 monooxygenases and insecticide resistance in insects. Philos. Trans. R. Soc. Lond. B: Biol. Sci. 353, 1701–1705 (1998).
    Google Scholar 
    54.Scott, J. G. Cytochromes P450 and insecticide resistance. Insect Biochem. Mol. Biol. 29, 757–777 (1999).CAS 
    PubMed 

    Google Scholar 
    55.Rane, R. V. et al. Detoxifying enzyme complements and host use phenotypes in 160 insect species. Curr. Opin. Insect Sci. 31, 131–138 (2019).PubMed 

    Google Scholar 
    56.Pendleton, M. et al. Assembly and diploid architecture of an individual human genome via single-molecule technologies. Nat. Methods 12, 780–786 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    57.Belton, J. M. et al. Hi-C: a comprehensive technique to capture the conformation of genomes. Methods 58, 268–276 (2012).CAS 
    PubMed 

    Google Scholar 
    58.Burton, J. N., Liachko, I., Dunham, M. J. & Shendure, J. Species-level deconvolution of metagenome assemblies with Hi-C-based contact probability maps. G3-Genes Genom. Genet. 4, 1339–1346 (2014).
    Google Scholar 
    59.Burton, J. N. et al. Chromosome-scale scaffolding of de novo genome assemblies based on chromatin interactions. Nat. Biotechnol. 31, 1119–1125 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    60.Servant, N. et al. HiC-Pro: an optimized and flexible pipeline for Hi-C data processing. Genome Biol. 16, 1–11 (2015).
    Google Scholar 
    61.Koren, S. et al. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res. 27, 722–736 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    62.Walker, B. J. et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One 9, e112963 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    63.Chakraborty, M., Baldwin-Brown, J. G., Long, A. D. & Emerson, J. J. Contiguous and accurate de novo assembly of metazoan genomes with modest long read coverage. Nucleic Acids Res. 44, e147 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    64.Chin, C. S. et al. Phased diploid genome assembly with single-molecule real-time sequencing. Nat. Methods 13, 1050–1054 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    65.Xiao, C. L. et al. MECAT: fast mapping, error correction, and de novo assembly for single-molecule sequencing reads. Nat. Methods 14, 1072–1074 (2017).CAS 
    PubMed 

    Google Scholar 
    66.Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows−Wheeler transform. Bioinformatics 25, 1754–1760 (2009).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    67.Worley, K. C. et al. Improving genomes using long reads and PBJelly 2. In International Plant & Animal Genome Conference XXI (2014).68.Krzywinski, M. et al. Circos: An information aesthetic for comparative genomics. Genome Res. 19, 1639–1645 (2009).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    69.Burge, C. & Karlin, S. Prediction of complete gene structures in human genomic DNA. J. Mol. Biol. 268, 78–94 (1997).CAS 
    PubMed 

    Google Scholar 
    70.Stanke, M. & Waack, S. Gene prediction with a hidden Markov model and a new intron submodel. Bioinformatics 19, ii215–ii225 (2003).PubMed 

    Google Scholar 
    71.Korf, I. Gene finding in novel genomes. BMC Bioinform. 5, 59 (2004).
    Google Scholar 
    72.Majoros, W. H., Pertea, M. & Salzberg, S. L. TigrScan and GlimmerHMM: two open source ab initio eukaryotic gene-finders. Bioinformatics 20, 2878–2879 (2004).CAS 
    PubMed 

    Google Scholar 
    73.Blanco, E., Parra, G. & Guigó, R. Using geneid to identify genes. Curr. Protoc. Bioinform. 18, 4.3.1–4.3.28 (2007).
    Google Scholar 
    74.Keilwagen, J. et al. Using intron position conservation for homology-based gene prediction. Nucleic Acids Res. 44, e89–e89 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    75.Campbell, M. A., Haas, B. J., Hamilton, J. P., Mount, S. M. & Buell, C. R. Comprehensive analysis of alternative splicing in rice and comparative analyses with Arabidopsis. BMC Genomics 7, 327 (2006).PubMed 
    PubMed Central 

    Google Scholar 
    76.Haas, B. J. et al. Automated eukaryotic gene structure annotation using EVidenceModeler and the Program to Assemble Spliced Alignments. Genome Biol. 9, R7 (2008).PubMed 
    PubMed Central 

    Google Scholar 
    77.Lowe, T. M. & Eddy, S. R. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 25, 955–964 (1997).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    78.Griffiths-Jones, S. et al. Rfam: annotating non-coding RNAs in complete genomes. Nucleic Acids Res. 33, D121–D124 (2005).CAS 
    PubMed 

    Google Scholar 
    79.Griffiths-Jones, S., Grocock, R. J., Van Dongen, S., Bateman, A. & Enright, A. J. miRBase: microRNA sequences, targets, and gene nomenclature. Nucleic Acids Res. 34, D140–D144 (2006).CAS 
    PubMed 

    Google Scholar 
    80.Nawrocki, E. P. & Eddy, S. R. Infernal 1.1: 100-fold faster RNA homology searches. Bioinformatics 29, 2933–2935 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    81.Edgar, R. C. & Myers, E. W. PILER: Identification and classification of genomic repeats. Bioinformatics 21, i152–i158 (2005).CAS 
    PubMed 

    Google Scholar 
    82.Price, A. L., Jones, N. C. & Pevzner, P. A. De novo identification of repeat families in large genomes. Bioinformatics 21, i351–i358 (2005).CAS 
    PubMed 

    Google Scholar 
    83.Xu, Z. & Wang, H. LTR_FINDER: an efficient tool for the prediction of full-length LTR retrotransposons. Nucleic Acids Res. 35, W265–W268 (2007).PubMed 
    PubMed Central 

    Google Scholar 
    84.Han, Y. & Wessler, S. R. MITE-Hunter: a program for discovering miniature inverted-repeat transposable elements from genomic sequences. Nucleic Acids Res. 38, e199 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    85.Jurka, J. et al. Repbase Update, a database of eukaryotic repetitive elements. Cytogenet Genome Res. 110, 462–467 (2005).CAS 
    PubMed 

    Google Scholar 
    86.Wicker, T. et al. A unified classification system for eukaryotic transposable elements. Nat. Rev. Genet. 8, 973–982 (2007).CAS 
    PubMed 

    Google Scholar 
    87.Tarailo-Graovac, M. & Chen, N. S. Using RepeatMasker to identify repetitive elements in genomic sequences. Curr. Protoc. Bioinform. 25, 4.10.1–4.10.14 (2009).
    Google Scholar 
    88.Wang, Y. et al. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res. 40, e49 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    89.Birney, E., Clamp, M. & Durbin, R. GeneWise and Genomewise. Genome Res. 14, 988–995 (2004).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    90.She, R., Chu, J. S. C., Wang, K., Pei, J. & Chen, N. S. GenBlastA: enabling BLAST to identify homologous gene sequences. Genome Res. 19, 143–149 (2009).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    91.Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).CAS 
    PubMed 

    Google Scholar 
    92.Kanehisa, M. & Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27–30 (2000).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    93.Tatusov, R. L. et al. The COG database: new developments in phylogenetic classification of proteins from complete genomes. Nucleic Acids Res. 29, 22–28 (2001).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    94.Boeckmann, B. et al. The SWISS-PROT protein KnowledgeBase and its supplement TrEMBL in 2003. Nucleic Acids Res. 31, 365–370 (2003).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    95.Marchler-Bauer, A. et al. CDD: a Conserved Domain Database for the functional annotation of proteins. Nucleic Acids Res. 39, D225–D229 (2011).CAS 
    PubMed 

    Google Scholar 
    96.Conesa, A. et al. Blast2GO: a universal tool for annotation, visualization, and analysis in functional genomics research. Bioinformatics 21, 3674–3676 (2005).CAS 

    Google Scholar 
    97.Dimmer, E. C. et al. The UniProt-GO annotation database in 2011. Nucleic Acids Res. 40, D565–D570 (2012).CAS 
    PubMed 

    Google Scholar 
    98.Bairoch, A. PROSITE-a dictionary of sites and patterns in proteins. Nucleic Acids Res. 19, 2241–2245 (1991).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    99.Attwood, T. K. & Beck, M. E. Prints-a protein motif fingerprint database. Protein Eng. Des. Sel. 7, 841–848 (1994).CAS 

    Google Scholar 
    100.Zdobnov, E. M. & Apweiler, R. InterProScan-an integration platform for the signature-recognition methods in InterPro. Bioinformatics 17, 847–848 (2001).CAS 
    PubMed 

    Google Scholar 
    101.Gough, J. & Chothia, C. SUPERFAMILY: HMMs representing all proteins of known structure. SCOP sequence searches, alignments, and genome assignments. Nucleic Acids Res. 30, 268–272 (2002).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    102.Haft, D. H., Selengut, J. D. & White, O. The TIGRFAMs database of protein families. Nucleic Acids Res. 31, 371–373 (2003).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    103.Thomas, P. D. et al. PANTHER: a browsable database of gene products organized by biological function, using curated protein family and subfamily classification. Nucleic Acids Res. 31, 334–341 (2003).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    104.Letunic, I. et al. SMART 4.0: towards genomic data integration. Nucleic Acids Res. 32, D142–D144 (2004).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    105.Wu, C. H. et al. PIRSF: family classification system at the Protein Information Resource. Nucleic Acids Res. 32, D112–D114 (2004).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    106.Bru, C. et al. The ProDom database of protein domain families: more emphasis on 3D. Nucleic Acids Res. 33, D212–D215 (2005).CAS 
    PubMed 

    Google Scholar 
    107.Finn, R. D. et al. Pfam: clans, web tools, and services. Nucleic Acids Res. 34, D247–D251 (2006).CAS 
    PubMed 

    Google Scholar 
    108.Lima, T. et al. HAMAP: a database of completely sequenced microbial proteome sets and manually curated microbial protein families in UniProtKB/Swiss-Prot. Nucleic Acids Res. 37, D471–D478 (2009).CAS 
    PubMed 

    Google Scholar 
    109.Lees, J. et al. Gene3D: a domain-based resource for comparative genomics, functional annotation, and protein network analysis. Nucleic Acids Res. 40, D465–D471 (2012).CAS 
    PubMed 

    Google Scholar 
    110.Emms, D. M. & Kelly, S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol. 20, 238 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    111.Mi, H. Y., Muruganujan, A., Ebert, D., Huang, X. S. & Thomas, P. D. PANTHER version 14: more genomes, a new PANTHER GO-slim, and improvements in enrichment analysis tools. Nucleic Acids Res. 47, D419–D426 (2019).CAS 

