Multi-community effects of organic and conventional farming practices in vineyards
1.Díaz et al. Summary for Policymakers of the Global Assessment.pdf.2.Kehoe, L. et al. Biodiversity at risk under future cropland expansion and intensification. Nat. Ecol. Evolut. 1, 1129–1135 (2017).Article
Google Scholar
3.Hendershot, J. N. et al. Intensive farming drives long-term shifts in avian community composition. Nature 579, 393–396 (2020).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
4.Bommarco, R., Kleijn, D. & Potts, S. G. Ecological intensification: Harnessing ecosystem services for food security. Trends Ecol. Evol. 28, 230–238 (2013).PubMed
Article
PubMed Central
Google Scholar
5.Michael, D. R., Wood, J. T., O’Loughlin, T. & Lindenmayer, D. B. Influence of land sharing and land sparing strategies on patterns of vegetation and terrestrial vertebrate richness and occurrence in Australian endangered eucalypt woodlands. Agr. Ecosyst. Environ. 227, 24–32 (2016).Article
Google Scholar
6.Tittonell, P. Ecological intensification of agriculture—Sustainable by nature. Curr. Opin. Environ. Sustain. 8, 53–61 (2014).Article
Google Scholar
7.Willer, E. H., Schlatter, B., Trávní, J., Kemper, L. & Lernoud, J. The World of Organic Agriculture Statistics and Emerging Trends 2020. 337.8.Reganold, J. P. & Wachter, J. M. Organic agriculture in the twenty-first century. Nat. Plants 2 (2016).9.Connor, D. J. Organic agriculture cannot feed the world. Field Crop Res. 106, 187–190 (2008).Article
Google Scholar
10.Seufert, V. & Ramankutty, N. Many shades of gray—The context-dependent performance of organic agriculture. Sci. Adv. 3, e1602638 (2017).11.Smith, O. M. et al. Landscape context affects the sustainability of organic farming systems. Proc. Natl. Acad. Sci. 117, 2870–2878 (2020).CAS
PubMed
Article
PubMed Central
Google Scholar
12.Bengtsson, J., Ahnström, J. & Weibull, A.-C. The effects of organic agriculture on biodiversity and abundance: A meta-analysis: Organic agriculture, biodiversity and abundance. J. Appl. Ecol. 42, 261–269 (2005).Article
Google Scholar
13.Tuck, S. L. et al. Land-use intensity and the effects of organic farming on biodiversity: A hierarchical meta-analysis. J. Appl. Ecol. 51, 746–755 (2014).PubMed
PubMed Central
Article
Google Scholar
14.Lichtenberg, E. M. et al. A global synthesis of the effects of diversified farming systems on arthropod diversity within fields and across agricultural landscapes. Glob. Change Biol. 23, 4946–4957 (2017).ADS
Article
Google Scholar
15.Lori, M., Symnaczik, S., Mäder, P., De Deyn, G. & Gattinger, A. Organic farming enhances soil microbial abundance and activity—A meta-analysis and meta-regression. PLOS ONE 12, e0180442 (2017).16.Kleijn, D., Rundlöf, M., Scheper, J., Smith, H. G. & Tscharntke, T. Does conservation on farmland contribute to halting the biodiversity decline?. Trends Ecol. Evol. 26, 474–481 (2011).PubMed
Article
PubMed Central
Google Scholar
17.Birkhofer, K., Ekroos, J., Corlett, E. B. & Smith, H. G. Winners and losers of organic cereal farming in animal communities across Central and Northern Europe. Biol. Cons. 175, 25–33 (2014).Article
Google Scholar
18.Mackie, K. A., Müller, T., Zikeli, S. & Kandeler, E. Long-term copper application in an organic vineyard modifies spatial distribution of soil micro-organisms. Soil Biol. Biochem. 65, 245–253 (2013).CAS
Article
Google Scholar
19.Buchholz, J. et al. Soil biota in vineyards are more influenced by plants and soil quality than by tillage intensity or the surrounding landscape. Sci. Rep. 7 (2017).20.Hole, D. G. et al. Does organic farming benefit biodiversity?. Biol. Cons. 122, 113–130 (2005).Article
Google Scholar
21.Power, A. G. Ecosystem services and agriculture: Tradeoffs and synergies. Philos. Trans. R. Soc. B Biol. Sci. 365, 2959–2971 (2010).Article
Google Scholar
22.Peigné, J. et al. Earthworm populations under different tillage systems in organic farming. Soil Tillage Res. 104, 207–214 (2009).Article
Google Scholar
23.Biondi, A., Desneux, N., Siscaro, G. & Zappalà, L. Using organic-certified rather than synthetic pesticides may not be safer for biological control agents: Selectivity and side effects of 14 pesticides on the predator Orius laevigatus. Chemosphere 87, 803–812 (2012).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
