Brain volume increase and neuronal plasticity underly predator-induced morphological defense expression in Daphnia longicephala
1.Bradshaw, A. D. Evolutionary significance of phenotypic plasticity in plants. Adv. Genet. 13, 115–155 (1965).Article
Google Scholar
2.Weiss, L. C. & Tollrian, R. Predator induced defenses in Crustacea. in The Natural History of Crustacea: Life Histories, Volume 5 (eds. Welborn, G. & Thiel, M.) 303–321 (Oxford University Press, 2018).
Google Scholar
3.Tollrian, R. Predator-induced helmet formation in Daphnia cucullata (Sars). Arch. für Hydrobiol. 119, 191–196 (1990).
Google Scholar
4.Krueger, D. A. & Dodson, S. I. Embryological induction and predation ecology in Daphnia pulex. Limnol. Oceanogr. https://doi.org/10.4319/lo.1981.26.2.0219 (1981).Article
Google Scholar
5.Grant, J. W. G. & Bayly, I. A. E. Predator induction of crests in morphs of the Daphnia carinata King complex. Limnol. Oceanogr. https://doi.org/10.4319/lo.1981.26.2.0201 (1981).Article
Google Scholar
6.Macháček, J. Indirect effect of planktivorous fish on the growth and reproduction of Daphnia galeata. Hydrobiologia https://doi.org/10.1007/BF00028397 (1991).Article
Google Scholar
7.Stibor, H. & Luning, J. Predator-induced phenotypic variation in the pattern of growth and reproduction in Daphnia hyalina (Crustacea: Cladocera). Funct. Ecol. https://doi.org/10.2307/2390117 (1994).Article
Google Scholar
8.Dodson, S. I., Tollrian, R. & Lampert, W. Daphnia swimming behaviour during vertical migration. J. Plankton Res. 19, 969–978 (1997).Article
Google Scholar
9.Tollrian, R., Duggen, S., Weiss, L. C., Laforsch, C. & Kopp, M. Density-dependent adjustment of inducible defenses. Sci. Rep. 5, 12736 (2015).ADS
CAS
Article
Google Scholar
10.Miyakawa, H. et al. Gene up-regulation in response to predator kairomones in the water flea Daphnia pulex. BMC Dev. Biol. https://doi.org/10.1186/1471-213X-10-45 (2010).Article
PubMed
PubMed Central
Google Scholar
11.Oda, S., Kato, Y., Watanabe, H., Tatarazako, N. & Iguchi, T. Morphological changes in Daphnia galeata induced by a crustacean terpenoid hormone and its analog. Environ. Toxicol. Chem. https://doi.org/10.1002/etc.378 (2011).Article
PubMed
Google Scholar
12.Miyakawa, H., Sato, M., Colbourne, J. K. & Iguchi, T. Ionotropic glutamate receptors mediate inducible defense in the water flea Daphnia pulex. PLoS ONE 10, 1–12 (2015).Article
Google Scholar
13.Weiss, L. C., Kruppert, S., Laforsch, C. & Tollrian, R. Chaoborus and Gasterosteus anti-predator responses in Daphnia pulex are mediated by independent cholinergic and gabaergic neuronal signals. PLoS ONE 7, e36879 (2012).ADS
CAS
Article
Google Scholar
14.Weiss, L. C., Leese, F., Laforsch, C. & Tollrian, R. Dopamine is a key regulator in the signalling pathway underlying predatorinduced defences in Daphnia. Proc. R. Soc. B Biol. Sci. https://doi.org/10.1098/rspb.2015.1440 (2015).Article
Google Scholar
15.Weiss, L. C., Leimann, J. & Tollrian, R. Predator-induced defences in Daphnia longicephala: location of kairomone receptors and timeline of sensitive phases to trait formation. J. Exp. Biol. 218, 2918–2926 (2015).Article
Google Scholar
16.Bullock, T. & Horridge, G. A. Structure and function in the nervous systems of invertebrates. (San Francisco, 1965).17.Fritsch, M., Kaji, T., Olesen, J. & Richter, S. The development of the nervous system in Laevicaudata (Crustacea, Branchiopoda): insights into the evolution and homologies of branchiopod limbs and ‘frontal organs’. Zoomorphology 132, 163–181 (2013).Article