    Google Scholar 
    112.Nguyen, L. T., Schmidt, H. A., Von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    113.Puttick, M. N. MCMCtreeR: functions to prepare MCMCtree analyses and visualize posterior ages on trees. Bioinformatics 35, 5321–5322 (2019).CAS 
    PubMed 

    Google Scholar 
    114.Yang, Z. H. PAML: a program package for phylogenetic analysis by maximum likelihood. Bioinformatics 13, 555–556 (1997).CAS 

    Google Scholar 
    115.Han, M. V., Thomas, G. W. C., Lugo-Martinez, J. & Hahn, M. W. Estimating gene gain and loss rates in the presence of error in genome assembly and annotation using CAFE 3. Mol. Biol. Evol. 30, 1987–1997 (2013).CAS 
    PubMed 

    Google Scholar 
    116.Larkin, M. A. et al. ClustalW and ClustalX version 2. Bioinformatics 23, 2947–2948 (2007).CAS 
    PubMed 

    Google Scholar 
    117.Subramanian, B., Gao, S., Lercher, M. J., Hu, S. & Chen, W. H. Evolview v3: a webserver for visualization, annotation, and management of phylogenetic trees. Nucleic Acids Res 47, W270–W275 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    118.Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    119.Kim, D., Landmead, B. & Salzberg, S. L. HISAT: a fast spliced aligner with low memory requirements. Nat. Methods 12, 357–360 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    120.Pertea, M. et al. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat. Biotechnol. 33, 290–295 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    121.Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    122.Li, B. & Dewey, C. N. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform. 12, 323 (2011).CAS 

    Google Scholar  More

  • in

    Two million species catalogued by 500 experts

    CORRESPONDENCE
    11 January 2022

    Two million species catalogued by 500 experts

    Mark John Costello

    0
    ,

    R. Edward DeWalt

    1
    ,

    Thomas M. Orrell

    2
    &

    Olaf Banki

    3

    Mark John Costello

    Nord University, Bodø, Norway.

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    R. Edward DeWalt

    University of Illinois, Champaign, Illinois, USA.

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Thomas M. Orrell

    Smithsonian Institution, Washington DC, USA.

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Olaf Banki

    Naturalis Biodiversity Centre, Leiden, the Netherlands.

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Twitter

    Facebook

    Email

    More than two million accepted species are now listed in the open-access Catalogue of Life (go.nature.com/3ym3h2g). This achievement addresses a major impediment to the management of biodiversity data by presenting an almost complete index of accepted names and known synonyms.

    Access options

    Access through your institution

    Change institution

    Buy or subscribe

    /* style specs start */
    style{display:none!important}.LiveAreaSection-193358632 *{align-content:stretch;align-items:stretch;align-self:auto;animation-delay:0s;animation-direction:normal;animation-duration:0s;animation-fill-mode:none;animation-iteration-count:1;animation-name:none;animation-play-state:running;animation-timing-function:ease;azimuth:center;backface-visibility:visible;background-attachment:scroll;background-blend-mode:normal;background-clip:borderBox;background-color:transparent;background-image:none;background-origin:paddingBox;background-position:0 0;background-repeat:repeat;background-size:auto auto;block-size:auto;border-block-end-color:currentcolor;border-block-end-style:none;border-block-end-width:medium;border-block-start-color:currentcolor;border-block-start-style:none;border-block-start-width:medium;border-bottom-color:currentcolor;border-bottom-left-radius:0;border-bottom-right-radius:0;border-bottom-style:none;border-bottom-width:medium;border-collapse:separate;border-image-outset:0s;border-image-repeat:stretch;border-image-slice:100%;border-image-source:none;border-image-width:1;border-inline-end-color:currentcolor;border-inline-end-style:none;border-inline-end-width:medium;border-inline-start-color:currentcolor;border-inline-start-style:none;border-inline-start-width:medium;border-left-color:currentcolor;border-left-style:none;border-left-width:medium;border-right-color:currentcolor;border-right-style:none;border-right-width:medium;border-spacing:0;border-top-color:currentcolor;border-top-left-radius:0;border-top-right-radius:0;border-top-style:none;border-top-width:medium;bottom:auto;box-decoration-break:slice;box-shadow:none;box-sizing:border-box;break-after:auto;break-before:auto;break-inside:auto;caption-side:top;caret-color:auto;clear:none;clip:auto;clip-path:none;color:initial;column-count:auto;column-fill:balance;column-gap:normal;column-rule-color:currentcolor;column-rule-style:none;column-rule-width:medium;column-span:none;column-width:auto;content:normal;counter-increment:none;counter-reset:none;cursor:auto;display:inline;empty-cells:show;filter:none;flex-basis:auto;flex-direction:row;flex-grow:0;flex-shrink:1;flex-wrap:nowrap;float:none;font-family:initial;font-feature-settings:normal;font-kerning:auto;font-language-override:normal;font-size:medium;font-size-adjust:none;font-stretch:normal;font-style:normal;font-synthesis:weight style;font-variant:normal;font-variant-alternates:normal;font-variant-caps:normal;font-variant-east-asian:normal;font-variant-ligatures:normal;font-variant-numeric:normal;font-variant-position:normal;font-weight:400;grid-auto-columns:auto;grid-auto-flow:row;grid-auto-rows:auto;grid-column-end:auto;grid-column-gap:0;grid-column-start:auto;grid-row-end:auto;grid-row-gap:0;grid-row-start:auto;grid-template-areas:none;grid-template-columns:none;grid-template-rows:none;height:auto;hyphens:manual;image-orientation:0deg;image-rendering:auto;image-resolution:1dppx;ime-mode:auto;inline-size:auto;isolation:auto;justify-content:flexStart;left:auto;letter-spacing:normal;line-break:auto;line-height:normal;list-style-image:none;list-style-position:outside;list-style-type:disc;margin-block-end:0;margin-block-start:0;margin-bottom:0;margin-inline-end:0;margin-inline-start:0;margin-left:0;margin-right:0;margin-top:0;mask-clip:borderBox;mask-composite:add;mask-image:none;mask-mode:matchSource;mask-origin:borderBox;mask-position:0% 0%;mask-repeat:repeat;mask-size:auto;mask-type:luminance;max-height:none;max-width:none;min-block-size:0;min-height:0;min-inline-size:0;min-width:0;mix-blend-mode:normal;object-fit:fill;object-position:50% 50%;offset-block-end:auto;offset-block-start:auto;offset-inline-end:auto;offset-inline-start:auto;opacity:1;order:0;orphans:2;outline-color:initial;outline-offset:0;outline-style:none;outline-width:medium;overflow:visible;overflow-wrap:normal;overflow-x:visible;overflow-y:visible;padding-block-end:0;padding-block-start:0;padding-bottom:0;padding-inline-end:0;padding-inline-start:0;padding-left:0;padding-right:0;padding-top:0;page-break-after:auto;page-break-before:auto;page-break-inside:auto;perspective:none;perspective-origin:50% 50%;pointer-events:auto;position:static;quotes:initial;resize:none;right:auto;ruby-align:spaceAround;ruby-merge:separate;ruby-position:over;scroll-behavior:auto;scroll-snap-coordinate:none;scroll-snap-destination:0 0;scroll-snap-points-x:none;scroll-snap-points-y:none;scroll-snap-type:none;shape-image-threshold:0;shape-margin:0;shape-outside:none;tab-size:8;table-layout:auto;text-align:initial;text-align-last:auto;text-combine-upright:none;text-decoration-color:currentcolor;text-decoration-line:none;text-decoration-style:solid;text-emphasis-color:currentcolor;text-emphasis-position:over right;text-emphasis-style:none;text-indent:0;text-justify:auto;text-orientation:mixed;text-overflow:clip;text-rendering:auto;text-shadow:none;text-transform:none;text-underline-position:auto;top:auto;touch-action:auto;transform:none;transform-box:borderBox;transform-origin:50% 50% 0;transform-style:flat;transition-delay:0s;transition-duration:0s;transition-property:all;transition-timing-function:ease;vertical-align:baseline;visibility:visible;white-space:normal;widows:2;width:auto;will-change:auto;word-break:normal;word-spacing:normal;word-wrap:normal;writing-mode:horizontalTb;z-index:auto;-webkit-appearance:none;-moz-appearance:none;-ms-appearance:none;appearance:none;margin:0}.LiveAreaSection-193358632{width:100%}.LiveAreaSection-193358632 .login-option-buybox{display:block;width:100%;font-size:17px;line-height:30px;color:#222;padding-top:30px;font-family:Harding,Palatino,serif}.LiveAreaSection-193358632 .additional-access-options{display:block;font-weight:700;font-size:17px;line-height:30px;color:#222;font-family:Harding,Palatino,serif}.LiveAreaSection-193358632 .additional-login >li:not(:first-child)::before{transform:translateY(-50%);content:”;height:1rem;position:absolute;top:50%;left:0;border-left:2px solid #999}.LiveAreaSection-193358632 .additional-login >li:not(:first-child){padding-left:10px}.LiveAreaSection-193358632 .additional-login >li{display:inline-block;position:relative;vertical-align:middle;padding-right:10px}.BuyBoxSection-683559780{display:flex;flex-wrap:wrap;flex:1;flex-direction:row-reverse;margin:-30px -15px 0}.BuyBoxSection-683559780 .box-inner{width:100%;height:100%}.BuyBoxSection-683559780 .readcube-buybox{background-color:#f3f3f3;flex-shrink:1;flex-grow:1;flex-basis:255px;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .subscribe-buybox{background-color:#f3f3f3;flex-shrink:1;flex-grow:4;flex-basis:300px;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .subscribe-buybox-nature-plus{background-color:#f3f3f3;flex-shrink:1;flex-grow:4;flex-basis:100%;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .title-readcube{display:block;margin:0;margin-right:20%;margin-left:20%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .title-buybox{display:block;margin:0;margin-right:29%;margin-left:29%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .title-asia-buybox{display:block;margin:0;margin-right:5%;margin-left:5%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .asia-link{color:#069;cursor:pointer;text-decoration:none;font-size:1.05em;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:1.05em6}.BuyBoxSection-683559780 .access-readcube{display:block;margin:0;margin-right:10%;margin-left:10%;font-size:14px;color:#222;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .access-asia-buybox{display:block;margin:0;margin-right:5%;margin-left:5%;font-size:14px;color:#222;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .access-buybox{display:block;margin:0;margin-right:30%;margin-left:30%;font-size:14px;color:#222;opacity:.8px;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .usps-buybox{display:block;margin:0;margin-right:30%;margin-left:30%;font-size:14px;color:#222;opacity:.8px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .price-buybox{display:block;font-size:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;padding-top:30px;text-align:center}.BuyBoxSection-683559780 .price-from{font-size:14px;padding-right:10px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .issue-buybox{display:block;font-size:13px;text-align:center;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:19px}.BuyBoxSection-683559780 .no-price-buybox{display:block;font-size:13px;line-height:18px;text-align:center;padding-right:10%;padding-left:10%;padding-bottom:20px;padding-top:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif}.BuyBoxSection-683559780 .vat-buybox{display:block;margin-top:5px;margin-right:20%;margin-left:20%;font-size:11px;color:#222;padding-top:10px;padding-bottom:15px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:17px}.BuyBoxSection-683559780 .button-container{display:flex;padding-right:20px;padding-left:20px;justify-content:center}.BuyBoxSection-683559780 .button-container >*{flex:1px}.BuyBoxSection-683559780 .button-container >a:hover,.Button-505204839:hover,.Button-1078489254:hover,.Button-2808614501:hover{text-decoration:none}.BuyBoxSection-683559780 .readcube-button{background:#fff;margin-top:30px}.BuyBoxSection-683559780 .button-asia{background:#069;border:1px solid #069;border-radius:0;cursor:pointer;display:block;padding:9px;outline:0;text-align:center;text-decoration:none;min-width:80px;margin-top:75px}.BuyBoxSection-683559780 .button-label-asia,.ButtonLabel-3869432492,.ButtonLabel-3296148077,.ButtonLabel-1566022830{display:block;color:#fff;font-size:17px;line-height:20px;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;text-align:center;text-decoration:none;cursor:pointer}.Button-505204839,.Button-1078489254,.Button-2808614501{background:#069;border:1px solid #069;border-radius:0;cursor:pointer;display:block;padding:9px;outline:0;text-align:center;text-decoration:none;min-width:80px;max-width:320px;margin-top:10px}.Button-505204839 .readcube-label,.Button-1078489254 .readcube-label,.Button-2808614501 .readcube-label{color:#069}
    /* style specs end */Subscribe to nature+Get immediate online access to the entire Nature family of 50+ journals$29.99monthlySubscribeSubscribe to JournalGet full journal access for 1 year$199.00only $3.90 per issueSubscribeAll prices are NET prices. VAT will be added later in the checkout.Tax calculation will be finalised during checkout.Buy articleGet time limited or full article access on ReadCube.$32.00BuyAll prices are NET prices.

