More stories

  • in

    Interspecies bacterial competition regulates community assembly in the C. elegans intestine

    Monocultures differ significantly in their ability to colonize the C. elegans intestine
    To investigate community assembly in the gut of C. elegans, we fed germ-free synchronized adult worms with different bacterial species, in monoculture or in mixture, over 4 days in a well-mixed rich liquid medium (Methods, Fig. S1A). The majority of worms survived the 4-day period of feeding and colonization, after which we allowed live worms to feed briefly on heat-killed E. coli OP50 to remove transient colonizers [35, 45]. We then cleaned the surface of the worms with consecutive washes, and measured the intestinal bacterial densities by grinding batches of worms, plating, and counting colony forming units (CFU, Fig. S1B) with distinct morphologies [46]. The supernatant of each sample was plated to verify that CFU counts came from the worm digestions instead of the background media (Methods). This protocol allowed us to construct and quantify simple microbiotas in C. elegans.
    We began by feeding C. elegans in monoculture to quantify the ability of a range of bacterial species to colonize and grow in the worm intestine. As a starting point, we first utilized an immunocompromised C. elegans mutant (AU37) and a set of eleven non-native bacterial species (Fig. 1B), representing the phyla Firmicutes (gram-positive) and Proteobacteria (gram-negative). We found that all bacterial species colonize (i.e., accumulate with or without active growth) the C. elegans intestine, with mean population sizes (Figs. 1C, S1C) ranging from 200 CFU per worm in the case of B. cereus, up to 20,000 CFU/worm in the case of S. marcescens. Our three Firmicutes reach low population sizes in the worm gut and low carrying capacities in the liquid media (Fig. S1E), but the carrying capacities in the liquid media do not explain the variation in monoculture colonization (Fig. S1F, G). These results indicate that different non-native bacterial species have a wide range of abilities to colonize the C. elegans intestine in monoculture.
    Composition of two-species microbiotas are influenced by competitive and hierarchical bacterial interspecies interactions
    To assess the compositional trends of the C. elegans microbiota, we constructed the simplest intestinal communities in this worm by feeding it with all possible two-species mixtures from the same eleven non-native bacteria as before (55 pairs, Figs. 2A, S2A). We fed worms with both bacteria present at similar concentrations (~107 CFU/mL, Methods) to normalize the rate of ingestion. We found that a majority (41 out of 55, ~75%) of pairs displayed coexistence, with both species present above the detection limit of 2%, whereas the remainder (14 out of 55, ~25%) led to competitive exclusion of a species (Figs. 2B, S2B). These results show that bacteria with no prior conditioning for the C. elegans gut commonly reach coexistence in two-species microbiotas.
    Fig. 2: Monoculture colonization of the worm intestine often fails to predict composition of two-species microbiotas.

    A LEFT panels: Fractional abundances of 55 co-culture experiments in C. elegans intestine (AU37); error bars are the s.e.m. of 2–8 biological replicates (Fig. S2). Bacterial species are ordered from left to right by their mean fraction across all co-cultures. RIGHT panels: Null expectation for the fractional abundances based on a noninteracting model where each bacterial species reaches its population size in monoculture; error bars are the s.e.m. from bootstrapping over the monoculture data. * and ** represent a statistically significant difference between the two panels at p values of 0.05 and 0.01, respectively (Welch’s T test). B Coexistence of two species is more common than competitive exclusion in the worm intestine. C Low yields in two species microbiotas—relative to monocultures—are indicative of competitive interactions (Fig. S2); error bars on X-axis are the s.e.m. and on Y-axis the s.e.m. from bootstrapping over monoculture and pairwise data simultaneously. D Competitive ability, defined as the mean fractional abundance in co-culture experiments, relates to monoculture population size, but there are significant deviations; error bars on Y-axis are the propagated error from the s.e.m. of the co-culture experiments.

    Full size image

    The interactions between bacterial species in a microbiota can be classified as positive, negative, or neutral based on the yields of the bacteria relative to their monoculture population sizes. To classify the interactions in our two-species microbiotas, we calculated the relative yield of species “i” with species “j”, RYi|j, as its population size in co-culture, Ni|j, divided by its population size in monoculture, Ni (RYi|j = Ni|j/Ni, see Methods for detailed implementation). We found that most species cannot reach their monoculture population size in co-culture experiments, RY  More

  • in

    Depth-dependent parental effects create invisible barriers to coral dispersal

    1.
    Janzen, D. H. Why mountain passes are higher in the tropics. Am. Nat. 101, 233–249 (1967).
    Article  Google Scholar 
    2.
    Ghalambor, C. K., Huey, R. B., Martin, P. R., Tewksbury, J. J. & Wang, G. Are mountain passes higher in the tropics? Janzen’s hypothesis revisited. Integr. Comp. Biol. 46, 5–17 (2006).
    PubMed  Article  PubMed Central  Google Scholar 

    3.
    Knowlton, N. Sibling species in the sea. Annu. Rev. Ecol. Syst. 24, 189–216 (1993).
    Article  Google Scholar 

    4.
    Palumbi, S. R. Genetic divergence, reproductive isolation, and marine speciation. Annu. Rev. Ecol. Syst. 25, 547–572 (1994).
    Article  Google Scholar 

    5.
    Carlon, D. B. & Budd, A. F. Incipient speciation across a depth gradient in a scleractinian coral? Evolution 56, 2227–2242 (2002).
    PubMed  Article  Google Scholar 

    6.
    Rocha, L. A., Robertson, D. R., Roman, J. & Bowen, B. W. Ecological speciation in tropical reef fishes. Proc. Biol. Sci. 272, 573–579 (2005).
    PubMed  PubMed Central  Article  Google Scholar 

    7.
    Thornhill, D. J., Mahon, A. R., Norenburg, J. L. & Halanych, K. M. Open-ocean barriers to dispersal: a test case with the Antarctic Polar Front and the ribbon worm Parborlasia corrugatus (Nemertea: Lineidae). Mol. Ecol. 17, 5104–5117 (2008).
    CAS  PubMed  Article  Google Scholar 

    8.
    Marshall, D. J., Monro, K., Bode, M., Keough, M. J. & Swearer, S. Phenotype–environment mismatches reduce connectivity in the sea. Ecol. Lett. 13, 128–140 (2010).
    CAS  PubMed  Article  Google Scholar 

    9.
    Ingram, T. Speciation along a depth gradient in a marine adaptive radiation. Proc. Biol. Sci. 278, 613–618 (2011).
    PubMed  Google Scholar 

    10.
    Prada, C. & Hellberg, M. E. Long prereproductive selection and divergence by depth in a Caribbean candelabrum coral. Proc. Natl Acad. Sci. USA 110, 3961–3966 (2013).
    CAS  PubMed  Article  Google Scholar 

    11.
    Muir, P. R., Wallace, C. C., Done, T. & Aguirre, J. D. Limited scope for latitudinal extension of reef corals. Science 348, 1135–1138 (2015).
    CAS  PubMed  Article  Google Scholar 

