Distinct gut microbiomes in two polar bear subpopulations inhabiting different sea ice ecoregions
1.Ley, R. E. et al. Evolution of mammals and their gut microbes. Science 320, 1647–1651. https://doi.org/10.1126/science.1155725 (2008).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
2.Hale, V. L. et al. Diet versus phylogeny: a comparison of gut microbiota in captive colobine monkey species. Microb. Ecol. 75, 515–527. https://doi.org/10.1007/s00248-017-1041-8 (2018).Article
PubMed
Google Scholar
3.Pickard, J. M., Zeng, M. Y., Caruso, R. & Núñez, G. Gut microbiota: role in pathogen colonization, immune responses, and inflammatory disease. Immunol. Rev. 279, 70–89 (2017).CAS
PubMed
PubMed Central
Google Scholar
4.Ley, R. E., Peterson, D. A. & Gordon, J. I. Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell 124, 837–848 (2006).CAS
PubMed
Google Scholar
5.Pascoe, E. L., Hauffe, H. C., Marchesi, J. R. & Perkins, S. E. Network analysis of gut microbiota literature: an overview of the research landscape in non-human animal studies. ISME J. 11, 2644–2651. https://doi.org/10.1038/ismej.2017.133 (2017).Article
PubMed
PubMed Central
Google Scholar
6.Hauffe, H. C. & Barelli, C. Conserve the germs: the gut microbiota and adaptive potential. Conserv. Genet. 20, 19–27. https://doi.org/10.1007/s10592-019-01150-y (2019).Article
Google Scholar
7.Ellegaard, K. M. & Engel, P. Beyond 16S rRNA Community profiling: intra-species diversity in the gut microbiota. Front. Microbiol. 7, doi:https://doi.org/10.3389/fmicb.2016.01475 (2016).8.Sugden, S., Sanderson, D., Ford, K., Stein, L. Y. & St. Clair, C. C. An altered microbiome in urban coyotes mediates relationships between anthropogenic diet and poor health. Sci. Rep. 10, 22207, doi:https://doi.org/10.1038/s41598-020-78891-1 (2020).9.Góngora, E., Elliott, K. H. & Whyte, L. Gut microbiome is affected by inter-sexual and inter-seasonal variation in diet for thick-billed murres (Uria lomvia). Sci. Rep. 11, 1200. https://doi.org/10.1038/s41598-020-80557-x (2021).CAS
Article
PubMed
PubMed Central
Google Scholar
10.Muegge, B. D. et al. Diet drives convergence in gut microbiome functions across mammalian phylogeny and within humans. Science 332, 970. https://doi.org/10.1126/science.1198719 (2011).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
11.Bik, E. M. et al. Marine mammals harbor unique microbiotas shaped by and yet distinct from the sea. Nature Commun 7, 10516 (2016).ADS
CAS
Google Scholar
12.McKenzie, V. J. et al. The effects of captivity on the mammalian gut microbiome. Integr. Comp. Biol. 57, 690–704 (2017).PubMed
PubMed Central
Google Scholar
13.Des Roches, S. et al. The ecological importance of intraspecific variation. Nat. Ecol. Evol. 2, 57–64, doi:https://doi.org/10.1038/s41559-017-0402-5 (2018).14.Des Roches, S., Pendleton, L. H., Shapiro, B. & Palkovacs, E. P. Conserving intraspecific variation for nature’s contributions to people. Nat. Ecol. Evol. 5, 574–582, doi:https://doi.org/10.1038/s41559-021-01403-5 (2021).15.Wasimuddin, et al. Gut microbiomes of free-ranging and captive Namibian cheetahs: diversity, putative functions and occurrence of potential pathogens. Mol. Ecol. 26, 5515–5527. https://doi.org/10.1111/mec.14278 (2017).CAS
Article
PubMed
Google Scholar