    Additional access options:

    Log in

    Learn about institutional subscriptions

    Nature 601, 191 (2022)
    doi: https://doi.org/10.1038/d41586-022-00010-z

    Competing Interests
    The authors declare no competing interests.

    Related Articles

    See more letters to the editor

    Subjects

    Biodiversity

    Latest on:

    Biodiversity

    Wind power versus wildlife: root mitigation in evidence
    Correspondence 11 JAN 22

    The UN must get on with appointing its new science board
    Editorial 08 DEC 21

    Link knowledge and action networks to tackle disasters
    Correspondence 16 NOV 21

    Jobs

    Senior Medical Director, Global Medical Affairs Alzheimer’s Disease, Global Medical Evidence Generation

    Eisai Inc.
    Nutley, NJ, United States

    W1 Professor (Tenure Track) of Molecular Plant Biologyr

    University of Tübingen (Uni Tübingen)
    Tübingen, Baden-Württemberg, Germany

    Early Career Fellowship Programme 2021

    Human Technopole
    Milano, Italy

    A tenure-track position in the field of ecology/evolutionary biology/conservation biology

    Ben-Gurion University of the Negev (BGU)
    Midrashet Ben-Gurion, Israel More

  • in

    EU Nature Restoration Law needs ambitious and binding targets

    CORRESPONDENCE
    11 January 2022

    EU Nature Restoration Law needs ambitious and binding targets

    Kris Decleer

     ORCID: http://orcid.org/0000-0001-9621-8925

    0
    ,

    Jordi Cortina-Segarra

     ORCID: http://orcid.org/0000-0002-8231-3793

    1
    &

    Aveliina Helm

     ORCID: http://orcid.org/0000-0003-2338-4564

    2

    Kris Decleer

    Research Institute for Nature and Forest, Brussels, Belgium.

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Jordi Cortina-Segarra

    University of Alicante, Alicante, Spain.

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Aveliina Helm

    University of Tartu, Tartu, Estonia.

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Twitter

    Facebook

    Email

    Initiatives by the European Commission to restore the continent’s degraded areas (J. Cortina-Segarra et al. Nature 535, 231; 2016) have proved disappointing. As the United Nations Decade on Ecosystem Restoration gathers momentum, the commission is preparing a law that has legally binding targets. To underscore the urgency, some 1,400 European scientists and 30 expert networks and institutions have signed a declaration by the Society for Ecological Restoration Europe (see go.nature.com/3st6k88).