    12.
    Kenkel, C. D., Setta, S. P. & Matz, M. V. Heritable differences in fitness-related traits among populations of the mustard hill coral, Porites astreoides. Heredity 115, 509–516 (2015).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    13.
    Brown, B., Dunne, R., Goodson, M. & Douglas, A. Experience shapes the susceptibility of a reef coral to bleaching. Coral Reefs 21, 119–126 (2002).
    Article  Google Scholar 

    14.
    Thompson, D. M. & van Woesik, R. Corals escape bleaching in regions that recently and historically experienced frequent thermal stress. Proc. Biol. Sci. 276, 2893–2901 (2009).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    15.
    Howells, E. J., Berkelmans, R., van Oppen, M. J. H., Willis, B. L. & Bay, L. K. Historical thermal regimes define limits to coral acclimatization. Ecology 94, 1078–1088 (2013).
    PubMed  Article  Google Scholar 

    16.
    Fine, M., Gildor, H. & Genin, A. A coral reef refuge in the Red Sea. Glob. Chang. Biol. 19, 3640–3647 (2013).
    PubMed  Article  Google Scholar 

    17.
    Palumbi, S. R., Barshis, D. J., Traylor-Knowles, N. & Bay, R. A. Mechanisms of reef coral resistance to future climate change. Science 344, 895–898 (2014).
    CAS  PubMed  Article  Google Scholar 

    18.
    Dixon, G. et al. Genomic determinants of coral heat tolerance across latitudes. Science 348, 1460–1462 (2015).
    CAS  PubMed  Article  Google Scholar 

    19.
    Smith, T. B. et al. Caribbean mesophotic coral ecosystems are unlikely climate change refugia. Glob. Chang. Biol. 22, 2756–2765 (2016).
    PubMed  Article  Google Scholar 

    20.
    Kenkel, C. D. & Matz, M. V. Gene expression plasticity as a mechanism of coral adaptation to a variable environment. Nat. Ecol. Evol. 1, 0014 (2017).
    Article  Google Scholar 

    21.
    Safaie, A. et al. High frequency temperature variability reduces the risk of coral bleaching. Nat. Commun. 9, 1671 (2018).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    22.
    Sully, S., Burkepile, D. E., Donovan, M. K., Hodgson, G. & van Woesik, R. A global analysis of coral bleaching over the past two decades. Nat. Commun. 10, 1264 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    23.
    Mousseau, T. A. & Fox, C. W. The adaptive significance of maternal effects. Trends Ecol. Evol. 13, 403–407 (1998).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    24.
    Badyaev, A. V. & Uller, T. Parental effects in ecology and evolution: mechanisms, processes and implications. Philos. Trans. R. Soc. B Biol. Sci. 364, 1169–1177 (2009).
    Article  Google Scholar 

    25.
    Marshall, D. J., Allen, R. M. & Crean, A. J. The ecological and evolutionary importance of maternal effects in the sea. Oceanogr. Mar. Biol. 46, 203–250 (2008).
    Google Scholar 

    26.
    Torda, G. et al. Rapid adaptive responses to climate change in corals. Nat. Clim. Change 7, 627–636 (2017).
    Article  Google Scholar 

    27.
    Padilla-Gamiño, J. L., Pochon, X., Bird, C., Concepcion, G. T. & Gates, R. D. From parent to gamete: vertical transmission of Symbiodinium (Dinophyceae) ITS2 sequence assemblages in the reef building coral Montipora capitata. PLoS One 7, e38440 (2012).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    28.
    Quigley, K. M., Willis, B. L. & Bay, L. K. Maternal effects and Symbiodinium community composition drive differential patterns in juvenile survival in the coral Acropora tenuis. R. Soc. Open Sci. 3, 160471 (2016).
    PubMed  PubMed Central  Article  Google Scholar 

    29.
    Goodbody-Gringley, G., Wong, K. H., Becker, D. M., Glennon, K. & de Putron, S. J. Reproductive ecology and early life history traits of the brooding coral, Porites astreoides, from shallow to mesophotic zones. Coral Reefs 37, 483–494 (2018).
    Article  Google Scholar 

    30.
    Bellworthy, J., Spangenberg, J. E. & Fine, M. Feeding increases the number of offspring but decreases parental investment of Red Sea coral Stylophora pistillata. Ecol. Evol. 9, 12245–12258 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    31.
    Putnam, H. M., Ritson-Williams, R., Cruz, J. A., Davidson, J. M. & Gates, R. D. Environmentally-induced parental or developmental conditioning influences coral offspring ecological performance. Sci. Rep. 10, 13664 (2020).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    32.
    Gleason, D. F. & Wellington, G. M. Variation in UVB sensitivity of planula larvae of the coral Agaricia agaricites along a depth gradient. Mar. Biol. 123, 693–703 (1995).
    Article  Google Scholar 

    33.
    Mundy, C. N. & Babcock, R. C. Role of light intensity and spectral quality in coral settlement: implications for depth-dependent settlement? J. Exp. Mar. Bio. Ecol. 223, 235–255 (1998).
    Article  Google Scholar 

    34.
    Wellington, G. M. & Fitt, W. K. Influence of UV radiation on the survival of larvae from broadcast-spawning reef corals. Mar. Biol. 143, 1185–1192 (2003).
    CAS  Article  Google Scholar 

    35.
    Baird, A. H., Babcock, R. C. & Mundy, C. P. Habitat selection by larvae influences the depth distribution of six common coral species. Mar. Ecol. Prog. Ser. 252, 289–293 (2003).
    Article  Google Scholar 

    36.
    Fogarty, N. D. Caribbean acroporid coral hybrids are viable across life history stages. Mar. Ecol. Prog. Ser. 446, 145–159 (2012).
    Article  Google Scholar 

    37.
    Strader, M. E., Davies, S. W. & Matz, M. V. Differential responses of coral larvae to the colour of ambient light guide them to suitable settlement microhabitat. R. Soc. Open Sci. 2, 150358 (2015).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    38.
    Rundle, H. D. & Nosil, P. Ecological speciation. Ecol. Lett. 8, 336–352 (2005).
    Article  Google Scholar 

    39.
    DeWitt, T. J., Sih, A. & Wilson, D. S. Costs and limits of phenotypic plasticity. Trends Ecol. Evol. 13, 77–81 (1998).
    CAS  PubMed  Article  Google Scholar 

    40.
    Hendry, A. P. Selection against migrants contributes to the rapid evolution of ecologically dependent reproductive isolation. Evol. Ecol. Res. 6, 1219–1236 (2004).
    Google Scholar 

    41.
    Nosil, P., Vines, T. H. & Funk, D. J. Reproductive isolation caused by natural selection against immigrants from divergent habitats. Evolution 59, 705–719 (2005).
    PubMed  Google Scholar 

    42.
    Eytan, R. I., Hayes, M., Arbour-Reily, P., Miller, M. & Hellberg, M. E. Nuclear sequences reveal mid‐range isolation of an imperilled deep‐water coral population. Mol. Ecol. 18, 2375–2389 (2009).
    CAS  PubMed  Article  Google Scholar 