16.Alfano, N. et al. Variation in koala microbiomes within and between individuals: effect of body region and captivity status. Sci. Rep. 5, 10189. https://doi.org/10.1038/srep10189 (2015).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
17.Schwab, C., Cristescu, B., Northrup, J. M., Stenhouse, G. B. & Gänzle, M. Diet and environment shape fecal bacterial microbiota composition and enteric pathogen load of grizzly bears. Plos One 6, e27905 (2011).18.Sommer, F. et al. The gut microbiota modulates energy metabolism in the hibernating brown bear Ursus arctos. Cell Rep 14, 1655–1661 (2016).CAS
PubMed
Google Scholar
19.Durner, G., Laidre, K. & York, G. Polar Bears: Proceedings of the 18th Working Meeting of the IUCN/SSC Polar Bear Specialist Group, 7–11 June 2016, Anchorage, Alaska. Gland, Switzerland and Cambridge, UK: IUCN. xxx+ 207pp (2018).20.Amstrup, S. C., Marcot, B. G. & Douglas, D. C. in Arctic sea ice decline: Observations, projections, mechanisms, and implications Geophysics monograph series (eds E.T. DeWeaver, C.M. Bitz, & L.-B. Tremblay) 213–268 (AGU, 2008).21.Thiemann, G. W., Iverson, S. J. & Stirling, I. Polar bear diets and arctic marine food webs: Insights from fatty acid analysis. Ecol. Monogr 78, 591–613 (2008).
Google Scholar
22.McKinney, M. A. et al. Regional contamination versus regional dietary differences: Understanding geographic variation in brominated and chlorinated contaminant levels in polar bears. Environ. Sci. Technol. 45, 896–902 (2011).ADS
CAS
PubMed
Google Scholar
23.Laidre, K. L. et al. Arctic marine mammal population status, sea ice habitat loss, and conservation recommendations for the 21st century. Conserv. Biol. 29, 724–737 (2015).PubMed
PubMed Central
Google Scholar
24.Stern, H. L. & Laidre, K. L. Sea-ice indicators of polar bear habitat. Cryosphere 10, 2027–2041. https://doi.org/10.5194/tc-10-2027-2016 (2016).ADS
Article
Google Scholar
25.Atwood, T. C. et al. Rapid environmental change drives increased land use by an Arctic marine predator. PLoS ONE 11, e0155932 (2016).26.Rode, K. D., Robbins, C. T., Nelson, L. & Amstrup, S. C. Can polar bears use terrestrial foods to offset lost ice-based hunting opportunities?. Front. Ecol. Environ. 13, 138–145 (2015).
Google Scholar
27.Herreman, J. K. & Peacock, E. Polar bear use of a persistent food subsidy: insights from non-invasive genetic sampling in Alaska. Ursus 24, 148–163 (2013).
Google Scholar
28.Glad, T. et al. Bacterial diversity in faeces from polar bear (Ursus maritimus) in Arctic Svalbard. BMC Microbiol. 10, doi:https://doi.org/10.1186/1471-2180-10-10 (2010).29.Watson, S. E. et al. Global change-driven use of onshore habitat impacts polar bear faecal microbiota. ISME J. https://doi.org/10.1038/s41396-019-0480-2 (2019).Article
PubMed
PubMed Central
Google Scholar
30.McKinney, M. A. et al. Global change effects on the long-term feeding ecology and contaminant exposures of East Greenland polar bears. Glob. Change Biol. 19, 2360–2372. https://doi.org/10.1111/gcb.12241 (2013).ADS
Article
Google Scholar
31.Ilinskaya, O. N., Ulyanova, V. V., Yarullina, D. R. & Gataullin, I. G. Secretome of Intestinal Bacilli: A Natural Guard against Pathologies. Front. Microbiol. 8, doi:https://doi.org/10.3389/fmicb.2017.01666 (2017).32.Cho, G.-S. et al. Quantification of Slackia and Eggerthella spp. in Human Feces and Adhesion of Representatives Strains to Caco-2 Cells. Front. Microbiol. 7, doi:https://doi.org/10.3389/fmicb.2016.00658 (2016).33.Astbury, S. et al. Lower gut microbiome diversity and higher abundance of proinflammatory genus Collinsella are associated with biopsy-proven nonalcoholic steatohepatitis. Gut Microbes 11, 569–580. https://doi.org/10.1080/19490976.2019.1681861 (2020).CAS