    Access options

    Access through your institution

    Change institution

    Buy or subscribe

    /* style specs start */
    style{display:none!important}.LiveAreaSection-193358632 *{align-content:stretch;align-items:stretch;align-self:auto;animation-delay:0s;animation-direction:normal;animation-duration:0s;animation-fill-mode:none;animation-iteration-count:1;animation-name:none;animation-play-state:running;animation-timing-function:ease;azimuth:center;backface-visibility:visible;background-attachment:scroll;background-blend-mode:normal;background-clip:borderBox;background-color:transparent;background-image:none;background-origin:paddingBox;background-position:0 0;background-repeat:repeat;background-size:auto auto;block-size:auto;border-block-end-color:currentcolor;border-block-end-style:none;border-block-end-width:medium;border-block-start-color:currentcolor;border-block-start-style:none;border-block-start-width:medium;border-bottom-color:currentcolor;border-bottom-left-radius:0;border-bottom-right-radius:0;border-bottom-style:none;border-bottom-width:medium;border-collapse:separate;border-image-outset:0s;border-image-repeat:stretch;border-image-slice:100%;border-image-source:none;border-image-width:1;border-inline-end-color:currentcolor;border-inline-end-style:none;border-inline-end-width:medium;border-inline-start-color:currentcolor;border-inline-start-style:none;border-inline-start-width:medium;border-left-color:currentcolor;border-left-style:none;border-left-width:medium;border-right-color:currentcolor;border-right-style:none;border-right-width:medium;border-spacing:0;border-top-color:currentcolor;border-top-left-radius:0;border-top-right-radius:0;border-top-style:none;border-top-width:medium;bottom:auto;box-decoration-break:slice;box-shadow:none;box-sizing:border-box;break-after:auto;break-before:auto;break-inside:auto;caption-side:top;caret-color:auto;clear:none;clip:auto;clip-path:none;color:initial;column-count:auto;column-fill:balance;column-gap:normal;column-rule-color:currentcolor;column-rule-style:none;column-rule-width:medium;column-span:none;column-width:auto;content:normal;counter-increment:none;counter-reset:none;cursor:auto;display:inline;empty-cells:show;filter:none;flex-basis:auto;flex-direction:row;flex-grow:0;flex-shrink:1;flex-wrap:nowrap;float:none;font-family:initial;font-feature-settings:normal;font-kerning:auto;font-language-override:normal;font-size:medium;font-size-adjust:none;font-stretch:normal;font-style:normal;font-synthesis:weight style;font-variant:normal;font-variant-alternates:normal;font-variant-caps:normal;font-variant-east-asian:normal;font-variant-ligatures:normal;font-variant-numeric:normal;font-variant-position:normal;font-weight:400;grid-auto-columns:auto;grid-auto-flow:row;grid-auto-rows:auto;grid-column-end:auto;grid-column-gap:0;grid-column-start:auto;grid-row-end:auto;grid-row-gap:0;grid-row-start:auto;grid-template-areas:none;grid-template-columns:none;grid-template-rows:none;height:auto;hyphens:manual;image-orientation:0deg;image-rendering:auto;image-resolution:1dppx;ime-mode:auto;inline-size:auto;isolation:auto;justify-content:flexStart;left:auto;letter-spacing:normal;line-break:auto;line-height:normal;list-style-image:none;list-style-position:outside;list-style-type:disc;margin-block-end:0;margin-block-start:0;margin-bottom:0;margin-inline-end:0;margin-inline-start:0;margin-left:0;margin-right:0;margin-top:0;mask-clip:borderBox;mask-composite:add;mask-image:none;mask-mode:matchSource;mask-origin:borderBox;mask-position:0% 0%;mask-repeat:repeat;mask-size:auto;mask-type:luminance;max-height:none;max-width:none;min-block-size:0;min-height:0;min-inline-size:0;min-width:0;mix-blend-mode:normal;object-fit:fill;object-position:50% 50%;offset-block-end:auto;offset-block-start:auto;offset-inline-end:auto;offset-inline-start:auto;opacity:1;order:0;orphans:2;outline-color:initial;outline-offset:0;outline-style:none;outline-width:medium;overflow:visible;overflow-wrap:normal;overflow-x:visible;overflow-y:visible;padding-block-end:0;padding-block-start:0;padding-bottom:0;padding-inline-end:0;padding-inline-start:0;padding-left:0;padding-right:0;padding-top:0;page-break-after:auto;page-break-before:auto;page-break-inside:auto;perspective:none;perspective-origin:50% 50%;pointer-events:auto;position:static;quotes:initial;resize:none;right:auto;ruby-align:spaceAround;ruby-merge:separate;ruby-position:over;scroll-behavior:auto;scroll-snap-coordinate:none;scroll-snap-destination:0 0;scroll-snap-points-x:none;scroll-snap-points-y:none;scroll-snap-type:none;shape-image-threshold:0;shape-margin:0;shape-outside:none;tab-size:8;table-layout:auto;text-align:initial;text-align-last:auto;text-combine-upright:none;text-decoration-color:currentcolor;text-decoration-line:none;text-decoration-style:solid;text-emphasis-color:currentcolor;text-emphasis-position:over right;text-emphasis-style:none;text-indent:0;text-justify:auto;text-orientation:mixed;text-overflow:clip;text-rendering:auto;text-shadow:none;text-transform:none;text-underline-position:auto;top:auto;touch-action:auto;transform:none;transform-box:borderBox;transform-origin:50% 50% 0;transform-style:flat;transition-delay:0s;transition-duration:0s;transition-property:all;transition-timing-function:ease;vertical-align:baseline;visibility:visible;white-space:normal;widows:2;width:auto;will-change:auto;word-break:normal;word-spacing:normal;word-wrap:normal;writing-mode:horizontalTb;z-index:auto;-webkit-appearance:none;-moz-appearance:none;-ms-appearance:none;appearance:none;margin:0}.LiveAreaSection-193358632{width:100%}.LiveAreaSection-193358632 .login-option-buybox{display:block;width:100%;font-size:17px;line-height:30px;color:#222;padding-top:30px;font-family:Harding,Palatino,serif}.LiveAreaSection-193358632 .additional-access-options{display:block;font-weight:700;font-size:17px;line-height:30px;color:#222;font-family:Harding,Palatino,serif}.LiveAreaSection-193358632 .additional-login >li:not(:first-child)::before{transform:translateY(-50%);content:”;height:1rem;position:absolute;top:50%;left:0;border-left:2px solid #999}.LiveAreaSection-193358632 .additional-login >li:not(:first-child){padding-left:10px}.LiveAreaSection-193358632 .additional-login >li{display:inline-block;position:relative;vertical-align:middle;padding-right:10px}.BuyBoxSection-683559780{display:flex;flex-wrap:wrap;flex:1;flex-direction:row-reverse;margin:-30px -15px 0}.BuyBoxSection-683559780 .box-inner{width:100%;height:100%}.BuyBoxSection-683559780 .readcube-buybox{background-color:#f3f3f3;flex-shrink:1;flex-grow:1;flex-basis:255px;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .subscribe-buybox{background-color:#f3f3f3;flex-shrink:1;flex-grow:4;flex-basis:300px;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .subscribe-buybox-nature-plus{background-color:#f3f3f3;flex-shrink:1;flex-grow:4;flex-basis:100%;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .title-readcube{display:block;margin:0;margin-right:20%;margin-left:20%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .title-buybox{display:block;margin:0;margin-right:29%;margin-left:29%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .title-asia-buybox{display:block;margin:0;margin-right:5%;margin-left:5%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .asia-link{color:#069;cursor:pointer;text-decoration:none;font-size:1.05em;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:1.05em6}.BuyBoxSection-683559780 .access-readcube{display:block;margin:0;margin-right:10%;margin-left:10%;font-size:14px;color:#222;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .access-asia-buybox{display:block;margin:0;margin-right:5%;margin-left:5%;font-size:14px;color:#222;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .access-buybox{display:block;margin:0;margin-right:30%;margin-left:30%;font-size:14px;color:#222;opacity:.8px;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .usps-buybox{display:block;margin:0;margin-right:30%;margin-left:30%;font-size:14px;color:#222;opacity:.8px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .price-buybox{display:block;font-size:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;padding-top:30px;text-align:center}.BuyBoxSection-683559780 .price-from{font-size:14px;padding-right:10px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .issue-buybox{display:block;font-size:13px;text-align:center;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:19px}.BuyBoxSection-683559780 .no-price-buybox{display:block;font-size:13px;line-height:18px;text-align:center;padding-right:10%;padding-left:10%;padding-bottom:20px;padding-top:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif}.BuyBoxSection-683559780 .vat-buybox{display:block;margin-top:5px;margin-right:20%;margin-left:20%;font-size:11px;color:#222;padding-top:10px;padding-bottom:15px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:17px}.BuyBoxSection-683559780 .button-container{display:flex;padding-right:20px;padding-left:20px;justify-content:center}.BuyBoxSection-683559780 .button-container >*{flex:1px}.BuyBoxSection-683559780 .button-container >a:hover,.Button-505204839:hover,.Button-1078489254:hover,.Button-2808614501:hover{text-decoration:none}.BuyBoxSection-683559780 .readcube-button{background:#fff;margin-top:30px}.BuyBoxSection-683559780 .button-asia{background:#069;border:1px solid #069;border-radius:0;cursor:pointer;display:block;padding:9px;outline:0;text-align:center;text-decoration:none;min-width:80px;margin-top:75px}.BuyBoxSection-683559780 .button-label-asia,.ButtonLabel-3869432492,.ButtonLabel-3296148077,.ButtonLabel-1566022830{display:block;color:#fff;font-size:17px;line-height:20px;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;text-align:center;text-decoration:none;cursor:pointer}.Button-505204839,.Button-1078489254,.Button-2808614501{background:#069;border:1px solid #069;border-radius:0;cursor:pointer;display:block;padding:9px;outline:0;text-align:center;text-decoration:none;min-width:80px;max-width:320px;margin-top:10px}.Button-505204839 .readcube-label,.Button-1078489254 .readcube-label,.Button-2808614501 .readcube-label{color:#069}
    /* style specs end */Subscribe to nature+Get immediate online access to the entire Nature family of 50+ journals$29.99monthlySubscribeSubscribe to JournalGet full journal access for 1 year$199.00only $3.90 per issueSubscribeAll prices are NET prices. VAT will be added later in the checkout.Tax calculation will be finalised during checkout.Buy articleGet time limited or full article access on ReadCube.$32.00BuyAll prices are NET prices.

    Additional access options:

    Log in

    Learn about institutional subscriptions

    Nature 601, 191 (2022)
    doi: https://doi.org/10.1038/d41586-022-00011-y

    Competing Interests
    The authors declare no competing interests.

    Related Articles

    See more letters to the editor

    Subjects

    Law

    Ecology

    Environmental sciences

    Latest on:

    Law

    Elizabeth Holmes verdict: researchers share lessons for science
    News 04 JAN 22

    What Sci-Hub’s latest court battle means for research
    News 13 DEC 21

    Science agency on trial following deadly White Island volcano eruption
    News 06 OCT 21

    Ecology

    Wind power versus wildlife: root mitigation in evidence
    Correspondence 11 JAN 22

    Two million species catalogued by 500 experts
    Correspondence 11 JAN 22

    From the archive
    News & Views 11 JAN 22

    Environmental sciences

    Rapid microbial methanogenesis during CO2 storage in hydrocarbon reservoirs
    Article 22 DEC 21

    Half measures in One Health fail people and the environment
    Correspondence 21 DEC 21

    Uncovering global-scale risks from commercial chemicals in air
    Article 15 DEC 21

    Jobs

    W1 Professor (Tenure Track) of Molecular Plant Biologyr

    University of Tübingen (Uni Tübingen)
    Tübingen, Baden-Württemberg, Germany

    Early Career Fellowship Programme 2021

    Human Technopole
    Milano, Italy

    A tenure-track position in the field of ecology/evolutionary biology/conservation biology

    Ben-Gurion University of the Negev (BGU)
    Midrashet Ben-Gurion, Israel

    Leaders of Independent Junior Research Group (JRG) 2022

    Asia Pacific Center for Theoretical Physics (APCTP)
    Pohang, Korea, South More

  • in

    Ecoregional and temporal dynamics of dugong habitat use in a complex coral reef lagoon ecosystem

    1.Guisan, A. et al. Predicting species distributions for conservation decisions. Ecol. Lett. 16, 1424–1435 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    2.Robinson, L. M. et al. Pushing the limits in marine species distribution modelling: Lessons from the land present challenges and opportunities. Glob. Ecol. Biogeogr. 20, 789–802 (2011).
    Google Scholar 
    3.Yates, K. L. et al. Outstanding challenges in the transferability of ecological models. Trends Ecol. Evol. 33, 790–802 (2018).PubMed 

    Google Scholar 
    4.Mayor, S. J., Schneider, D. C., Schaefer, J. A. & Mahoney, S. P. Habitat selection at multiple scales. Ecoscience 16, 238–247 (2009).
    Google Scholar 
    5.Mannocci, L. et al. Temporal resolutions in species distribution models of highly mobile marine animals: Recommendations for ecologists and managers. Divers. Distrib. 23, 1098–1109 (2017).
    Google Scholar 
    6.Sequeira, A. M. M., Bouchet, P. J., Yates, K. L., Mengersen, K. & Caley, M. J. Transferring biodiversity models for conservation: Opportunities and challenges. Methods Ecol. Evol. 9, 1250–1264 (2018).
    Google Scholar 
    7.Cleguer, C., Grech, A., Garrigue, C. & Marsh, H. Spatial mismatch between marine protected areas and dugongs in New Caledonia. Biol. Conserv. 184, 154–162 (2015).
    Google Scholar 
    8.Hays, G. C. et al. Translating marine animal tracking data into conservation policy and management. Trends Ecol. Evol. 34, 459–473 (2019).PubMed 

    Google Scholar 
    9.Hays, G. C. et al. Key questions in marine megafauna movement ecology. Trends Ecol. Evol. 31, 463–475 (2016).PubMed 

    Google Scholar 
    10.Hazen, E. L. et al. WhaleWatch: A dynamic management tool for predicting blue whale density in the California Current. J. Appl. Ecol. 54, 1415–1428 (2017).
    Google Scholar 
    11.Sequeira, A. M. M. et al. Overhauling ocean spatial planning to improve marine megafauna conservation. Front. Mar. Sci. 6, 639 (2019).
    Google Scholar 
    12.Marsh, H. & Sobtzick, S. Dugong dugon. In The IUCN RedList of Threatened Species (2019:e.T6909A160756767). https://dx.doi.org/https://doi.org/10.2305/IUCN.UK.2015-4.RLTS.T6909A160756767.en. Accessed November 2020 (2019).13.Marsh, H., O’Shea, T. J. & Reynolds, J. E. I. Ecology and Conservation of the Sirenia: Dugongs and Manatees Vol. 18 (Cambridge University Press, 2011).
    Google Scholar 
    14.Pimiento, C. et al. Functional diversity of marine megafauna in the Anthropocene. Sci. Adv. 6, eaay7650 (2020).CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    15.Nowicki, R. J., Thomson, J. A., Fourqurean, J. W., Wirsing, A. J. & Heithaus, M. R. Loss of predation risk from apex predators can exacerbate marine tropicalization caused by extreme climatic events. J. Anim. Ecol. https://doi.org/10.1111/1365-2656.13424 (2021).Article 
    PubMed 