    43.
    Brazeau, D. A., Lesser, M. P. & Slattery, M. Genetic structure in the coral, Montastraea cavernosa: assessing genetic differentiation among and within mesophotic reefs. PLoS One 8, e65845 (2013).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    44.
    van Oppen, M. J. H. et al. Adaptation to reef habitats through selection on the coral animal and its associated microbiome. Mol. Ecol. 27, 2956–2971 (2018).
    PubMed  Article  CAS  Google Scholar 

    45.
    Drury, C., Pérez Portela, R., Serrano, X. M., Oleksiak, M. & Baker, A. C. Fine‐scale structure among mesophotic populations of the great star coral Montastraea cavernosa revealed by SNP genotyping. Ecol. Evol. 10, 6009–6019 (2020).
    PubMed  PubMed Central  Article  Google Scholar 

    46.
    van Oppen, M. J. H., Bongaerts, P., Underwoord, J. N., Peplow, L. M. & Cooper, T. F. The role of deep reefs in shallow reef recovery: an assessment of vertical connectivity in a brooding coral from west and east Australia. Mol. Ecol. 20, 1647–1660 (2011).
    PubMed  Article  Google Scholar 

    47.
    Serrano, X. M. et al. Geographic differences in vertical connectivity in the Caribbean coral Montastraea cavernosa despite high levels of horizontal connectivity at shallow depths. Mol. Ecol. 23, 4226–4240 (2014).
    CAS  PubMed  Article  Google Scholar 

    48.
    Serrano, X. M. et al. Long distance dispersal and vertical gene flow in the Caribbean brooding coral Porites astreoides. Sci. Rep. 6, 21619 (2016).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    49.
    Bongaerts, P. et al. Deep reefs are not universal refuges: reseeding potential varies among coral species. Sci. Adv. 3, e1602373 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    50.
    Eckert, R. J., Studivan, M. S. & Voss, J. D. Populations of the coral species Montastraea cavernosa on the Belize Barrier Reef lack vertical connectivity. Sci. Rep. 9, 7200 (2019).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    51.
    Riegl, B. & Piller, W. E. Possible refugia for reefs in times of environmental stress. Int. J. Earth Sci. 92, 520–531 (2003).
    Article  Google Scholar 

    52.
    Bongaerts, P. & Smith, T. B. Beyond the “Deep Reef Refuge” hypothesis: a conceptual framework to characterize persistence at depth. In Mesophotic Coral Ecosystems, Vol. 12 (eds Loya, Y., Puglise, K. A. & Bridge, T. C. L.) Ch. 45 (Springer, 2019).

    53.
    Loya, Y. et al. Coral bleaching: the winners and the losers. Ecol. Lett. 4, 122–131 (2001).
    Article  Google Scholar 

    54.
    van Woesik, R., Sakai, K., Ganase, A. & Loya, Y. Revisiting the winners and the losers a decade after coral bleaching. Mar. Ecol. Prog. Ser. 434, 67–76 (2011).
    Article  Google Scholar 

    55.
    Sinniger, F., Morita, M. & Harii, S. ‘Locally extinct’ coral species Seriatopora hystrix found at upper mesophotic depths in Okinawa. Coral Reefs 32, 153 (2013).
    Article  Google Scholar 

    56.
    Prasetia, R., Sinniger, F., Hashizume, K. & Harii, S. Reproductive biology of the deep brooding coral Seriatopora hystrix: Implications for shallow reef recovery. PLoS One 12, e0177034 (2017).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    57.
    Richmond, R. H. Energetics, competency, and long-distance dispersal of planula larvae of the coral Pocillopora damicornis. Mar. Biol. 93, 527–533 (1987).
    Article  Google Scholar 

    58.
    Graham, E. M., Baird, A. H. & Connolly, S. R. Survival dynamics of scleractinian coral larvae and implications for dispersal. Coral Reefs 27, 529–539 (2008).
    Article  Google Scholar 

    59.
    Cowen, R. K., Lwiza, K. M. M., Sponaugle, S., Paris, C. B. & Olson, D. B. Connectivity of marine populations: open or closed? Science 287, 857–859 (2000).
    CAS  PubMed  Article  Google Scholar 

    60.
    Thompson, D. M. et al. Variability in oceanographic barriers to coral larval dispersal: Do currents shape biodiversity? Prog. Oceanogr. 165, 110–122 (2018).
    Article  Google Scholar 

    61.
    Kahng, S. E. et al. Light, Temperature, photosynthesis, heterotrophy, and the lower depth limits of mesophotic coral ecosystems. In Mesophotic Coral Ecosystems, Vol. 12 (eds Loya, Y., Puglise, K. A. & Bridge, T. C. L.) Ch. 42 (Springer, 2019).

    62.
    Shlesinger, T., Grinblat, M., Rapuano, H., Amit, T. & Loya, Y. Can mesophotic reefs replenish shallow reefs? Reduced coral reproductive performance casts a doubt. Ecology 99, 421–437 (2018).
    PubMed  Article  PubMed Central  Google Scholar 

    63.
    Dishon, G., Dubinsky, Z., Fine, M. & Iluz, D. Underwater light field patterns in subtropical coastal waters: a case study from the Gulf of Eilat (Aqaba). Isr. J. Plant Sci. 60, 265–275 (2012).
    Article  Google Scholar 

    64.
    Shlesinger, T. & Loya, Y. Recruitment, mortality, and resilience potential of scleractinian corals at Eilat, Red Sea. Coral Reefs 35, 1357–1368 (2016).
    Article  Google Scholar 

    65.
    Shlesinger, T. & Loya, Y. Sexual reproduction of scleractinian corals in mesophotic coral ecosystems vs. shallow reefs. In Mesophotic Coral Ecosystems, Vol. 12 (eds Loya, Y., Puglise, K. A. & Bridge, T. C. L.) Ch. 35 (Springer, 2019).

    66.
    Bridge, T. C. L., Hughes, T. P., Guinotte, J. M. & Bongaerts, P. Call to protect all coral reefs. Nat. Clim. Change 3, 528–530 (2013).
    Article  Google Scholar 

    67.
    Soares, M. O. et al. Why do mesophotic coral ecosystems have to be protected? Sci. Total Environ. 726, 138456 (2020).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    68.
    Pyle, R. L. & Copus, J. M. Mesophotic coral ecosystems: Introduction and overview. In Mesophotic Coral Ecosystems, Vol. 12 (eds Loya, Y., Puglise, K. A. & Bridge, T. C. L.) Ch. 1 (Springer, 2019).

    69.
    Holstein, D. M., Smith, T. B., Gyory, J. & Paris, C. B. Fertile fathoms: deep reproductive refugia for threatened shallow corals. Sci. Rep. 5, 12407 (2015).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    70.
    Ritson-Williams, R. et al. New perspectives on ecological mechanisms affecting coral recruitment on reefs. Smithson. Contrib. Mar. Sci. 38, 437–457 (2009).