Article
PubMed
Google Scholar
34.Gomez-Arango, L. F. et al. Low dietary fiber intake increases Collinsella abundance in the gut microbiota of overweight and obese pregnant women. Gut Microbes 9, 189–201 (2018).PubMed
PubMed Central
Google Scholar
35.Jeong, Y. et al. Gut microbial composition and function are altered in patients with early rheumatoid arthritis. J. Clin. Med. 8, 693 (2019).CAS
PubMed Central
Google Scholar
36.Liu, X. et al. Blautia-a new functional genus with potential probiotic properties?. Gut microbes 13, 1–21. https://doi.org/10.1080/19490976.2021.1875796 (2021).CAS
Article
PubMed
Google Scholar
37.Claus, S. P. et al. Colonization-induced host-gut microbial metabolic interaction. MBio 2, e00271-e210 (2011).PubMed
PubMed Central
Google Scholar
38.Martínez, I. et al. Diet-induced metabolic improvements in a hamster model of hypercholesterolemia are strongly linked to alterations of the gut microbiota. Appl. Environ. Microbiol. 75, 4175–4184 (2009).ADS
PubMed
PubMed Central
Google Scholar
39.Sergeant, M. J. et al. Extensive microbial and functional diversity within the chicken cecal microbiome. PLoS One 9, e91941 (2014).40.Zhang, X. et al. Human gut microbiota changes reveal the progression of glucose intolerance. PLoS One 8, e71108 (2013).41.Shetty, S. A., Marathe, N. P., Lanjekar, V., Ranade, D. & Shouche, Y. S. Comparative genome analysis of Megasphaera sp. reveals niche specialization and its potential role in the human gut. PLoS One 8, e79353 (2013).42.Jiang, X.-L., Su, Y. & Zhu, W.-Y. Fermentation characteristics of Megasphaera elsdenii J6 derived from pig feces on different lactate isomers. J. Integr. Agric. 15, 1575–1583. https://doi.org/10.1016/S2095-3119(15)61236-9 (2016).CAS
Article
Google Scholar
43.Hobson, K. A. & Stirling, I. Low variation in blood delta C-13 among Hudson Bay polar bears: implications for metabolism and tracing terrestrial foraging. Mar. Mammal Sci 13, 359–367 (1997).
Google Scholar
44.Hobson, K. A., Stirling, I. & Andriashek, D. S. Isotopic homogeneity of breath CO2 from fasting and berry-eating polar bears: implications for tracing reliance on terrestrial foods in a changing Arctic. Can. J. Zool 87, 50–55 (2009).CAS
Google Scholar
45.Sakamoto, M. & Ohkuma, M. Reclassification of Xylanibacter oryzae Ueki et al. 2006 as Prevotella oryzae comb. nov., with an emended description of the genus Prevotella. Int. J. Syst. Evol. Microbiol. 62, 2637–2642 (2012).46.Ley, R. E. Obesity and the human microbiome. Curr. Opin. Gastroenterol. 26, 5–11 (2010).PubMed
Google Scholar
47.Rajilić-Stojanović, M. et al. Global and deep molecular analysis of microbiota signatures in fecal samples from patients with irritable bowel syndrome. Gastroenterology 141, 1792–1801 (2011).PubMed
Google Scholar
48.Larsen, N. et al. Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS One 5, e9085 (2010).49.Le Chatelier, E. et al. Richness of human gut microbiome correlates with metabolic markers. Nature 500, 541–546 (2013).