Google Scholar
18.Kolb, B. & Whishaw, I. Q. Brain plasticity and behavior. Annu. Rev. Psychol. https://doi.org/10.1146/annurev.psych.49.1.43 (1998).Article
PubMed
Google Scholar
19.Turner, A. M. & Greenough, W. T. Differential rearing effects on rat visual cortex synapses. I. Synaptic and neuronal density and synapses per neuron. Brain Res. https://doi.org/10.1016/0006-8993(85)90525-6 (1985).Article
PubMed
Google Scholar
20.Woodley, S. K., Mattes, B. M., Yates, E. K. & Relyea, R. A. Exposure to sublethal concentrations of a pesticide or predator cues induces changes in brain architecture in larval amphibians. Oecologia 179, 655–665 (2015).ADS
Article
Google Scholar
21.Gronenberg, W., Heeren, S. & Hölldobler, B. Age-dependent and task-related morphological changes in the brain and the mushroom bodies of the ant Camponotus floridanus. J. Exp. Biol. 199, 2011–2019 (1996).CAS
Article
Google Scholar
22.Barth, M. & Heisenberg, M. Vision affects mushroom bodies and central complex in Drosophila melanogaster. Learn. Mem. https://doi.org/10.1101/lm.4.2.219 (1997).Article
PubMed
Google Scholar
23.Barth, M., Hirsch, H. V. B., Meinertzhagen, I. A. & Heisenberg, M. Experience-dependent developmental plasticity in the optic lobe of Drosophila melanogaster. J. Neurosci. https://doi.org/10.1523/jneurosci.17-04-01493.1997 (1997).Article
PubMed
PubMed Central
Google Scholar
24.van Dijk, L. J. A., Janz, N., Schäpers, A., Gamberale-Stille, G. & Carlsson, M. A. Experience-dependent mushroom body plasticity in butterflies: Consequences of search complexity and host range. Proc. R. Soc. B Biol. Sci. 284, 0–7 (2017).
Google Scholar
25.Withers, G. S., Fahrbach, S. E. & Robinson, G. E. Selective neuroanatomical plasticity and division of labour in the honeybee. Nature https://doi.org/10.1038/364238a0 (1993).Article
PubMed
Google Scholar
26.Heisenberg, M., Heusipp, M. & Wanke, C. Structural plasticity in the Drosophila brain. J. Neurosci. https://doi.org/10.1523/jneurosci.15-03-01951.1995 (1995).Article
PubMed
PubMed Central
Google Scholar
27.Niven, J. E. & Laughlin, S. B. Energy limitation as a selective pressure on the evolution of sensory systems. J. Exp. Biol. https://doi.org/10.1242/jeb.017574 (2008).Article
PubMed
Google Scholar
28.Berlucchi, G. & Buchtel, H. A. Neuronal plasticity: historical roots and evolution of meaning. Exp. Brain Res. https://doi.org/10.1007/s00221-008-1611-6 (2009).Article
PubMed
Google Scholar
29.Zhai, R. G. & Bellen, H. J. The architecture of the active zone in the presynaptic nerve terminal. Physiology https://doi.org/10.1152/physiol.00014.2004 (2004).Article
PubMed
Google Scholar
30.Horn, G., Bradley, P. & McCabe, B. J. Changes in the structure of synapses associated with learning. J. Neurosci. https://doi.org/10.1523/jneurosci.05-12-03161.1985 (1985).Article
PubMed
PubMed Central
Google Scholar
31.Beaulieu, C. & Colonnier, M. Richness of environment affects the number of contacts formed by boutons containing flat vesicles but does not alter the number of these boutons per neuron. J. Comp. Neurol. https://doi.org/10.1002/cne.902740305 (1988).Article
PubMed
Google Scholar
32.Anderson, B. J. Plasticity of gray matter volume: The cellular and synaptic plasticity that underlies volumetric change. Dev. Psychobiol. https://doi.org/10.1002/dev.20563 (2011).Article
PubMed
Google Scholar
33.Tyagarajan, S. K. & Fritschy, J.-M. Gephyrin: a master regulator of neuronal function?. Nat. Rev. Neurosci. 15, 141–156 (2014).CAS
Article
Google Scholar