    71.
    Webster, N. S. et al. Metamorphosis of a scleractinian coral in response to microbial biofilms. Appl. Environ. Microbiol. 70, 1213–1221 (2004).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    72.
    Whitman, T. N., Negri, A. P., Bourne, D. G. & Randall, C. J. Settlement of larvae from four families of corals in response to a crustose coralline alga and its biochemical morphogens. Sci. Rep. 10, 16397 (2020).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    73.
    Doropoulos, C. et al. Depth gradients drive changes in early successional community composition and associated coral larvae settlement interactions. Mar. Biol. 167, 59 (2020).
    Article  Google Scholar 

    74.
    Sammarco, P. W. & Andrews, J. C. Localized dispersal and recruitment in Great Barrier Reef corals: the Helix experiment. Science 239, 1422–1424 (1988).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    75.
    Vollmer, S. V. & Palumbi, S. R. Restricted gene flow in the Caribbean staghorn coral Acropora cervicornis: implications for the recovery of endangered reefs. J. Hered. 98, 40–50 (2006).
    PubMed  Article  PubMed Central  Google Scholar 

    76.
    Figueiredo, J., Baird, A. H. & Connolly, S. R. Synthesizing larval competence dynamics and reef‐scale retention reveals a high potential for self‐recruitment in corals. Ecology 94, 650–659 (2013).
    PubMed  Article  PubMed Central  Google Scholar 

    77.
    Underwood, J. N. et al. Extreme seascape drives local recruitment and genetic divergence in brooding and spawning corals in remote north‐west Australia. Evol. Appl. 13, 2404–2421 (2020).
    PubMed  PubMed Central  Article  Google Scholar 

    78.
    Dubé, C. E., Boissin, E., Mercière, A. & Planes, S. Parentage analyses identify local dispersal events and sibling aggregations in a natural population of Millepora hydrocorals, a free‐spawning marine invertebrate. Mol. Ecol. 29, 1508–1522 (2020).
    PubMed  Article  PubMed Central  Google Scholar 

    79.
    Liberman, R., Shlesinger, T., Loya, Y. & Benayahu, Y. Octocoral sexual reproduction: temporal disparity between mesophotic and shallow-reef populations. Front. Mar. Sci. 5, 445 (2018).
    Article  Google Scholar 

    80.
    Feldman, B., Shlesinger, T. & Loya, Y. Mesophotic coral-reef environments depress the reproduction of the coral Paramontastraea peresi in the Red Sea. Coral Reefs 37, 201–214 (2018).
    Article  Google Scholar 

    81.
    Carlon, D. B. & Olson, R. R. Larval dispersal distance as an explanation for adult spatial pattern in two Caribbean reef corals. J. Exp. Mar. Bio. Ecol. 173, 247–263 (1993).
    Article  Google Scholar 

    82.
    Miller, K. & Mundy, C. Rapid settlement in broadcast spawning corals: implications for larval dispersal. Coral Reefs 22, 99–106 (2003).
    Article  Google Scholar 

    83.
    Cooper, T. F. et al. Niche specialization of reef-building corals in the mesophotic zone: metabolic trade-offs between divergent Symbiodinium types. Proc. Biol. Sci. 278, 1840–1850 (2011).
    PubMed  PubMed Central  Google Scholar 

    84.
    Pochon, X. et al. Depth specialization in mesophotic corals (Leptoseris spp.) and associated algal symbionts in Hawai’i. R. Soc. Open Sci. 2, 140351 (2015).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    85.
    Baird, A. H., Guest, J. R. & Willis, B. L. Systematic and biogeographical patterns in the reproductive biology of scleractinian corals. Annu. Rev. Ecol. Evol. Syst. 40, 551–571 (2009).
    Article  Google Scholar 

    86.
    Hoegh-Guldberg, O., Poloczanska, E. S., Skirving, W. & Dove, S. Coral reef ecosystems under climate change and ocean acidification. Front. Mar. Sci. 4, 158 (2017).
    Article  Google Scholar 

    87.
    Hughes, T. P. et al. Coral reefs in the Anthropocene. Nature 546, 82–90 (2017).
    CAS  PubMed  Article  Google Scholar 

    88.
    Shlesinger, T. & Loya, Y. Breakdown in spawning synchrony: a silent threat to coral persistence. Science 365, 1002–1007 (2019).
    CAS  PubMed  Article  Google Scholar 

    89.
    Doebeli, M. & Dieckmann, U. Speciation along environmental gradients. Nature 421, 259–264 (2003).
    CAS  PubMed  Article  Google Scholar 

    90.
    Schluter, D. Evidence for ecological speciation and its alternative. Science 323, 737–741 (2009).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    91.
    Goreau, T. F. The ecology of Jamaican coral reefs I. Species composition and zonation. Ecology 40, 67–90 (1959).
    Article  Google Scholar 

    92.
    Loya, Y. Community structure and species diversity of hermatypic corals at Eilat, Red Sea. Mar. Biol. 13, 100–123 (1972).
    Article  Google Scholar 

    93.
    Sheppard, C. R. C. Coral populations on reef slopes and their major controls. Mar. Ecol. Prog. Ser. 7, 83–115 (1982).
    Article  Google Scholar 

    94.
    Vermeij, M. J. A. & Bak, R. P. M. Species-specific population structure of closely related coral morphospecies along a depth gradient (5-60 m) over a Caribbean reef slope. Bull. Mar. Sci. 73, 725–744 (2003).
    Google Scholar 

    95.
    Rocha, L. et al. Mesophotic coral ecosystems are threatened and ecologically distinct from shallow water reefs. Science 361, 281–284 (2018).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    96.
    Tamir, R., Eyal, G., Kramer, N., Laverick, J. H. & Loya, Y. Light environment drives the shallow‐to‐mesophotic coral community transition. Ecosphere 10, e02839 (2019).
    Article  Google Scholar 

    97.
    Roberts, T. E., Bridge, T. C. L., Caley, M. J., Madin, J. S. & Baird, A. H. Resolving the depth zonation paradox in reef‐building corals. Ecology 100, e02761 (2019).
    PubMed  Article  PubMed Central  Google Scholar 

    98.
    Benayahu, Y. & Loya, Y. Surface brooding in the Red Sea soft coral Parerythropodium fulvum fulvum (Forskål, 1775). Biol. Bull. 165, 353–369 (1983).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    99.
    Shefy, D., Shashar, N. & Rinkevich, B. The reproduction of the Red Sea coral Stylophora pistillata from Eilat: 4-decade perspective. Mar. Biol. 165, 27 (2018).
    Article  Google Scholar 

    100.
    Rosenberg, Y., Doniger, T. & Levy, O. Sustainability of coral reefs are affected by ecological light pollution in the Gulf of Aqaba/Eilat. Commun. Biol. 2, 289 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    101.
    Eyal, G. et al. Euphyllia paradivisa, a successful mesophotic coral in the northern Gulf of Eilat/Aqaba, Red Sea. Coral Reefs 35, 91–102 (2016).
    Article  Google Scholar 

    102.
    R Core Team. R: a language and environment for statistical computing. R Foundation for Statistical Computing https://www.R-project.org/ (2020). More

  • in

    Bacterial and fungal endophyte communities in healthy and diseased oilseed rape and their potential for biocontrol of Sclerotinia and Phoma disease