    Google Scholar 
    16.Wirsing, A. J., Heithaus, M. R. & Dill, L. M. Living on the edge: Dugongs prefer to forage in microhabitats that allow escape from rather than avoidance of predators. Anim. Behav. 74, 93–101 (2007).
    Google Scholar 
    17.Aragones, L. V., Lawler, I. R., Foley, W. J. & Marsh, H. Dugong grazing and turtle cropping: Grazing optimization in tropical seagrass systems?. Oecologia 149, 635–647 (2006).PubMed 
    ADS 

    Google Scholar 
    18.Preen, A. Impacts of dugong foraging on seagrass habitats: Observational and experimental evidence for cultivation grazing. Mar. Ecol. Prog. Ser. 124, 201–213 (1995).ADS 

    Google Scholar 
    19.Unsworth, R. K. F., Collier, C. J., Waycott, M., Mckenzie, L. J. & Cullen-Unsworth, L. C. A framework for the resilience of seagrass ecosystems. Mar. Pollut. Bull. 100, 34–46 (2015).CAS 
    PubMed 

    Google Scholar 
    20.Tol, S. J. et al. Long distance biotic dispersal of tropical seagrass seeds by marine mega-herbivores. Sci. Rep. 7, 1–8 (2017).CAS 
    ADS 

    Google Scholar 
    21.Ponnampalam, L. S., Fairul Izmal, J. H., Adulyanukosol, K., Ooi, J. L. S. & Reynolds, J. E. Aligning conservation and research priorities for proactive species and habitat management: The case of dugongs Dugong dugon in Johor, Malaysia. Oryx 49, 743–749 (2015).
    Google Scholar 
    22.Preen, A. The Status and Conservation of Dugongs in the Arabian Region. Saudi Arabia, Meteorological and Environmental Protection Administration (MEPA), Coastal and Marine Management Series. Report, No 10, (1989).23.Preen, A. Distribution, abundance and conservation status of dugongs and dolphins in the southern and western Arabian Gulf. Biol. Conserv. 118, 205–218 (2004).
    Google Scholar 
    24.Findlay, K. P., Cockcroft, V. G. & Guissamulo, A. T. Dugong abundance and distribution in the Bazaruto Archipelago, Mozambique. Afr. J. Mar. Sci. 33, 441–452 (2011).
    Google Scholar 
    25.Pilcher, N. J. et al. A low-cost solution for documenting distribution and abundance of endangered marine fauna and impacts from fisheries. PLoS ONE 12, e0190021 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    26.Hashim, M. et al. Using fisher knowledge, mapping population, habitat suitability and risk for the conservation of dugongs in Johor Straits of Malaysia. Mar. Policy 78, 18–25 (2017).
    Google Scholar 
    27.Bayliss, P. & Hutton, M. Integrating Indigenous Knowledge and Survey Techniques to Develop a Baseline for Dugong (Dugong dugon) Management in the Kimberley. Final Report of project 1.2.5 of the Kimberley Marine Research Program Node of the Western Australian Marine Science Institution, WAMSI (2017).28.Campbell, R., Holley, D. & Bardi-Jawi Ranger Group. Movement Behaviours and Habitat Usage of West Kimberley Dugongs : A Community Based Approach Final Report to the National Marine Mammal Centre November 2010. Final Report to the National Marine Mammal Centre (2010).29.Cleguer, C. et al. Working with the Community to Understand Use of Space by Dugongs and Green Turtles in Torres Strait. Final Report to the Mura Badulgal Representative NativeTitle Body Corporate and the Department of the Environment, National Environment Science Program TropicalWater Quality Hub (James Cook University, Townsville, 2016).30.Gredzens, C. et al. Satellite tracking of sympatric marine megafauna can inform the biological basis for species co-management. PLoS ONE 9, e98944 (2014).PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    31.Holley, D. Movement Patterns and Habitat Usage of Shark Bay Dugongs. MSc thesis, Edith Cowan University, Perth. https://ro.ecu.edu.au/cgi/viewcontent.cgi?article=1070&context=theses (2006).32.Sheppard, J. et al. Movement heterogeneity of dugongs, Dugong dugon (Müller), over large spatial scales. J. Exp. Mar. Bio. Ecol. 334, 64–83 (2006).
    Google Scholar 
    33.Hagihara, R. et al. Improving the Estimates of Abundance of Dugongs and Large Immature and Adult-Sized Green Turtles in Western and Central Torres Strait. Report to the National Environmental Science Programme (Reef and Rainforest Research Centre Limited, Cairns 2016).34.De Iongh, H. H., Langeveld, P. & Van Der Wal, M. Movement and home ranges of dugongs around the Lease Islands, East Indonesia. Mar. Ecol. 19, 179–193 (1998).ADS 

    Google Scholar 
    35.Cleguer, C., Garrigue, C. & Marsh, H. Dugong (Dugong dugon) movements and habitat use in a coral reef lagoonal ecosystem. Endanger. Species Res. 43, 167–181 (2020).
    Google Scholar 
    36.Sheppard, J., Jones, R. E., Marsh, H. & Lawler, I. R. Effects of tidal and diel cycles on dugong habitat use. J. Wildl. Manag. 73, 45–59 (2009).
    Google Scholar 
    37.Sheppard, J., Marsh, H., Jones, R. E. & Lawler, I. R. Dugong habitat use in relation to seagrass nutrients, tides, and diel cycles. Mar. Mammal Sci. 26, 855–879 (2010).
    Google Scholar 
    38.Zeh, D. R. et al. Evidence of behavioural thermoregulation by dugongs at the high latitude limit to their range in eastern Australia. J. Exp. Mar. Bio. Ecol. 508, 27–34 (2018).
    Google Scholar 
    39.UNESCO. Lagoons of New Caledonia: Reef Diversity and Associated Ecosystems (U.W.H. Centre, 2009).40.Payri, C. New Caledonia: World of Corals (IRD Editions/Solaris, Marseille/Nouméa, 2018).41.Oremus, M., Garrigue, C. & Cleguer, C. Isolement et diversité génétique des dugongs de Nouvelle-Calédonie (Unpublished Report, 2011).42.Oremus, M., Garrigue, C. & Cleguer, C. Etude génétique complémentaire sur le statut de la population de dugong de Nouvelle-Calédonie (Unpublished Report, 2015).43.Garrigue, C., Patenaude, N. & Marsh, H. Distribution and abundance of the dugong in New Caledonia, southwest Pacific. Mar. Mammal Sci. 24, 81–90 (2008).
    Google Scholar 
    44.Cleguer, C. et al. Drivers of change in the relative abundance of dugongs in New Caledonia. Wildl. Res. 44, 365–376 (2017).
    Google Scholar 
    45.Gonson, C. et al. Decadal increase in the number of recreational users is concentrated in no-take marine reserves. Mar. Pollut. Bull. 107, 144–154 (2016).CAS 
    PubMed 

    Google Scholar 
    46.Fraser, K. C. et al. Tracking the conservation promise of movement ecology. Front. Ecol. Evol. 6, 150 (2018).
    Google Scholar 
    47.Hussey, N. E. et al. Aquatic animal telemetry: A panoramic window into the underwater world. Science (80-.) 348, 1255642 (2015).
    Google Scholar 
    48.Hagihara, R. et al. Compensating for geographic variation in detection probability with water depth improves abundance estimates of coastal marine megafauna. PLoS ONE 13, e0191476 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    49.Sequeira, A. M. M. et al. The importance of sample size in marine megafauna tagging studies. Ecol. Appl. 29, e01947 (2019).CAS 
    PubMed 

    Google Scholar 
    50.Derville, S., Constantine, R., Baker, C. S., Oremus, M. & Torres, L. G. Environmental correlates of nearshore habitat distribution by the Critically Endangered Maui dolphin. Mar. Ecol. Prog. Ser. 551, 261–275 (2016).CAS 
    ADS 

    Google Scholar 
    51.Derville, S., Torres, L. G., Iovan, C. & Garrigue, C. Finding the right fit: Comparative cetacean distribution models using multiple data sources and statistical approaches. Divers. Distrib. 24, 1657–1673 (2018).
    Google Scholar 
    52.Pinto, C. et al. Using individual tracking data to validate the predictions of species distribution models. Divers. Distrib. 22, 682–693 (2016).
    Google Scholar 
    53.Tingley, M. W., Wilkerson, R. L., Howell, C. A. & Siegel, R. B. An integrated occupancy and space-use model to predict abundance of imperfectly detected, territorial vertebrates. Methods Ecol. Evol. 7, 508–517 (2016).
    Google Scholar 
    54.Roberts, J. J. et al. Habitat-based cetacean density models for the U.S. Atlantic and Gulf of Mexico. Sci. Rep. 6, 22615 (2016).CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    55.Mannocci, L., Roberts, J. J., Pedersen, E. J. & Halpin, P. N. Geographical differences in habitat relationships of cetaceans across an ocean basin. Ecography (Cop.) 43, 1250–1259 (2020).
    Google Scholar 
    56.Wirsing, A. J., Heithaus, M. R. & Dill, L. M. Fear factor: Do dugongs (Dugong dugon) trade food for safety from tiger sharks (Galeocerdo cuvier)?. Oecologia 153, 1031–1040 (2007).PubMed 
    ADS 

    Google Scholar 
    57.Jollit, I. Spatialisation des activités humaines et aide à la décision pour une gestion durable des écosystèmes coralliens: la pêche plaisancière dans le lagon sud-ouest de la Nouvelle-Calédonie. PhD dissertation, Université de la Nouvelle-Calédonie (2010).58.Maitland, R. N., Lawler, I. R. & Sheppard, J. K. Assessing the risk of boat strike on Dugongs Dugong dugon at Burrum Heads, Queensland, Australia. Pac. Conserv. Biol. 12, 321–326 (2006).
    Google Scholar 
    59.Preen, A. Interactions Between Dugongs and Seagrasses in a Subtropical Environment. PhD dissertation, James Cook University, Townsville, Australia (1992).60.Hodgson, A. Dugong Behaviour and Responses to Human Influences. PhD dissertation, James Cook University (2004).61.Edwards, H. H. et al. Influence of manatees’ diving on their risk of collision with watercraft. PLoS ONE 11, e0151450 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    62.Rycyk, A. M. et al. Manatee behavioral response to boats. Mar. Mamm. Sci. 34, 924–962 (2018).
    Google Scholar 
    63.Garrigue, C. Macrophyte associations on the soft bottoms of the South-West Lagoon of New Caledonia: Description, structure and biomass. Bot. Mar. 38, 481–492 (1995).
    Google Scholar 
    64.Andréfouët, S. et al. Nation-wide hierarchical and spatially-explicit framework to characterize seagrass meadows in the Indo-Pacific: Example application to New Caledonia. Mar. Pollut. Bull. 173, 113036 (2021).PubMed 