34.Dutertre, S., Becker, C. M. & Betz, H. Inhibitory glycine receptors: an update. J. Biol. Chem. https://doi.org/10.1074/jbc.R112.408229 (2012).Article
PubMed
PubMed Central
Google Scholar
35.Fritschy, J. M., Harvey, R. J. & Schwarz, G. Gephyrin: where do we stand, where do we go?. Trends Neurosci. https://doi.org/10.1016/j.tins.2008.02.006 (2008).Article
PubMed
Google Scholar
36.Choii, G. & Ko, J. Gephyrin: a central GABAergic synapse organizer. Exp. Mol. Med. https://doi.org/10.1038/emm.2015.5 (2015).Article
PubMed
Google Scholar
37.Phillips-Portillo, J. & Strausfeld, N. J. Representation of the brain’s superior protocerebrum of the flesh fly, Neobellieria bullata, in the central body. J. Comp. Neurol. https://doi.org/10.1002/cne.23094 (2012).Article
PubMed
PubMed Central
Google Scholar
38.Schindelin, J. et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods https://doi.org/10.1038/nmeth.2019 (2012).Article
PubMed
PubMed Central
Google Scholar
39.de Reuille, P. B. et al. MorphoGraphX: a platform for quantifying morphogenesis in 4D. Elife https://doi.org/10.7554/eLife.05864 (2015).Article
Google Scholar
40.Cignoni, P. et al. MeshLab: An open-source 3D mesh processing tool. In 6th Eurographics Italian Chapter Conference 2008 – Proceedings (2008).
Google Scholar
41.Horstmann, M. et al. Scan, extract, wrap, compute—a 3D method to analyse morphological shape differences. PeerJ 2018, 1–20 (2018).
Google Scholar
42.R Development Core Team, R. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. https://doi.org/10.1007/978-3-540-74686-7 (2011).Article
Google Scholar
43.Wickham, H. et al. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag. New York (2016).44.Ohyama, T. et al. A multilevel multimodal circuit enhances action selection in Drosophila. Nature 520, 633–639 (2015).ADS
CAS
Article
Google Scholar
45.Simpson, J. H. Chapter 3 Mapping and Manipulating Neural Circuits in the Fly Brain. Advances in Genetics. https://doi.org/10.1016/S0065-2660(09)65003-3 (2009).Article
Google Scholar
46.Boyan, G., Williams, L. & Liu, Y. Conserved patterns of axogenesis in the panarthropod brain. Arthropod Struct. Dev. https://doi.org/10.1016/j.asd.2014.11.003 (2015).Article
PubMed
Google Scholar
47.Cayre, M., Strambi, C. & Strambi, A. Neurogenesis in an adult insect brain and its hormonal control. Nature https://doi.org/10.1038/368057a0 (1994).Article
Google Scholar
48.Harzsch, S. & Dawirs, R. R. Neurogenesis in the developing crab brain: Postembryonic generation of neurons persists beyond metamorphosis. J. Neurobiol. https://doi.org/10.1002/(SICI)1097-4695(199603)29:3%3c384::AID-NEU9%3e3.0.CO;2-5 (1996).Article
PubMed
Google Scholar
49.Sandeman, R., Clarke, D., Sandeman, D. & Manly, M. Growth-related and antennular amputation-induced changes in the olfactory centers of crayfish brain. J. Neurosci. https://doi.org/10.1523/jneurosci.18-16-06195.1998 (1998).Article
PubMed
PubMed Central
Google Scholar
50.Harzsch, S., Miller, J., Benton, J. & Beltz, B. From embryo to adult: Persistent neurogenesis and apoptotic cell death shape the lobster deutocerebrum. J. Neurosci. https://doi.org/10.1523/jneurosci.19-09-03472.1999 (1999).Article
PubMed
PubMed Central
Google Scholar
51.Letourneau, J. G. Addition of sensory structures and associated neurons to the crayfish telson during development. J. Comp. Physiol. A https://doi.org/10.1007/BF00656778 (1976).Article
Google Scholar
52.Sandeman, D. C. Organization of the central nervous system. in The Biology of Crustacea. Vol. 3. Neurobiology: Structure and Function 1–61 (Academic Press, 1982).