    1.
    Carré, P. & Pouzet, A. Rapeseed market, worldwide and in Europe. OCL 21(1), D102. https://doi.org/10.1051/ocl/201h3054 (2014).
    Article  Google Scholar 
    2.
    Hammond, K. E. & Lewis, B. E. The timing and sequence of events leading to stem canker disease in populations of Brassica napus var. oleifera in the field. Plant Pathol. 35, 551–556. https://doi.org/10.1111/j.1365-3059.1986.tb02054.x (1986).
    Article  Google Scholar 

    3.
    Deb, D., Khan, A. & Dey, N. Phoma diseases: Epidemiology and control. Plant. Pathol. 00, 1–15. https://doi.org/10.1111/ppa.13221 (2020).
    CAS  Article  Google Scholar 

    4.
    Fitt, B. D. L., Brun, H., Barbetti, M. J. & Rimmer, S. R. World-wide importance of Phoma stem canker (Leptosphaeria maculans and L. biglobosa) on oilseed rape (Brassica napus). Eur. J. Plant Pathol. 114, 3–15. https://doi.org/10.1007/s10658-005-2233-5 (2006).
    Article  Google Scholar 

    5.
    Winter, M. & Koopmann, B. Race spectra of Leptosphaeria maculans, the causal agent of blackleg disease of oilseed rape, in different geographic regions in northern Germany. Eur. J. Plant Pathol. 145, 629–641. https://doi.org/10.1007/s10658-016-0932-8 (2016).
    Article  Google Scholar 

    6.
    Derbyshire, M. C. & Denton-Giles, M. The control of Sclerotinia stem rot on oilseed rape (Brassica napus): current practices and future opportunities. Plant. Pathol. 65, 859–877. https://doi.org/10.1111/ppa.12517 (2016).
    CAS  Article  Google Scholar 

    7.
    Gladders, P., Symonds, B. V., Hardwick, N. V. & Sansford, C. E. Opportunities to control canker (Leptosphaeria maculans) in winter oilseed rape by improved spray timing. IOBC/WPRS Bull. 21, 111–120 (1998).
    Google Scholar 

    8.
    Kuai, J. et al. The effect of nitrogen application and planting density on the radiation use efficiency and the stem lignin metabolism in rapeseed (Brassica napus L.). Field Crops Res. 199, 89–98. https://doi.org/10.1016/j.fcr.2016.09.025 (2016).
    Article  Google Scholar 

    9.
    Card, S. D. et al. Beneficial endophytic microorganisms of Brassica —A review. Biol. Control 90, 102–112. https://doi.org/10.1016/j.biocontrol.2015.06.001 (2015).
    Article  Google Scholar 

    10.
    Weyens, N., van der Lelie, D., Taghavi, S., Newman, L. & Vangronsveld, J. Exploiting plant–microbe partnerships to improve biomass production and remediation. Trends Biotechnol. 27, 591–598. https://doi.org/10.1016/j.tibtech.2009.07.006 (2009).
    CAS  Article  PubMed  Google Scholar 

    11.
    Müller, H. & Berg, G. Impact of formulation procedures on the effect of the biocontrol agent Serratia plymuthica HRO-C48 on Verticillium wilt in oilseed rape. Biocontrol 53, 905–916. https://doi.org/10.1007/s10526-007-9111-3 (2008).
    Article  Google Scholar 

    12.
    Granér, G., Persson, P., Meijer, J. & Alström, S. A study on microbial diversity in different cultivars of Brassica napus in relation to its wilt pathogen, Verticillium longisporum. FEMS Microbiol. Lett. 224, 269–276. https://doi.org/10.1016/S0378-1097(03)00449-X (2003).
    CAS  Article  PubMed  Google Scholar 

    13.
    Croes, S. et al. Bacterial communities associated with Brassica napus L. grown on trace-element-contaminated and non-contaminated fields: a genotypic and phenotypic comparison. Microb. Biotechnol. 6, 371–384. https://doi.org/10.1111/1751-7915.12057 (2013).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    14.
    Zhang, Q. et al. Diversity and biocontrol potential of endophytic fungi in Brassica napus. Biol. Control 72, 98–102. https://doi.org/10.1016/j.biocontrol.2014.02.018 (2014).
    Article  Google Scholar 

    15.
    Berg, G. et al. The rhizosphere effect on bacteria antagonistic towards the pathogenic fungus Verticillium differs depending on plant species and site. FEMS Microbiol. Ecol. 56, 250–261. https://doi.org/10.1111/j.1574-6941.2005.00025.x (2006).
    CAS  Article  PubMed  Google Scholar 

    16.
    Berg, G. et al. Impact of plant species and site on rhizosphere-associated fungi antagonistic to Verticillium dahliae Kleb. Appl. Environ. Microbiol. 71, 4203–4213. https://doi.org/10.1128/AEM.71.8.4203-4213.2005 (2005).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    17.
    Robin, A. H. K. et al. Leptosphaeria maculans alters glucosinolate profiles in blackleg disease-resistant and -susceptible cabbage lines. Front. Plant Sci. 8, 1789. https://doi.org/10.3389/fpls.2017.01769 (2017).
    Article  Google Scholar 

    18.
    Garrido-Sanz, D. et al. Genomic and genetic diversity within the Pseudomonas fluorescens complex. PLoS ONE 11(2), e0150183. https://doi.org/10.1371/journal.pone.0153733 (2016).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    19.
    Taylor, A. Fungal diversity in ectotomycorrhizal communities: sampling effort and species distribution. Plant Soil 244, 19–28. https://doi.org/10.1023/A:1020279815472 (2002).
    ADS  CAS  Article  Google Scholar 

    20.
    Schmidt, C. S. et al. Distinct communities of poplar endophytes on an unpolluted and a risk elements-polluted site and their plant growth promoting potential in vitro. Microb. Ecol. 75, 955–969. https://doi.org/10.1007/s00248-017-1103-y (2018).
    CAS  Article  PubMed  Google Scholar 

    21.
    Jedryczka, M. Epidemiology and damage caused by stem canker of oilseed rape in Poland. Phytopathol. Pol. 45, 73–75 (2007).
    Article  Google Scholar 

    22.
    Mazáková, J., Urban, J., Zouhar, M. & Ryšánek, P. Analysis of Leptosphaeria species complex causing Phoma leaf spot and stem canker of winter oilseed rape (Brassica napus) in the Czech Republic. Crop Pasture Sci. 68, 254–264. https://doi.org/10.1071/CP16308 (2017).
    CAS  Article  Google Scholar 

    23.
    El Hadrami, A., Fernando, W. G. D. & Daayf, F. Variations in relative humidity modulate Leptosphaeria spp. pathogenicity and interfere with canola mechanisms of defence. Eur. J. Plant Pathol. 126, 187–202. https://doi.org/10.1007/s10658-009-9532-1 (2010).
    Article  Google Scholar 

    24.
    Hilton, S., Bennett, A. J., Chandler, D., Mills, P. & Bending, G. D. Preceding crop and seasonal effects influence fungal, bacterial and nematode diversity in wheat and oilseed rape rhizosphere and soil. Appl. Soil Ecol. 126, 34–46. https://doi.org/10.1016/j.apsoil.2018.02.007 (2018).
    Article  Google Scholar 

    25.
    Glynou, K. et al. The local environment determines the assembly of root endophytic fungi at a continental scale. Environ. Microbiol. 18, 2418–2434. https://doi.org/10.1111/1462-2920.13112 (2016).
    CAS  Article  PubMed  Google Scholar 

    26.
    Croes, S., Weyens, N., Colpaet, J. & Vangronveld, J. Characterization of the cultivable bacterial populations associated with field grown Brassica napus L.: An evaluation of sampling and isolation protocols. Environ. Microbiol. 17, 2379–2392., https://doi.org/10.1111/1462-2920.12701 (2015).