Google Scholar
50.Rajilić-Stojanović, M. & de Vos, W. M. The first 1000 cultured species of the human gastrointestinal microbiota. FEMS Microbiol. Rev. 38, 996–1047. https://doi.org/10.1111/1574-6976.12075 (2014).CAS
Article
PubMed
Google Scholar
51.do Nascimento Silva, A., de Avila, E. D., Nakano, V. & Avila-Campos, M. J. Pathogenicity and genetic profile of oral Porphyromonas species from canine periodontitis. Arch. Oral Biol. 83, 20–24 (2017).52.Acuña-Amador, L. & Barloy-Hubler, F. Porphyromonas spp. have an extensive host range in ill and healthy individuals and an unexpected environmental distribution: a systematic review and meta-analysis. Anaerobe 66, 102280, doi:https://doi.org/10.1016/j.anaerobe.2020.102280 (2020).53.Solé, C. et al. Alterations in gut microbiome in cirrhosis as assessed by quantitative metagenomics: relationship with acute-on-chronic liver failure and prognosis. Gastroenterology 160, 206–218. e213 (2021).54.Osman, M. A. et al. Parvimonas micra, Peptostreptococcus stomatis, Fusobacterium nucleatum and Akkermansia muciniphila as a four-bacteria biomarker panel of colorectal cancer. Sci. Rep. 11, 2925. https://doi.org/10.1038/s41598-021-82465-0 (2021).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
55.Murphy, E. C. & Frick, I.-M. Gram-positive anaerobic cocci – commensals and opportunistic pathogens. FEMS Microbiol. Rev. 37, 520–553. https://doi.org/10.1111/1574-6976.12005 (2013).CAS
Article
PubMed
Google Scholar
56.Vitali, B., Abruzzo, A. & Mastromarino, P. in The Microbiota in Gastrointestinal Pathophysiology (eds Martin H. Floch, Yehuda Ringel, & W. Allan Walker) 399–407 (Academic Press, 2017).57.Costello, E. K., Stagaman, K., Dethlefsen, L., Bohannan, B. J. & Relman, D. A. The application of ecological theory toward an understanding of the human microbiome. Science 336, 1255–1262 (2012).ADS
CAS
PubMed
PubMed Central
Google Scholar
58.Kapourchali, F. R. & Cresci, G. A. M. Early-life gut microbiome—the importance of maternal and infant factors in its establishment. Nutr. Clin. Pract. 35, 386–405. https://doi.org/10.1002/ncp.10490 (2020).Article
PubMed
Google Scholar
59.Guo, G. et al. The Gut Microbial Community Structure of the North American River Otter (Lontra canadensis) in the Alberta Oil Sands Region in Canada: relationship with local environmental variables and metal body burden. Environ. Toxicol. Chem. https://doi.org/10.1002/etc.4876 (2020).Article
PubMed
Google Scholar
60.Haworth, S. E., White, K. S., Côté, S. D. & Shafer, A. B. A. Space, time and captivity: quantifying the factors influencing the fecal microbiome of an alpine ungulate. FEMS microbiology ecology 95, doi:https://doi.org/10.1093/femsec/fiz095 (2019).61.McKinney, M. A., Atwood, T. C., Iverson, S. J. & Peacock, E. Temporal complexity of southern Beaufort Sea polar bear diets during a period of increasing land use. Ecosphere 8, e01633. https://doi.org/10.1002/ecs2.1633 (2017).Article
Google Scholar
62.Atwood, T. C. et al. Rapid environmental change drives increased land use by an arctic marine predator. PLoS ONE 11, e0155932–e0155932. https://doi.org/10.1371/journal.pone.0155932 (2016).CAS
Article
PubMed
PubMed Central
Google Scholar
63.Laidre, K. L., Stirling, I., Estes, J. A., Kochnev, A. & Roberts, J. Historical and potential future importance of large whales as food for polar bears. Front. Ecol. Environ. 16, 515–524. https://doi.org/10.1002/fee.1963 (2018).Article