    Google Scholar 
    65.Cleguer, C. Informing Dugong Conservation at Several Spatial and Temporal Scales in New Caledonia. PhD dissertation, James Cook University (2015).66.Anderson, P. K. Dugongs of Shark Bay, Australia–Seasonal migration, water temperature and forage. Natl. Geogr. Res. 2, 473–490 (1986).
    Google Scholar 
    67.Heithaus, M. R. & Dill, L. M. Food availability and tiger shark predation risk influence bottlenose dolphin habitat use. Ecology 83, 480–491 (2002).
    Google Scholar 
    68.Roger, J. Données bathymétriques et topographiques de Nouvelle-Calédonie : Réalisation d’un MNT terre-mer pour l’étude de l’aléa tsunami (projet TSUCAL). (Institut de Recherche pour le Développement, 2020).69.Andréfouët, S. et al. Global assessment of modern coral reef extent and diversity for regional science and management applications: A view from space. In Opening Talk, 10th International Coral Reef Symposium (eds Suzuki, Y. et al.) 1732–1745 (Japanese Coral Reef Society, 2006).
    Google Scholar 
    70.Andréfouët, S., Cabioch, G., Flamand, B. & Pelletier, B. A reappraisal of the diversity of geomorphological and genetic processes of New Caledonian coral reefs: A synthesis from optical remote sensing, coring and acoustic multibeam observations. Coral Reefs 28, 691–707 (2009).ADS 

    Google Scholar 
    71.Rousseeuw, P. J. Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20, 53–65 (1987).MATH 

    Google Scholar 
    72.Marsh, H. & Rathbun, G. B. Development and application of conventional and satellite radio tracking techniques for studying dugong movements and habitat use. Aust. Wildl. Res. 17, 83–100 (1990).
    Google Scholar 
    73.Lanyon, J. M. et al. A method for capturing dugongs (Dugong dugong) in open water. Aquat. Mamm. 32, 196–201 (2006).
    Google Scholar 
    74.Cleguer, C., Derville, S., Kelly, N., Lambourne, R. & Garrigue, C. Programme SIREN : Suivi à fine échelle de la fréquentation et du déplacement des dugongs dans la zone Voh-Koné- Pouembout , pour une gestion améliorée de l’espèce Rapport final (Technical report prepared for Koniambo Nickel SAS, 2020).75.Johnson, D., London, J., Lea, M. A. & Durban, J. Continuous-time correlated random walk model for animal telemetry data. Ecology 89, 1208–1215 (2008).PubMed 
    PubMed Central 

    Google Scholar 
    76.Barraquand, F. & Benhamou, S. Animal movements in heterogeneous landscapes: Identifying profitable places and homogeneous movements bouts. Ecology 89, 3336–3348 (2008).PubMed 

    Google Scholar 
    77.Hyndman, R. et al. Forecast: Forecasting Functions for Time Series and Linear Models. https://pkg.robjhyndman.com/forecast/ (R package version 8.15, 2021).78.Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. & Team, R. C. nlme: Linear and Nonlinear Mixed Effects Models. https://CRAN.R-project.org/package=nlme (R package version 3.1–152, 2021).79.Hastie, T. J. & Tibshirani, R. J. Generalized Additive Models, volume 43 of Monographs on Statistics and Applied Probability (Chapman and Hall/CRC, 1990).
    Google Scholar 
    80.Wood, S. N. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. R. Stat. Soc. 73, 3–36 (2011).MathSciNet 
    MATH 

    Google Scholar 
    81.Wood, S. N. Generalized Additive Models: An Introduction with R (CRC Press, 2017).MATH 

    Google Scholar 
    82.Friedman, J. H. Greedy function approximation: A gradient boosting machine. Ann. Stat. 29, 1189–1232 (2001).MathSciNet 
    MATH 

    Google Scholar 
    83.Cox, T. & Schepers, L. Tides: Quasi-periodic Time Series Characteristics. https://CRAN.R-project.org/package=Tides (R package version 2.1., 2018).84.Boldina, I. & Beninger, P. G. Strengthening statistical usage in marine ecology: Linear regression. J. Exp. Mar. Bio. Ecol. 474, 81–91 (2016).
    Google Scholar 
    85.Russell, L. emmeans: Estimated Marginal Means, aka Least-Squares Means. https://CRAN.R-project.org/package=emmeans (R package version 1.4.7., 2020).86.R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, 2020).
    Google Scholar  More

  • in

    The Amazon River plume, a barrier to animal dispersal in the Western Tropical Atlantic

    1.Burgess, S. C., Baskett, M. L., Grosberg, R. K., Morgan, S. G. & Strathmann, R. R. When is dispersal for dispersal? Unifying marine and terrestrial perspectives. Biol. Rev. 91, 867–882 (2016).PubMed 

    Google Scholar 
    2.Cowman, P. F. & Bellwood, D. R. Vicariance across major marine biogeographic barriers: Temporal concordance and the relative intensity of hard versus soft barriers. Proc. R. Soc. B Biol. Sci. 280, 20131541 (2013).
    Google Scholar 
    3.Floeter, S. R. et al. Atlantic reef fish biogeography and evolution. J. Biogeogr. 35, 22–47 (2008).
    Google Scholar 
    4.Luiz, O. J. et al. Ecological traits influencing range expansion across large oceanic dispersal barriers: Insights from tropical Atlantic reef fishes. Proc. R. Soc. B Biol. Sci. 279, 1033–1040 (2012).
    Google Scholar 
    5.Rocha, L. A. et al. Recent invasion of the tropical Atlantic by an Indo-Pacific coral reef fish. Mol. Ecol. 14, 3921–3928 (2005).PubMed 

    Google Scholar 
    6.Thornhill, D. J., Mahon, A. R., Norenburg, J. L. & Halanych, K. M. Open-ocean barriers to dispersal: A test case with the Antarctic Polar Front and the ribbon worm Parborlasia corrugatus (Nemertea: Lineidae). Mol. Ecol. 17, 5104–5117 (2008).CAS 
    PubMed 

    Google Scholar 
    7.Fraser, C. I., Kay, G. M., du Plessis, M. & Ryan, P. G. Breaking down the barrier: Dispersal across the Antarctic Polar Front. Ecography 40, 235–237 (2017).
    Google Scholar 
    8.Thorrold, S. R. & McKinnon, A. D. Response of larval fish assemblages to a riverine plume in coastal waters of the central Great Barrier Reef lagoon. Limnol. Oceanogr. 40, 177–181 (1995).ADS 

    Google Scholar 
    9.Rocha, L. A. Patterns of distribution and processes of speciation in Brazilian reef fishes. J. Biogeogr. 30, 1161–1171 (2003).
    Google Scholar 
    10.Lentz, S. J. The Amazon River plume during AmasSeds: Subtidal current variability and the importance of wind forcing. J. Geophys. Res. 100, 2377–2390 (1995).ADS 

    Google Scholar 
    11.Figueiredo, A. G., Allison, M. & Nittrouer, C. A. Amazon Discharge: Internal Report for AMASSEDS Researches. (1991).12.Nittrouer, C. A. & DeMaster, D. J. The Amazon shelf setting: Tropical, energetic, and influenced by a large river. Cont. Shelf Res. 16, 553–573 (1996).ADS 

    Google Scholar 
    13.Jo, Y.-H., Yan, X. H., Dzwonkowski, B. & Liu, W. T. A study of the freshwater discharge from the Amazon River into the tropical Atlantic using multi-sensor data. Geophys. Res. Lett. 32, 1–4 (2005).
    Google Scholar 
    14.Moura, R. L. et al. An extensive reef system at the Amazon River mouth. Sci. Adv. 2, 1–11 (2016).
    Google Scholar 
    15.Francini-Filho, R. B. et al. Perspectives on the Great Amazon Reef: Extension, biodiversity, and threats. Front. Mar. Sci. 5, 142 (2018).
    Google Scholar 
    16.Neumann-Leitão, S. et al. Zooplankton from a reef system under the influence of the Amazon River plume. Front. Microbiol. 9, 1–15 (2018).
    Google Scholar 
    17.Targino, A. K. G. & Gomes, P. B. Distribution of sea anemones in the Southwest Atlantic: Biogeographical patterns and environmental drivers. Mar. Biodivers. 50, 80 (2020).
    Google Scholar 
    18.Barroso, C. X., Lotufo, T. M. C. & Matthews-Cascon, H. Biogeography of Brazilian prosobranch gastropods and their Atlantic relationships. J. Biogeogr. 43, 2477–2488 (2016).
    Google Scholar 
    19.Brandini, F. P., Lopes, R. M., Gutseit, K. S. & Sassi, R. Planctonologia na Plataforma Continental do Brasil: Diagnose e Revisão Bibliográfica. (CEMAR/MMA/CIRM/FEMAR, 1997).20.Loder, J. W., Boicourt, W. C. & Simpson, J. H. Western ocean boundary shelves coastal segment (W). Sea 11, 3–27 (1998).
    Google Scholar 
    21.Chollett, I., Mumby, P. J., Müller-Karger, F. E. & Hu, C. Physical environments of the Caribbean Sea. Limnol. Oceanogr. 57, 1233–1244 (2012).ADS 

    Google Scholar 
    22.Costello, M. J. et al. Marine biogeographic realms and species endemicity. Nat. Commun. 8, 1057 (2017).PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    23.Saeedi, H., Simões, M. & Brandt, A. Endemicity and community composition of marine species along the NW Pacific and the adjacent Arctic Ocean. Prog. Oceanogr. 178, 102199 (2019).
    Google Scholar 
    24.OBIS. Ocean Biogeographic Information System. http://www.iobis.org (2021).25.Spalding, M. D. et al. Marine ecoregions of the world: A bioregionalization of coastal and shelf areas. Bioscience 57, 573–583 (2007).
    Google Scholar 
    26.Hortal, J. et al. Seven shortfalls that beset large-scale knowledge of biodiversity. Annu. Rev. Ecol. Evol. Syst. 46, 523–549 (2015).
    Google Scholar 
    27.Baselga, A. Partitioning the turnover and nestedness components of beta diversity. Glob. Ecol. Biogeogr. 19, 134–143 (2010).
    Google Scholar 
    28.Fu, H. et al. Local and regional drivers of turnover and nestedness components of species and functional beta diversity in lake macrophyte communities in China. Sci. Total Environ. 687, 206–217 (2019).CAS 
    PubMed 
    ADS 