    27.
    Alström, S. Characteristics of bacteria from oilseed rape in relation to their biocontrol activity against Verticillium dahliae. J. Phytopathol. 149, 57–64. https://doi.org/10.1046/j.1439-0434.2001.00585.x (2001).
    Article  Google Scholar 

    28.
    Cope-Selby, N. et al. Endophytic bacteria in Miscanthus seed: Implications for germination, vertical inheritance of endophytes, plant evolution and breeding. GCB Bioenergy 9, 57–77. https://doi.org/10.1111/gcbb.12364 (2017).
    CAS  Article  Google Scholar 

    29.
    Rathore, R. et al. Crop establishment practices are a driver of the plant microbiota in winter oilseed rape (Brassica napus). Front. Microbiol. 8, 1489. https://doi.org/10.3389/fmicb.2017.01489 (2017).
    Article  PubMed  PubMed Central  Google Scholar 

    30.
    Lay, C. Y. et al. Canola-Root-Associated microbiomes in the Canadian prairies. Front. Microbiol. 9, 1189. https://doi.org/10.3389/fmicb.2018.01188 (2018).
    Article  Google Scholar 

    31.
    Sundara-Rao, W. V. B. & Sinha, M. K. Phosphate dissolving microorganisms in the soil and rhizosphere. Indian J. Agric. Sci. 33, 272–278. https://doi.org/10.1007/BF01372637 (1963).
    Article  Google Scholar 

    32.
    Bashan, Y., Kamnev, A. A. & de-Bashan, L. E. Tricalcium phosphate is inappropriate as a universal selection factor for isolating and testing phosphate-solubilizing bacteria that enhance plant growth: A proposal for an alternative procedure. Biol. Fertil. Soils 49, 465–479. https://doi.org/10.1007/s00374-012-0737-7 (2013).
    CAS  Article  Google Scholar 

    33.
    Pii, Y. et al. Microbial interactions in the rhizosphere: beneficial influences of plant growth-promoting rhizobacteria on nutrient acquisition process. A review. Biol. Fertil. Soils 51, 403–415. https://doi.org/10.1007/s00374-015-0996-1 (2015).
    CAS  Article  Google Scholar 

    34.
    Reddy, C. A. & Saravanan, R. S. Polymicrobial multi-functional approach for enhancement of crop productivity. in Advances in Applied Microbiology (eds. Gadd, G. M. & Sariaslani, S.) 53–113 (Oxford Academic, Oxford, 2013).

    35.
    Lally, R. D. et al. Application of endophytic Pseudomonas fluorescens and a bacterial consortium to Brassica napus can increase plant height and biomass under greenhouse and field conditions. Front. Plant Sci. 8, 2193. https://doi.org/10.3389/fpls.2017.02193 (2017).
    Article  PubMed  PubMed Central  Google Scholar 

    36.
    Parikh, L., Eskelson, M. J. & Adesemoye, A. O. Relationship of in vitro and in planta screening: improving the selection process for biological control agents against Fusarium root rot in row crops. Arch. Phytopathol. Plant Protect. 51, 156–169. https://doi.org/10.1080/03235408.2018.1441098 (2018).
    Article  Google Scholar 

    37.
    Bakker, P. A. H. M., Pieterse, C. M. J. & van Loon, L. C. Induced systemic resistance by fluorescent Pseudomonas sp. Phytopathology 97, 239–243. https://doi.org/10.1094/PHYTO-97-2-0239 (2007).
    Article  PubMed  Google Scholar 

    38.
    Youssef, S. A., Tartoura, K. A. & Greash, A. G. Serratia proteamaculans mediated alteration of tomato defense system and growth parameters in response to early blight pathogen Alternaria solani infection. Physiol. Mol. Plant Pathol. 103, 16–22. https://doi.org/10.1016/j.pmpp.2018.04.004 (2018).
    CAS  Article  Google Scholar 

    39.
    Li, H. et al. The use of Pseudomonas fluorescens P13 to control Sclerotinia stem rot (Sclerotinia sclerotiorum) of oilseed rape. J. Microbiol. 49, 884–889. https://doi.org/10.1007/s12275-011-1261-4 (2011).
    Article  PubMed  Google Scholar 

    40.
    Smolińska, U. & Kowalska, B. Biological control of the soil-borne fungal pathogen Sclerotinia sclerotiorum—A review. J. Plant Pathol. 100, 1–12. https://doi.org/10.1007/s42161-018-0023-0 (2018).
    Article  Google Scholar 

    41.
    Shaukat, M. F. Seed bio-priming with Serratia plymuthica HRO-C48 for the control of Verticillium longisporum and Phoma lingam in Brassica napus L. spp. oleifera. (PhD Dissertation, University of Uppsala, Sweden, 2013).

    42.
    Castellano-Hinojosa, A., Pérez-Tapia, V., Bedmar, E. J. & Santillana, N. Purple corn-associated rhizobacteria with potential for plant growth promotion. J. Appl. Microbiol. 124, 1254–1264. https://doi.org/10.1111/jam.13708 (2018).
    CAS  Article  PubMed  Google Scholar 

    43.
    Li, L. et al. Synergistic plant–microbe interactions between endophytic bacterial communities and the medicinal plant Glycyrrhiza uralensis F. Antonie Van Leeuwenhoek 111, 1735–1748. https://doi.org/10.1007/s10482-018-1062-4 (2018).
    Article  PubMed  Google Scholar 

    44.
    Barnawal, D., Bharti, N., Maji, D., Chanotiya, C. S. & Kalra, A. 1-Aminocyclopropane-1-carboxylic acid (ACC) deaminase-containing rhizobacteria protect Ocimum sanctum plants during waterlogging stress via reduced ethylene generation. Plant Physiol. Biochem. 58, 227–235. https://doi.org/10.1016/j.plaphy.2012.07.008 (2012).
    CAS  Article  PubMed  Google Scholar 

    45.
    Egamberdieva, D., Wirth, S., Behrendt, U., Ahmad, P. & Berg, G. Antimicrobial activity of medicinal plants correlates with the proportion of antagonistic endophytes. Front. Microbiol. 8, 199. https://doi.org/10.3389/fmicb.2017.00199 (2017).
    Article  PubMed  PubMed Central  Google Scholar 

    46.
    Joe, M. M. et al. Resistance responses of rice to rice blast fungus after seed treatment with the endophytic Achromobacter xylosoxidans AUM54 strains. Crop Protect. 42, 141–148. https://doi.org/10.1016/j.cropro.2012.07.006 (2012).
    Article  Google Scholar 

    47.
    Bertrand, H. et al. Stimulation of the ionic transport system in Brassica napus by a plant growth-promoting rhizobacterium (Achromobacter sp.). Can. J. Microbiol. 46, 229–236 (2000).
    CAS  Article  Google Scholar 

    48.
    Abuamsha, R., Salman, M. & Ehlers, R. U. Role of different additives on survival of Serratia plymuthica HRO-C48 on oilseed rape seeds and control of Phoma lingam. Br. Microbiol. Res. J. 4, 737–748 (2014).
    Article  Google Scholar 

    49.
    Garrity, G. M., Winters, M. & Searles, D. B. Taxonomic outline of the prokaryotes. in Bergey’s Manual of Systematic Bacteriology, 2nd Edn, Release 1.0 (Springer, New York, 2001).