24.Mehrabi, Z., Seufert, V., Ramankutty, N. The conventional versus alternative agricultural divide: A response to Garibaldi et al. Trends Ecol. Evolut. 32, 720–721 (2017).25.Tscharntke, T., Klein, A. M., Kruess, A., Steffan-Dewenter, I. & Thies, C. Landscape perspectives on agricultural intensification and biodiversity – ecosystem service management. Ecol. Lett. 8, 857–874 (2005).Article
Google Scholar
26.Gámez-Virués, S. et al. Landscape simplification filters species traits and drives biotic homogenization. Nat. Commun. 6 (2015).27.Holzschuh, A., Steffan-Dewenter, I. & Tscharntke, T. Agricultural landscapes with organic crops support higher pollinator diversity. Oikos 117, 354–361 (2008).Article
Google Scholar
28.Muneret, L., Auriol, A., Thiéry, D. & Rusch, A. Organic farming at local and landscape scales fosters biological pest control in vineyards. Ecol. Appl. 29, e01818 (2019).29.Gabriel, D. et al. Scale matters: The impact of organic farming on biodiversity at different spatial scales: Scale matters in organic farming. Ecol. Lett. 13, 858–869 (2010).PubMed
Article
PubMed Central
Google Scholar
30.Agreste. Pratiques Phytosanitaires en Viticulture. Campagne 2016. (2020)31.Agreste. La Viticulture Bio en Nouvelle-Aquitaine: Un Dynamisme à Tous les Stades de la Filière. (2020).32.Gruber, S. & Claupein, W. Effect of tillage intensity on weed infestation in organic farming. Soil Tillage Res. 105, 104–111 (2009).Article
Google Scholar
33.Pfingstmann, A. et al. Contrasting effects of tillage and landscape structure on spiders and springtails in vineyards. Sustainability 11, 2095 (2019).Article
Google Scholar
34.Dittmer, S. & Schrader, S. Longterm effects of soil compaction and tillage on Collembola and straw decomposition in arable soil. Pedobiologia 44, 527–538 (2000).Article
Google Scholar
35.Kolb, S., Uzman, D., Leyer, I., Reineke, A. & Entling, M. H. Differential effects of semi-natural habitats and organic management on spiders in viticultural landscapes. Agric. Ecosyst. Environ. 287, 106695 (2020).36.Birkhofer, K. et al. Relationships between multiple biodiversity components and ecosystem services along a landscape complexity gradient. Biol. Cons. 218, 247–253 (2018).Article
Google Scholar
37.Kratschmer, S. et al. Tillage intensity or landscape features: What matters most for wild bee diversity in vineyards?. Agric. Ecosyst. Environ. 266, 142–152 (2018).Article
Google Scholar
38.Ullmann, K. S., Meisner, M. H. & Williams, N. M. Impact of tillage on the crop pollinating, ground-nesting bee, Peponapis pruinosa in California. Agric. Ecosyst. Environ. 232, 240–246 (2016).Article
Google Scholar
39.Jiang, X., Wright, A. L., Wang, X. & Liang, F. Tillage-induced changes in fungal and bacterial biomass associated with soil aggregates: A long-term field study in a subtropical rice soil in China. Appl. Soil. Ecol. 48, 168–173 (2011).Article
Google Scholar
40.Zuber, S. M. & Villamil, M. B. Meta-analysis approach to assess effect of tillage on microbial biomass and enzyme activities. Soil Biol. Biochem. 97, 176–187 (2016).CAS
Article
Google Scholar
41.Luff, M. L. The biology of the ground beetle Harpalus rufipes in a strawberry field in Northumberland. Ann. Appl. Biol. 94, 153–164 (1980).Article
Google Scholar
42.Shearin, A. F., Reberg-Horton, S. C. & Gallandt, E. R. Direct effects of tillage on the activity density of ground beetle (Coleoptera: Carabidae) weed seed predators. Environ. Entomol. 36, 1140–1146 (2007).CAS
PubMed
Article
PubMed Central
Google Scholar
43.Rundlöf, M. et al. Seed coating with a neonicotinoid insecticide negatively affects wild bees. Nature 521, 77–80 (2015).ADS
PubMed
Article
CAS
PubMed Central
Google Scholar
44.Martin, E. A. et al. The interplay of landscape composition and configuration: new pathways to manage functional biodiversity and agroecosystem services across Europe. Ecol. Lett. 22, 1083–1094 (2019).PubMed
Article
PubMed Central
Google Scholar
45.Goded, S., Ekroos, J., Azcárate, J. G., Guitián, J. A. & Smith, H. G. Effects of organic farming on plant and butterfly functional diversity in mosaic landscapes. Agric. Ecosyst. Environ. 284, 106600 (2019).46.Rusch, A., Valantin-Morison, M., Sarthou, J.-P. & Roger-Estrade, J. Multi-scale effects of landscape complexity and crop management on pollen beetle parasitism rate. Landsc. Ecol. 26, 473–486 (2011).Article