Google Scholar
64.Bromaghin, J. F. et al. Polar bear population dynamics in the southern Beaufort Sea during a period of sea ice decline. Ecol. Appl. 25, 634–651. https://doi.org/10.1890/14-1129.1 (2015).Article
PubMed
Google Scholar
65.Atwood, T. C. et al. Environmental and behavioral changes may influence the exposure of an Arctic apex predator to pathogens and contaminants. Sci. Rep. 7, doi:https://doi.org/10.1038/s41598-017-13496-9 (2017).66.Bowen, W. D. & Iverson, S. J. Methods of estimating marine mammal diets: a review of validation experiments and sources of bias and uncertainty. Mar. Mamm. Sci. 29, 719–754. https://doi.org/10.1111/j.1748-7692.2012.00604.x (2013).Article
Google Scholar
67.Sonsthagen, S. A. et al. DNA metabarcoding of feces to infer summer diet of Pacific walruses. Mar. Mamm. Sci. https://doi.org/10.1111/mms.12717 (2020).Article
Google Scholar
68.Michaux, J., Dyck, M., Boag, P., Lougheed, S. & Van Coeverden de Groot, P. New insights on polar bear (Ursus maritimus) diet from faeces based on next-generation sequencing technologies. ARCTIC 74, 87–99, doi:https://doi.org/10.14430/arctic72239 (2021).69.Bourque, J., Atwood, T. C., Divoky, G. J., Stewart, C. & McKinney, M. A. Fatty acid-based diet estimates suggest ringed seal remain the main prey of southern Beaufort Sea polar bears despite recent use of onshore food resources. Ecol. Evol. 10, 2093–2103. https://doi.org/10.1002/ece3.6043 (2020).Article
PubMed
PubMed Central
Google Scholar
70.Dominianni, C. et al. Sex, Body Mass Index, and Dietary Fiber Intake Influence the Human Gut Microbiome. PLoS One 10, doi: https://doi.org/10.1371/journal.pone.0124599 (2015).71.Bennett, G. et al. Host age, social group, and habitat type influence the gut microbiota of wild ring-tailed lemurs (Lemur catta). Am. J. Primatol. 78, 883–892. https://doi.org/10.1002/ajp.22555 (2016).CAS
Article
PubMed
Google Scholar
72.Peng, C. et al. Sex-specific association between the gut microbiome and high-fat diet-induced metabolic disorders in mice. Biol. Sex Differ. 11, 5. https://doi.org/10.1186/s13293-020-0281-3 (2020).CAS
Article
PubMed
PubMed Central
Google Scholar
73.Markle, J. G. et al. Sex differences in the gut microbiome drive hormone-dependent regulation of autoimmunity. Science 339, 1084–1088 (2013).ADS
CAS
PubMed
Google Scholar
74.Kaliannan, K. et al. Estrogen-mediated gut microbiome alterations influence sexual dimorphism in metabolic syndrome in mice. Microbiome 6, 205. https://doi.org/10.1186/s40168-018-0587-0 (2018).Article
PubMed
PubMed Central
Google Scholar
75.Park, M. J. et al. Reproductive senescence and ischemic stroke remodel the gut microbiome and modulate the effects of estrogen treatment in female rats. Transl. Stroke Res., 1–19 (2019).76.Thiemann, G. W., Budge, S. M., Iverson, S. J. & Stirling, I. Unusual fatty acid biomarkers reveal age- and sex-specific foraging in polar bears (Ursus maritimus). Can. J. Zool. 85, 505–517. https://doi.org/10.1139/Z07-028 (2007).CAS
Article
Google Scholar
77.Stirling, I. & Derocher, A. E. Effects of climate warming on polar bears: a review of the evidence. Glob. Change Biol. 18, 2694–2706. https://doi.org/10.1111/j.1365-2486.2012.02753.x (2012).ADS
Article
Google Scholar
78.Miller, S., Wilder, J. & Wilson, R. R. Polar bear–grizzly bear interactions during the autumn open-water period in Alaska. J. Mammal. 96, 1317–1325 (2015).