Google Scholar
53.Laverack, M. S. The numbers of neurones in decapod Crustacea. J. Crustac. Biol. 8, 1–11 (1988).Article
Google Scholar
54.Moss, S. J. & Smart, T. G. Constructing inhibitory synapses. Nat. Rev. Neurosci. 2, 240–250 (2001).CAS
Article
Google Scholar
55.Bliss, T. V. P. & Collingridge, G. L. A synaptic model of memory: long-term potentiation in the hippocampus. Nature https://doi.org/10.1038/361031a0 (1993).Article
PubMed
Google Scholar
56.Collingridge, G. L., Isaac, J. T. R. & Yu, T. W. Receptor trafficking and synaptic plasticity. Nat. Rev. Neurosci. https://doi.org/10.1038/nrn1556 (2004).Article
PubMed
Google Scholar
57.Atwood, H. L. & Wojtowicz, J. M. Short-term and long-term plasticity and physiological differentiation of crustacean motor synapses. Int. Rev. Neurobiol. 28, 275–362 (1986).CAS
Article
Google Scholar
58.Liu, G. Local structural balance and functional interaction of excitatory and inhibitory synapses in hippocampal dendrites. Nat. Neurosci. https://doi.org/10.1038/nn1206 (2004).Article
PubMed
PubMed Central
Google Scholar
59.Hao, J., Wang, X. D., Dan, Y., Poo, M. M. & Zhang, X. H. An arithmetic rule for spatial summation of excitatory and inhibitory inputs in pyramidal neurons. Proc. Natl. Acad. Sci. USA. https://doi.org/10.1073/pnas.0912022106 (2009).Article
PubMed
Google Scholar
60.Fu, A. K. & Ip, N. Y. Regulation of postsynaptic signaling in structural synaptic plasticity. Curr. Opin. Neurobiol. https://doi.org/10.1016/j.conb.2017.05.016 (2017).Article
PubMed
PubMed Central
Google Scholar
61.Chater, T. E. & Goda, Y. The role of AMPA receptors in postsynaptic mechanisms of synaptic plasticity. Front. Cell. Neurosci. https://doi.org/10.3389/fncel.2014.00401 (2014).Article
PubMed
PubMed Central
Google Scholar
62.Velazquez, J. L., Thompson, C. L., Barnes, E. M. & Angelides, K. J. Distribution and lateral mobility of GABA/benzodiazepine receptors on nerve cells. J. Neurosci. 9, 2163–2169 (1989).CAS
Article
Google Scholar
63.Gaiarsa, J. L., Caillard, O. & Ben-Ari, Y. Long-term plasticity at GABAergic and glycinergic synapses: mechanisms and functional significance. Trends Neurosci. https://doi.org/10.1016/S0166-2236(02)02269-5 (2002).Article
PubMed
Google Scholar
64.Nusser, Z., Hájos, N., Somogyi, P. & Mody, I. Increased number of synaptic GABA(A) receptors underlies potentiation at hippocampal inhibitory synapses. Nature https://doi.org/10.1038/25999 (1998).Article
PubMed
Google Scholar More