    Google Scholar 
    29.Costello, M. J., Stocks, K., Zhang, Y., Grassle, J. F. & Fautin, D. G. About the Ocean Biogeographic Information System. Vol. 29. (2007).30Miloslavich, P. et al. Marine biodiversity in the Caribbean: Regional estimates and distribution patterns. PLoS ONE 5, e11916 (2010).PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    31.Boltovskoy, D. & Valentin, J. L. Overview of the history of biological oceanography in the southwestern Atlantic, with emphasis on plankton. in Plankton Ecology of the Southwestern Atlantic (eds. Hoffmeyer, M. S., Sabatini, M. E., Brandini, F. P., Calliari, D. L. & Santinelli, N. H.). 3–34. https://doi.org/10.1007/978-3-319-77869-3_1 (Springer, 2018).32Costello, M. J. et al. A census of marine biodiversity knowledge, resources, and future challenges. PLoS ONE 5, e12110 (2010).PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    33.Lopes, R. M. Marine zooplankton studies in Brazil: A brief evaluation and perspectives. An. Acad. Bras. Ciênc. 79, 369–379 (2007).PubMed 

    Google Scholar 
    34.Alves-Júnior, F. D. A. et al. Taxonomy of deep-sea shrimps of the superfamily Oplophoroidea Dana 1852 (Decapoda: Caridea) from Southwestern Atlantic. Zootaxa 4613, 401–442 (2019).
    Google Scholar 
    35.Eduardo, L. N. et al. Biodiversity, ecology, fisheries, and use and trade of Tetraodontiformes fishes reveal their socio-ecological significance along the tropical Brazilian continental shelf. Aquat. Conserv. Mar. Freshw. Ecosyst. 30, 761–774 (2020).
    Google Scholar 
    36.Tosetto, E. G., Bertrand, A., Neumann-Leitão, S., Costa da Silva, A. & Nogueira Júnior, M. Spatial patterns in planktonic cnidarian distribution in the western boundary current system of the tropical South Atlantic Ocean. J. Plankton Res. 43, 270–287 (2021).
    Google Scholar 
    37.Tosetto, E. G., Neumann-Leitão, S. & Nogueira Júnior, M. New species of Eirenidae (Hydrozoa: Leptothecata) from the Amazonian coast (northern Brazil). Sci. Mar. 84, 421–430 (2020).
    Google Scholar 
    38.Santana, C. S. et al. Amazon river plume influence on planktonic decapods in the tropical Atlantic. J. Mar. Syst. 212, 103428 (2020).
    Google Scholar 
    39.Tosetto, E. G., Neumann-Leitão, S., Bertrand, A. & Júnior, M. N. First record of Cirrholovenia polynema (Hydrozoa: Leptothecata) in the Western Atlantic Ocean. Ocean Coast. Res. 69, e21006 (2021).
    Google Scholar 
    40.Roberts, C. M. et al. Marine biodiversity hotspots and conservation priorities for tropical reefs. Science 295, 1280–1284 (2002).CAS 
    PubMed 
    ADS 

    Google Scholar 
    41.Bowen, B. W., Muss, A., Rocha, L. A. & Grant, W. S. Shallow mtDNA coalescence in Atlantic Pygmy angelfishes (genus Centropyge) indicates a recent invasion from the Indian Ocean. J. Hered. 97, 1–12 (2005).
    Google Scholar 
    42.Rocha, L. A., Robertson, D. R., Roman, J. & Bowen, B. W. Ecological speciation in tropical reef fishes. Proc. R. Soc. B Biol. Sci. 272, 573–579 (2005).
    Google Scholar 
    43.Rocha, L. A., Rocha, C. R., Robertson, D. R. & Bowen, B. W. Comparative phylogeography of Atlantic reef fishes indicates both origin and accumulation of diversity in the Caribbean. BMC Evol. Biol. 8, 157 (2008).PubMed 
    PubMed Central 

    Google Scholar 
    44.Agard, J. B. R., Hubbard, R. H. & Griffith, J. K. The relation between productivity, disturbance and the biodiversity of Caribbean phytoplankton: Applicability of Huston’s dynamic equilibrium model. J. Exp. Mar. Biol. Ecol. 202, 1–17 (1996).
    Google Scholar 
    45.Toonen, R. J., Bowen, B. W., Iacchei, M. & Briggs, J. C. Biogeography, marine. in Encyclopedia of Evolutionary Biology (ed. Kliman, R. M.). 166–178. https://doi.org/10.1016/B978-0-12-800049-6.00120-7 (Academic Press, 2016).46.Briggs, J. C. & Bowen, B. W. Marine shelf habitat: Biogeography and evolution. J. Biogeogr. 40, 1023–1035 (2013).
    Google Scholar 
    47.Bradbury, I. R., Laurel, B., Snelgrove, P. V. R., Bentzen, P. & Campana, S. E. Global patterns in marine dispersal estimates: The influence of geography, taxonomic category and life history. Proc. R. Soc. B Biol. Sci. 275, 1803–1809 (2008).
    Google Scholar 
    48.Bartlow, A. W. & Agosta, S. J. Phoresy in animals: Review and synthesis of a common but understudied mode of dispersal. Biol. Rev. 96, 223–246 (2021).PubMed 

    Google Scholar 
    49.South Atlantic Zooplankton. (Backhuys Publishers, 1999).50.Mapstone, G. M. Global diversity and review of Siphonophorae (Cnidaria: Hydrozoa). PLoS ONE 9, 1–37 (2014).
    Google Scholar 
    51.Young, C. M., Sewell, M. A. & Rice, M. E. Atlas of Marine Invertebrate Larvae. Vol. 6. (Academic Press, 2002).52.Strathmann, R. Length of pelagic period in echinoderms with feeding larvae from the Northeast Pacific. J. Exp. Mar. Biol. Ecol. 34, 23–27 (1978).
    Google Scholar 
    53.Haddoock, S. H. D. A golden age of gelata Past and future research on planktonic ctenophores and cnidarians. Hydrobiologia 530–531, 549–556 (2004).
    Google Scholar 
    54Dossa, A. N. et al. Near-surface western boundary circulation off Northeast Brazil. Prog. Oceanogr. 190, 102475 (2021).
    Google Scholar 
    55.Luiz, O., Floeter, S., Rocha, L. & Ferreira, C. Perspectives for the lionfish invasion in the South Atlantic: Are Brazilian reefs protected by the currents?. Mar. Ecol. Prog. Ser. 485, 1–7 (2013).ADS 

    Google Scholar 
    56.Maldonado, M. The ecology of the sponge larva. Can. J. Zool. 84, 175–194 (2006).
    Google Scholar 
    57.Giangrande, A. Polychaete reproductive patterns, life cycles and life histories: An overview. in Oceanography and Marine Biology. Vol. 35. (eds. Ansell, A., Gibson, R. N. & Barnes, M.) (CRC Press, 1997).58.Nogueira Júnior, M. & Oliveira, V. M. Strategies of plankton occupation by polychaete assemblages in a subtropical estuary (south Brazil). J. Mar. Biol. Assoc. U. K. 97, 1651–1661 (2017).
    Google Scholar 
    59Assunção, R. V. et al. 3D characterisation of the thermohaline structure in the southwestern tropical Atlantic derived from functional data analysis of in situ profiles. Prog. Oceanogr. 187, 102399 (2020).
    Google Scholar 
    60.Molleri, G. S. F., Novo, E. M. L. M. & Kampel, M. Space-time variability of the Amazon River plume based on satellite ocean color. Cont. Shelf Res. 30, 342–352 (2010).ADS 

    Google Scholar 
    61.López, R., López, J. M., Morell, J., Corredor, J. E. & Del Castillo, C. E. Influence of the Orinoco River on the primary production of eastern Caribbean surface waters: Primary Production of Caribbean waters. J. Geophys. Res. Oceans 118, 4617–4632 (2013).ADS 

    Google Scholar 
    62.Hsieh, T. C., Ma, K. H. & Chao, A. iNEXT: iNterpolation and EXTrapolation for Species Diversity. (2014).63.Clarke, K. R. & Gorley, R. N. PRIMER 6 + PERMANOVA. (2006).64.Larsson, J. et al. Package ‘eulerr’. (2018).65.Baselga, A. & Orme, C. D. L. betapart: An R package for the study of beta diversity. Methods Ecol. Evol. 3, 808–812 (2012).
    Google Scholar  More

  • in

    A taxonomic, genetic and ecological data resource for the vascular plants of Britain and Ireland