Google Scholar
79.Mshelia, E. S. et al. The association between gut microbiome, sex, age and body condition scores of horses in Maiduguri and its environs. Microb. Pathog. 118, 81–86. https://doi.org/10.1016/j.micpath.2018.03.018 (2018).Article
PubMed
Google Scholar
80.Falony, G. et al. Population-level analysis of gut microbiome variation. Science 352, 560. https://doi.org/10.1126/science.aad3503 (2016).ADS
CAS
Article
Google Scholar
81.Walters, W. A., Xu, Z. & Knight, R. Meta-analyses of human gut microbes associated with obesity and IBD. FEBS Lett. 588, 4223–4233 (2014).CAS
PubMed
PubMed Central
Google Scholar
82.Feng, P. et al. A review on gut remediation of selected environmental contaminants: possible roles of probiotics and gut microbiota. Nutrients 11, 22 (2019).CAS
Google Scholar
83.Vasemägi, A., Visse, M. & Kisand, V. Effect of environmental factors and an emerging parasitic disease on gut microbiome of wild salmonid fish. MSphere 2 (2017).84.Kreisinger, J., Bastien, G. r., Hauffe, H. C., Marchesi, J. & Perkins, S. E. Interactions between multiple helminths and the gut microbiota in wild rodents. Philos. Trans. R. Soc. B: Biol. Sci. 370, doi:https://doi.org/10.1098/rstb.2014.0295 (2015).85.Faust, K. & Raes, J. Microbial interactions: from networks to models. Nat. Rev. Microbiol. 10, 538–550 (2012).CAS
PubMed
Google Scholar
86.Baldo, L. et al. Convergence of gut microbiotas in the adaptive radiations of African cichlid fishes. ISME J. 11, 1975–1987 (2017).PubMed
PubMed Central
Google Scholar
87.Yan, D. et al. Effects of Chronic Stress on the Fecal Microbiome of Malayan Pangolins (Manis javanica) Rescued from the Illegal Wildlife Trade. Curr. Microbiol. 78, 1017–1025. https://doi.org/10.1007/s00284-021-02357-4 (2021).CAS
Article
PubMed
Google Scholar
88.Schirmer, M. et al. Linking the human gut microbiome to inflammatory cytokine production capacity. Cell 167, 1125-1136.e1128. https://doi.org/10.1016/j.cell.2016.10.020 (2016).CAS
Article
PubMed
PubMed Central
Google Scholar
89.Mallott, E. K., Borries, C., Koenig, A., Amato, K. R. & Lu, A. Reproductive hormones mediate changes in the gut microbiome during pregnancy and lactation in Phayre’s leaf monkeys. Sci. Rep. 10, 9961. https://doi.org/10.1038/s41598-020-66865-2 (2020).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
90.Burokas, A., Moloney, R. D., Dinan, T. G. & Cryan, J. F. Microbiota regulation of the mammalian gut–brain axis. Adv. Appl. Microbiol. 91, 1–62 (2015).CAS
PubMed
Google Scholar
91.Bercik, P. et al. Chronic gastrointestinal inflammation induces anxiety-like behavior and alters central nervous system biochemistry in mice. Gastroenterology 139, 2102–2112 (2010).92.Walter, J. M., Bagi, A. & Pampanin, D. M. Insights into the potential of the Atlantic cod gut microbiome as biomarker of oil contamination in the marine environment. Microorganisms 7, 209 (2019).CAS
PubMed Central
Google Scholar
93.Xia, J. et al. Effects of short term lead exposure on gut microbiota and hepatic metabolism in adult zebrafish. Comput. Biochem. Physiol. C: Toxicol. Pharmacol. 209, 1–8 (2018).CAS
Google Scholar
94.Breton, J. et al. Ecotoxicology inside the gut: impact of heavy metals on the mouse microbiome. BMC Pharmacol. Toxicol. 14, 1–11 (2013).
Google Scholar
95.Schliebe, S. et al. Effects of sea ice extent and food availability on spatial and temporal distribution of polar bears during the fall open-water period in the Southern Beaufort Sea. Polar Biol. 31, 999–1010 (2008).