    50.
    Unterseher, M. & Schnittler, M. Dilution-to-extinction cultivation of leaf-inhabiting endophytic fungi in beech (Fagus sylvatica L.)—Different cultivation techniques influence fungal biodiversity assessment. Mycol. Res. 113, 645–654. https://doi.org/10.1016/j.mycres.2009.02.002 (2009).
    Article  PubMed  Google Scholar 

    51.
    Zadok, J. C., Chang, T. T. & Konzak, A. A decimal code for the growth stages of cereals. Weed Res. 14, 415–421. https://doi.org/10.1111/j.1365-3180.1974.tb01084.x (1974).
    Article  Google Scholar 

    52.
    Schmidt, C. S., Mrnka, L., Frantík, T., Lovecká, P. & Vosátka, M. Plant growth promotion of Miscanthus × giganteus by endophytic bacteria and fungi on non-polluted and polluted soils. World J. Microbiol. Biotechnol. 34, 48. https://doi.org/10.1007/s11274-018-2426-7 (2018).
    CAS  Article  PubMed  Google Scholar 

    53.
    Koubek, J. et al. Whole-cell MALDI-TOF: Rapid screening method in environmental microbiology. Int. Biodeter. Biodegr. 69, 82–86. https://doi.org/10.1016/j.ibiod.2011.12.007 (2012).
    CAS  Article  Google Scholar 

    54.
    Uhlik, O. et al. Matrix-assisted laser desorption ionization (MALDI)–time of flight mass spectrometry- and MALDI biotyper-based identification of cultured biphenyl-metabolizing bacteria from contaminated horseradish rhizosphere soil. Appl. Environ. Microb. 77, 6858–6866. https://doi.org/10.1128/AEM.05465-11 (2011).
    CAS  Article  Google Scholar 

    55.
    Štorchová, H. et al. An improved method of DNA isolation from plants collected in the field and conserved in saturated NaCl/CTAB solution. Taxon 49, 79–84. https://doi.org/10.2307/1223934 (2000).
    Article  Google Scholar 

    56.
    White, T. J., Bruns, T. D., Lee, S. & Taylor, J. Analysis of phylogenetic relationship by amplification and direct sequencing of ribosomal RNA genes. in PCR Protocols: A Guide to Methods and Applications (eds. Innis, M. A., Gelfand, D. H., Sninsky, J. J. & White, T. J.) 315–322 (Academic Press Inc., New York, 1990).

    57.
    Gardes, M. & Bruns, T. D. ITS primers with enhanced specificity for basidiomycetes—Application to the identification of mycorrhizae and rusts. Mol. Ecol. 2, 113–118. https://doi.org/10.1111/j.1365-294X.1993.tb00005.x (1993).
    CAS  Article  PubMed  Google Scholar 

    58.
    McLaughlin, D. J., Hibbett, D. S., Lutzoni, F., Spatafora, J. W. & Vilgalys, R. The search for the fungal tree of life. Trends Microbiol. 11, 488–497. https://doi.org/10.1016/j.tim.2009.08.001 (2009).
    CAS  Article  Google Scholar 

    59.
    Alexander, D. B. & Zuberer, D. A. Use of chrome azurol S reagents to evaluate siderophore production by rhizosphere bacteria. Biol. Fertil. Soils 12, 39–45. https://doi.org/10.1007/BF00369386 (1991).
    CAS  Article  Google Scholar 

    60.
    Penrose, D. M. & Glick, B. R. Methods for isolating and characterizing ACC deaminase-containing plant growth-promoting rhizobacteria. Physiol. Plant. 118, 10–15. https://doi.org/10.1034/j.1399-3054.2003.00086.x (2003).
    CAS  Article  PubMed  Google Scholar 

    61.
    Li, Z., Chang, S., Lin, L., Li, Y. & An, Q. A colorimetric assay of 1-aminocyclopropane-1-carboxylate (ACC) based on ninhydrin reaction for rapid screening of bacteria containing ACC deaminase. Lett. Appl. Microbiol. 53, 178–185. https://doi.org/10.1111/j.1472-765X.2011.03088.x (2011).
    CAS  Article  PubMed  Google Scholar 

    62.
    Villano, D., Fernandez-Pachon, M. S., Moya, M. L., Troncoso, A. M. & Garcıa-Parrilla, M. C. Radical scavenging ability of polyphenolic compounds towards DPPH free radical. Talanta 71, 230–235. https://doi.org/10.1016/j.talanta.2006.03.050 (2007).
    CAS  Article  PubMed  Google Scholar 

    63.
    Hajšlová, J., Fenclová, M. & Zachariašová, M. Methodology for the Rapid Screening of Isolates of Endophytic Microorganisms and Identification of Strains with Phytohormonal Activity (in Czech, ISBN 978-80-7080-869-6 ) (2013).

    64.
    Veprikova, Z. et al. Mycotoxins in plant-based dietary supplements: Hidden health risk for consumers. J. Agric. Food Chem. 63, 6633–6643. https://doi.org/10.1021/acs.jafc.5b02105 (2015).
    CAS  Article  PubMed  Google Scholar 

    65.
    Zhou, Q. Untersuchungen zum Infektionsmodus, immunologischen Nachweis und zur biologischen Bekämpfung von Leptosphaeria maculans (Desm) Ces. & de Not., dem Erreger der Wurzelhals- und Stängelfäule an Winterraps (Brassica napus L.). (Ph.D Dissertation, University of Göttingen, Göttingen, 2001).