    The broad categories of data included in the repository are summarized in Online-only Table 2 and visualized in Fig. 2. Each category is explained in greater detail below, while full details together with accompanying notes are given in the repository (Database_structure.csv) and in Supplementary File 1. Online-only Table 2 gives an overview of data coverage per category, both across all species and for native species separately. A complete list of data sources is available in Supplementary File 2.Fig. 2Visualization of the attributes presented in the database.Full size imageGeneration of the species listTaxon names listed in the most recent and widely accepted New Flora of the British Isles’ index12 were digitized via the Optical Character Recognition Software ReadirisTM 17 (IRIS). Results from the digitization were transferred into a spreadsheet and obvious recognition errors were fixed. The resulting table contained 5,687 taxa and associated taxonomic authorities. A total of 360 unnamed hybrids were excluded, as well as species noted to have only questionable or unconfirmed records, leaving 5,038 species. Forty-one intergeneric hybrid species, 827 entries relating to (notho)subspecies, (notho)varieties, cultivars and forma were also removed along with 720 named hybrids. Species that were included by Stace12 but which he considered not to be part of the flora (i.e. listed as ‘other species’ and ‘other genera’, e.g. genus Tragus or Coreopsis verticillata) were also excluded. Seven species that were labelled ‘extinct’ in the flora were included as there were indications that the species might be in the process of reintroduction (e.g. Bromus interruptus, Bupleurum falcatum and Schoenoplectus pungens). Extinct native and archaeophyte species without any signs of reintroduction (e.g. Dryopteris remota) are also listed but no additional data are provided and they are not included in calculations of completeness of data (Online-only Table 2). The final number of extant species listed here is therefore 3,209 (comprising 1,468 natives, 1,690 aliens and 51 species with unknown status), plus 18 formally extinct species (natives and archaeophytes not seen in the study region since 1999). Species names and taxonomic authorities were revised according to the 2021 reprint of the New Flora of the British Isles, communicated to us by C.A.S. ahead of publication. Genera with less well-defined species – for example due to apomixis – contain additional information on subgenera, sections, and aggregates, as per Stace12. Since misidentifications are common in these groups, we include a column termed ‘unclear_species_marker’ that allows for these species to be quickly identified and excluded from analyses if appropriate. Such genera are often incompletely listed in our database since most microspecies are not sufficiently well defined.TaxonomyNomenclature of the list was checked by Global Names Resolver in the R package ‘taxize’20,21, using the International Plant Names Index (IPNI)22 as the data source, to remove any digitisation errors. Resolved names were used to determine accepted higher taxonomic hierarchy (family, order) again using taxize, with the National Center for Biotechnology Information (NCBI) database. Species that could not be resolved by the Global Names Resolver or did not yield matches in the NCBI database for their higher taxonomic ranks were manually checked for name matches in the World Checklist of Vascular Plants (WCVP)17. Species within the original species list that were found to be identical to a different spelling in WCVP were retained in the database. In such instances, and when slight spelling differences occurred, the columns ‘taxon_name‘ and ‘taxon_name_WCVP‘ differ. To improve clarity, each species is presented here with its unique identification number according to the WCVP (listed as ‘kew_id’) together with three additional columns (i.e. WCVP.URL, POWO.URL and IPNI.URL) which contain hyperlinks to the freely accessible taxon description websites of the (WCVP)17, Plants of the World Online (POWO)23 and (IPNI)22, respectively. Thus, while the taxon names used in the database correspond to those used by Stace12, changes in the accepted species name since publication can be traced in columns ‘taxonomic_status’ and ‘accepted_kew_id’. The family classification of WCVP follows APG IV24 for angiosperms, Christenhusz et al. (2011)25 for gymnosperms and Christenhusz & Chase (2014)26 for ferns and lycopods.Native statusWe offer three different datasets which describe the status of a species as native or non-native, and its level of establishment in BI. The first is extracted from Stace (2019)12, the second contains the status codes used in PLANTATT10 and the unpublished ALIENATT (pers. comm. author K.J.W.) dataset, and the third is extracted from Alien Plants13. The status from Stace12 and Stace & Crawley13 assigns a species to either native or alien status, with aliens subdivided into archaeophytes and neophytes at different levels of establishment (e.g. denizen, colonist etc., see Online-only Table 1). Status codes from the BSBI can be either AC (alien casual), AN (neophyte), AR (archaeophyte), N (native), NE (native endemic) or NA (native status doubtful).Functional traitsData for five ecologically relevant functional traits (i.e. seed mass, specific leaf area [SLA], leaf area, leaf dry matter content [LDMC] and vegetative height) were downloaded from public data available in the TRY database27 (for specific authors see Supplementary File 1 and Supplementary File 2). Averages were calculated using the available measurements downloaded for each species, excluding rows where the measurement was 0. In addition, the maximum vegetative height for each species is given, where available.Realized niche descriptionRealized niche descriptions based on assessments made on plants living in BI are given in the form of Ellenberg indicator values18, as published in PLANTATT10. Ellenberg indicator values place each species along an environmental gradient (e.g. light or salinity) by assigning a number on an ordinal scale, depending on the species preference for the specific gradient (Online-only Table 2). This information is often used to gain insights into environmental changes based on species occurrences28. For species listed under a previously accepted name in PLANTATT, the information was associated with the accepted synonym in Stace (2019)12. Due to the low coverage of PLANTATT for non-native species included in our list, we additionally include Ellenberg indicator values based on Central European assessments, as made available by Döring29. Each Ellenberg category is listed in a separate column, keeping the information from both data sources separate to avoid confounding of assessments based on two different regions (i.e. Britain and Ireland versus Central Europe).Life strategyTo characterize the life strategy of a species, we used the CSR scheme developed by Grime19, which classifies each species as either a competitor (C), stress tolerator (S), ruderal (R) or a combination of these (e.g. CS, SR). CSR classifications were obtained from the Electronic Comparative Plant Ecology database30. Due to the low coverage of available CSR assessments for species in our database (i.e. data available for just 460 out of 3,209 species) we imputed CSR strategies for a further 981 species using available functional trait data, following the method proposed by Pierce et al.31. The functional leaf traits required for this method – i.e. specific leaf area, leaf area, leaf dry matter content – were obtained from the TRY database27. Pre-existing30 and newly imputed CSR strategies are listed in separate columns.Growth form, succulence and life-formPlant growth form descriptions were obtained from the TRY database27 and filtered for those entries given by specific contributors (Online-only Table 2) to maintain consistent use of growth form categories. Information on whether a species was considered to be a succulent was obtained by screening the entire growth form information obtained from the TRY database for the phrase ‘succulence’ or ‘succulent’.Species life-form categories according to Raunkiaer32 were determined for each species in our dataset with regard to the typical life-form of the species as it grows in BI (pers. comm. M.J.M.C.).Associated biome and originInformation given in the Ecoflora database3 for the biome that each species is associated with was matched to the species names according to Stace12. The recognized biome categories follow Preston & Hill33 and are ‘Arctic montane’, ‘Boreal Montane’, ‘Boreo-Arctic Montane’, ‘Boreo-Temperate’, ‘Mediterranean’, ‘Mediterranean-Atlantic’, ‘Southern Temperate’, ‘Temperate’, ‘Wide Boreal’ and ‘Wide Temperate’.For non-native species, the assumed origin (i.e. the region that plants were most likely to have been introduced to BI from, rather than the full non-BI distribution of a species) was adapted from Stace12 into a brief description of their country or region of origin. In addition, these descriptions were manually allocated to the TDWG level 1 regions listed in the World Geographical Scheme for Recording Plant Distributions (WGSRPD, TDWG)34.Species distributionsDistribution metrics for each species are given as the number of 10-km square hectads in BI with records for the species in question within a specified time window. The data were derived from the BSBI Distribution Database35 and were extracted for each species, dividing the study region into Great Britain (incl. Isle of Man), Ireland and the Channel Islands, as previously partitioned for data available in PLANTATT10. The database was queried using species and hectads for grouping, showing only records ‘matching or within 2 km of county boundary’ and excluding ‘do-not-map-flagged occurrences’. The data were not corrected for sampling bias and should therefore only be used as an indication of trends.Hybrid propensityData on hybridization is provided for 641 species, obtained from the Hybrid flora of the British Isles36 which enumerates every hybrid reported in BI up until 2015 (pers. comm. M.R.B.). Each entry was transcribed manually, and then filtered to exclude (a) hybrids that have been recorded, but not formed in the British Isles, (b) triple hybrids (mainly reported for the genus Salix), (c) doubtful records, (d) hybrids between subspecific ranks, and (e) hybrids where at least one parent is not native (only archaeophytes included). This left 821 hybrid combinations for data aggregation. The metric chosen here is hybrid propensity, which is a per-species metric of how many other species a focal species hybridizes with (sensu Whitney et al., 201037). A scaled hybrid propensity metric is also given which was calculated by weighting the hybrid propensity score by the number of intrageneric combinations for a given genus, to account for the greater opportunities of hybridization in larger genera.DNA barcodesDNA barcode sequences for plant species present in BI are currently available for 1,413 species in our database. The information was derived from a dataset of rbcL, matK and ITS2 sequences compiled for the UK flora generated by the National Botanic Garden of Wales and the Royal Botanic Garden Edinburgh38,39 (pers. comm. L.J. and N.D.V.). The data are given as a hyperlink to the record’s page on the Barcode of Life Data Systems (BOLD40) which includes the DNA barcode sequences as well as scans of the herbarium specimen and information on the sample’s collection. Most species have multiple record pages associated with them, due to the sampling of more than one individual. We include a maximum of three BOLD accessions per species; the full range of individuals sampled can be accessed via the original publications38,39. DNA barcodes are almost exclusively available for native species. Future releases of our database will increase the coverage of the non-native flora significantly. Where species in the BOLD database are attributed to a species name that is considered synonymous with another name in our list, the hyperlink is matched to the latest nomenclature12. 1,421 species have at least one sequence associated with them and 935 species have sequence data for all three sequences (rbcL, matK and ITS2).Genome size and chromosome numbersGenome size data for 2,117 specimens (at least one measurement per species) were obtained from various sources. Measurements for a total of 467 species were newly estimated using plant material of known BI origin, often sourced  from the Millennium Seedbank of the Royal Botanic Gardens, Kew (RBG Kew)41. The measurements were made by flow cytometry using seeds or seedlings and following an established protocol42. Information on the extraction buffers and calibration standard species used are available in the file GS_Kew_BI.csv, along with peak CV values of the measurements as a quality control. Where more than one measurement is reported per species, the measurements were made on plant material from different populations or using different buffers. Previously published data for additional species were obtained from reports on the Czech flora43, the Dutch flora44, and prime values listed in the Plant DNA C-values database45,46. Since significant intraspecific differences in genome size between plant material from different geographical origins have previously been described, predominantly due to cytotype diversity in ploidy level47, genome size measurements from previously published sources were assessed with regard to the origin of the material. The column ‘from_BI_material’ (GS_BI.csv, BI_main.csv) allows users to filter for measurements made on material from BI to exclude a potential bias. The information was obtained from the original publication source of each measurement.Chromosome numbers for 1,410 species (at least one chromosome number per species) determined exclusively from material collected in BI were obtained from an extensive dataset compiled by R.J.G. from various published studies, unpublished theses and personal communications from trusted sources. The counts were made between 1898 and 2017, with a large proportion stemming from efforts to achieve greater coverage of the flora by a team of cytologists based at the University of Leicester and headed by R.J.G. Part of the dataset was previously incorporated into the BSBI’s data catalogue5 but has since undergone revisions to incorporate new information and changes in taxonomy. The dataset contained many measurements at subspecies level which were allocated to the species level taxon in our list. This served to include as much of the often considerable infraspecific variation as possible. Since some species for which chromosome counts have been reported elsewhere are lacking chromosome counts from British or Irish material, they are absent from this dataset. To fill such gaps, we also present chromosome numbers from reports on the Czech flora43, the Dutch flora44, and the Plant DNA C-values database45,46. More