Google Scholar
96.Bahrndorff, S., Alemu, T., Alemneh, T. & Lund Nielsen, J. The microbiome of animals: implications for conservation biology. Int J Genomics 2016, 5304028–5304028, doi:https://doi.org/10.1155/2016/5304028 (2016).97.McKenney, E., Koelle, K., Dunn, R. & Yoder, A. The ecosystem services of animal microbiomes. Mol. Ecol. 27, 2164–2172 (2018).CAS
PubMed
Google Scholar
98.Calvert, W. & Ramsay, M. A. Evaluation of age determination of polar bears by counts of cementum growth layer groups. Ursus 10, 449–453 (1998).
Google Scholar
99.Iverson, S. J., Field, C., Bowen, W. D. & Blanchard, W. Quantitative fatty acid signature analysis: a new method of estimating predator diets. Ecol. Monogr 74, 211–235 (2004).
Google Scholar
100.Galicia, M. P., Thiemann, G. W., Dyck, M. G. & Ferguson, S. H. Characterization of polar bear (Ursus maritimus) diets in the Canadian High Arctic. Polar Biol. 38, 1983–1992 (2015).
Google Scholar
101.Bourque, J. et al. Feeding habits of a new Arctic predator: Insight from full-depth blubber fatty acid signatures of Greenland, Faroe Islands, Denmark, and managed-care killer whales Orcinus orca. Mar. Ecol. Prog. Ser. 603, 1–12 (2018).ADS
CAS
Google Scholar
102.Budge, S. M., Iverson, S. J. & Koopman, H. N. Studying trophic ecology in marine ecosystems using fatty acids: a primer on analysis and interpretation. Mar. Mamm. Sci. 22, 759–801 (2006).
Google Scholar
103.Aitchison, J. The statistical analysis of compositional data. J. R. Stat. Soc.: Ser. B (Methodol.) 44, 139–160 (1982).MathSciNet
MATH
Google Scholar
104.R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, Austria, 2019).105.Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583. https://doi.org/10.1038/nmeth.3869 (2016).CAS
Article
PubMed
PubMed Central
Google Scholar
106.Davis, N. M., Proctor, D. M., Holmes, S. P., Relman, D. A. & Callahan, B. J. Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data. Microbiome 6, 1–14 (2018).
Google Scholar
107.Chong, J., Liu, P., Zhou, G. & Xia, J. Using MicrobiomeAnalyst for comprehensive statistical, functional, and meta-analysis of microbiome data. Nat. Protoc. 15, 799–821. https://doi.org/10.1038/s41596-019-0264-1 (2020).CAS
Article
PubMed
Google Scholar
108.McMurdie, P., Holmes, S., Kindt, R., Legendre, P. & O’Hara, R. P. an R package for reproducible interactive analysis and graphics of microbiome census data. Watson M, editor. PLoS One [Internet]. Public Library of Science (2013).109.McMurdie, P. J. & Holmes, S. Waste Not, Want Not: Why Rarefying Microbiome Data Is Inadmissible. PLoS Comput. Biol. 10, e1003531. https://doi.org/10.1371/journal.pcbi.1003531 (2014).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
110.Oksanen, J. et al. The vegan package. Commun. Ecol. Package 10, 719 (2007).
Google Scholar
111.Anderson, M. J. Distance-based tests for homogeneity of multivariate dispersions. Biometrics 62, 245–253 (2006).MathSciNet
PubMed
PubMed Central
MATH
Google Scholar
112.Lin, H. & Peddada, S. D. Analysis of compositions of microbiomes with bias correction. Nat. Commun. 11, 3514. https://doi.org/10.1038/s41467-020-17041-7 (2020).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
113.Rode, K. D. et al. Identifying reliable indicators of fitness in polar bears. PLoS ONE 15, e0237444. https://doi.org/10.1371/journal.pone.0237444 (2020).CAS
Article
PubMed
PubMed Central
Google Scholar
114.Burnham, K. P., Anderson, D. R. & Huyvaert, K. P. AIC model selection and multimodel inference in behavioral ecology: some background, observations, and comparisons. Behav. Ecol. Sociobiol. 65, 23–35 (2011).
Google Scholar More