Google Scholar
47.Tamburini, G., De Simone, S., Sigura, M., Boscutti, F. & Marini, L. Conservation tillage mitigates the negative effect of landscape simplification on biological control. J. Appl. Ecol. 53, 233–241 (2016).Article
Google Scholar
48.Le Féon, V. et al. Intensification of agriculture, landscape composition and wild bee communities: A large scale study in four European countries. Agric. Ecosyst. Environ. 137, 143–150 (2010).Article
Google Scholar
49.Sousa, J. P. et al. Changes in Collembola richness and diversity along a gradient of land-use intensity: A pan European study. Pedobiologia 50, 147–156 (2006).Article
Google Scholar
50.Vanbergen, A. J. et al. Scale-specific correlations between habitat heterogeneity and soil fauna diversity along a landscape structure gradient. Oecologia 153, 713–725 (2007).ADS
PubMed
Article
PubMed Central
Google Scholar
51.Lehmitz, R., Russell, D., Hohberg, K., Christian, A. & Xylander, W. E. R. Active dispersal of oribatid mites into young soils. Appl. Soil. Ecol. 55, 10–19 (2012).Article
Google Scholar
52.Concepción, E. D., Díaz, M. & Baquero, R. A. Effects of landscape complexity on the ecological effectiveness of agri-environment schemes. Landsc. Ecol. 23, 135–148 (2008).Article
Google Scholar
53.Tscharntke, T. et al. Landscape moderation of biodiversity patterns and processes – Eight hypotheses. Biol. Rev. 87, 661–685 (2012).PubMed
Article
PubMed Central
Google Scholar
54.Desneux, N., Decourtye, A. & Delpuech, J.-M. The sublethal effects of pesticides on beneficial arthropods. Annu. Rev. Entomol. 52, 81–106 (2007).CAS
PubMed
Article
PubMed Central
Google Scholar
55.Naveed, M. et al. Simultaneous loss of soil biodiversity and functions along a copper contamination gradient: When soil goes to sleep. Soil Sci. Soc. Am. J. 78, 1239–1250 (2014).ADS
Article
CAS
Google Scholar
56.Eijsackers, H., Beneke, P., Maboeta, M., Louw, J. P. E. & Reinecke, A. J. The implications of copper fungicide usage in vineyards for earthworm activity and resulting sustainable soil quality. Ecotoxicol. Environ. Saf. 62, 99–111 (2005).CAS
PubMed
Article
PubMed Central
Google Scholar
57.Le Provost, G. et al. Land-use history impacts functional diversity across multiple trophic groups. Proc. Natl. Acad. Sci. 117, 1573–1579 (2020).PubMed
Article
CAS
PubMed Central
Google Scholar
58.Muneret, L. et al. Organic farming expansion drives natural enemy abundance but not diversity in vineyard-dominated landscapes. Ecol. Evol. https://doi.org/10.1002/ece3.5810 (2019).Article
PubMed
PubMed Central
Google Scholar
59.Lechenet, M., Dessaint, F., Py, G., Makowski, D. & Munier-Jolain, N. Reducing pesticide use while preserving crop productivity and profitability on arable farms. Nat. Plants 3 (2017).60.Le Féon, V. et al. Solitary bee abundance and species richness in dynamic agricultural landscapes. Agric. Ecosyst. Environ. 166, 94–101 (2013).Article
Google Scholar
61.McCravy, K. & Ruholl, J. Bee (Hymenoptera: Apoidea) diversity and sampling methodology in a midwestern USA deciduous forest. Insects 8, 81 (2017).PubMed Central
Article
Google Scholar
62.Bano, R. & Roy, S. Extraction of Soil Microarthropods: A Low Cost Berlese-Tullgren Funnels Extractor. 4.63.Grueber, C. E., Nakagawa, S., Laws, R. J. & Jamieson, I. G. Multimodel inference in ecology and evolution: Challenges and solutions: Multimodel inference. J. Evol. Biol. 24, 699–711 (2011).CAS
PubMed
Article
PubMed Central
Google Scholar
64.Burnham, K. P. & Anderson, D. R. Multimodel inference: Understanding AIC and BIC in model selection. Sociol. Methods Res. 33, 261–304 (2004).MathSciNet
Article
Google Scholar
65.Bartoń, K. MuMIn: Multi-Model Inference. R Package Version 1.43.17. https://CRAN.R-project.org/package=MuMIn (2020).66.R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ (2020).67.Hartig, F. DHARMa: Residual Diagnostics for Hierarchical (Multi-Level/Mixed) Regression Models (2020). R Package Version 0.3.3.0. https://CRAN.R-project.org/package=DHARMa68.Bates, D., Maechler, M., Bolker, B., Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67(1), 1–48. https://doi.org/10.18637/jss.v067.i01 (2015). More