    66.
    Chèvre, A. M. et al. Stabilization of resistance to Leptosphaeria maculans in Brassica napus–B. juncea recombinant lines and its introgression into spring-type Brassica napus. Plant Dis. 92, 1208–1214. https://doi.org/10.1094/PDIS-92-8-1208 (2008).
    Article  PubMed  Google Scholar 

    67.
    El-Tarabily, K. A. et al. Biological control of Sclerotinia minor using a chitinolytic bacterium and actinomycetes. Plant Pathol. 49, 573–583. https://doi.org/10.1046/j.1365-3059.2000.00494.x (2000).
    Article  Google Scholar 

    68.
    Clarke, K. R. & Warwick, R. M. Change in Marine Communities: An Approach to Statistical Analysis and Interpretation 2nd edn. (Primer-E, Plymouth, 2001).
    Google Scholar 

    69.
    Frisvad, J. C., Smedsgaard, J., Larsen, T. O. & Samson, R. A. Mycotoxins, drugs and other extrolites produced by species in Penicillium subgenus Penicillium. Stud. Mycol. 49, 201–241 (2004).
    Google Scholar 

    70.
    Romero, F. M., Rossi, F. R., Gárriz, A., Carrasco, P. & Ruíz, O. A. A bacterial endophyte from apoplast fluids protects canola plants from different pathogens via antibiosis and induction of host resistance. Phytopathology 109, 375–383 (2019).
    CAS  Article  Google Scholar 

    71.
    Kamal, M. M., Lindbeck, K. D., Savocchia, S. & Ash, G. J. Biological control of Sclerotinia stem rot of canola using antagonistic bacteria. Plant Pathol. 64, 1375–1384 (2015).
    CAS  Article  Google Scholar 

    72.
    Fernando, W. G. D., Nakkeeran, S., Zhang, Y., Savchuk, S. Biological control of Sclerotinia sclerotiorum (Lib.) de Bary by Pseudomonas and Bacillus species on canola petals. Crop Protect. 26, 100–107. https://doi.org/10.1016/j.cropro.2006.04.007 (2007)

    73.
    Peng, G., McGregor, L., Lahlali, R., Gossen, B. D., Hwang, S. F., Adhikari, K. K., Strelkov, S. E., McDonald, M. R. Potential biological control of clubroot on canola and crucifer vegetable crops. Plant Pathol. 60, 566–574. https://doi.org/10.1111/j.1365-3059.2010.02400.x (2011)

    74.
    Wu, Y., Yuan, J., Raza, W., Shen, Q., Huang, Q. Biocontrol traits and antagonistic potential of Bacillus amyloliquefaciens strain NJZJSB3 against Sclerotinia sclerotiorum, a causal agent of canola stem rot. J. Microbiol. Biotechnol. 24, 1327–1336. https://doi.org/10.4014/jmb.1402.02061 (2014)

    75.
    Auer, S. & Ludwig-Müller, J. Biological control of clubroot (Plasmodiophora brassicae) by an endophytic fungus. Integrated control in oilseed crops. IOBC-WPRS Bull. 136, 155–156 (2018).
    Google Scholar 

    76.
    Huang, H.-C. & Erickson, R. S. Biological control of Sclerotinia stem rot of canola using Ulocladium atrum. Plant Pathol. Bull. 16, 55–59 (2007).
    CAS  Google Scholar 

    77.
    Marques, A. P. G. C., Pires, C., Moreira, H., Rangel, A. O. S. S., Castro, P.M.L. Assessment of the plant growth promoting abilities of six bacterial isolates using Zea mays as indicator plant. Soil Biol. Biochem. 42, 1229–1235. https://doi.org/10.1016/j.soilbio.2010.04.014 (2010) More

  • in

    The morphological and chemical properties of fine roots respond to nitrogen addition in a temperate Schrenk’s spruce (Picea schrenkiana) forest

    1.
    Agren, G. I. Stoichiometry and nutrition of plant growth in natural communities. Annu. Rev. Ecol. Evol. Syst. 39, 153–170 (2008).
    Article  Google Scholar 
    2.
    Strand, A. E., Pritchard, S. G., McCormack, M. L., Davis, M. A. & Oren, R. Irreconcilable differences: Fine-root life spans and soil carbon persistence. Science 319, 456–458 (2008).
    ADS  CAS  PubMed  Article  Google Scholar 

    3.
    Norby, R. J. & Jackson, R. B. Root dynamics and global change: Seeking an ecosystem perspective. New Phytol. 147, 3–12 (2000).
    CAS  Article  Google Scholar 

    4.
    Valliere, J. M. & Allen, E. B. Interactive effects of nitrogen deposition and drought-stress on plant-soil feedbacks of Artemisia californica seedlings. Plant Soil 403, 277–290 (2016).
    CAS  Article  Google Scholar 

    5.
    Schulte-Uebbing, L. & de Vries, W. Global-scale impacts of nitrogen deposition on tree carbon sequestration in tropical, temperate, and boreal forests: A meta-analysis. Glob. Change Biol. 24, E416–E431 (2018).
    Article  Google Scholar 

    6.
    Vanguelova, E. I. & Pitman, R. M. Nutrient and carbon cycling along nitrogen deposition gradients in broadleaf and conifer forest stands in the east of England. For. Ecol. Manage. 447, 180–194 (2019).
    Article  Google Scholar 

    7.
    Wang, L. X., Mou, P. P. & Jones, R. H. Nutrient foraging via physiological and morphological plasticity in three plant species. Can. J. For. Res. 36, 164–173 (2006).
    CAS  Article  Google Scholar 

    8.
    Yu, G. et al. Stabilization of atmospheric nitrogen deposition in China over the past decade. Nat. Geosci. 12, 424–429 (2019).
    ADS  CAS  Article  Google Scholar 

    9.
    Wang, W. J., Mo, Q. F., Han, X. G., Hui, D. F. & Shen, W. J. Fine root dynamics responses to nitrogen addition depend on root order, soil layer, and experimental duration in a subtropical forest. Biol. Fertil. Soils 55, 723–736 (2019).
    CAS  Article  Google Scholar 

    10.
    Ostonen, I. et al. Fine root foraging strategies in Norway spruce forests across a European climate gradient. Glob. Change Biol. 17, 3620–3632 (2011).
    ADS  Article  Google Scholar 

    11.
    Makita, N. et al. Fine root morphological traits determine variation in root respiration of Quercus serrata. Tree Physiol. 29, 579–585 (2009).
    CAS  PubMed  Article  Google Scholar 

    12.
    Craine, J. M., Froehle, J., Tilman, G. D., Wedin, D. A. & Chapin, F. S. The relationships among root and leaf traits of 76 grassland species and relative abundance along fertility and disturbance gradients. Oikos 93, 274–285 (2001).
    Article  Google Scholar 

    13.
    Liu, R. Q. et al. Plasticity of fine-root functional traits in the litter layer in response to nitrogen addition in a subtropical forest plantation. Plant Soil 415, 317–330 (2017).
    CAS  Article  Google Scholar 

    14.
    Nadelhoffer, K. J. The potential effects of nitrogen deposition on fine-root production in forest ecosystems. New Phytol. 147, 131–139 (2000).
    CAS  Article  Google Scholar 

    15.
    Noguchi, K., Nagakura, J. & Kaneko, S. Biomass and morphology of fine roots of sugi (Cryptomeria japonica) after 3 years of nitrogen fertilization. Front. Plant Sci. 4, 7 (2013).
    Article  Google Scholar 

    16.
    Lu, X. K., Mao, Q. G., Gilliam, F. S., Luo, Y. Q. & Mo, J. M. Nitrogen deposition contributes to soil acidification in tropical ecosystems. Glob. Change Biol. 20, 3790–3801 (2014).
    ADS  Article  Google Scholar 

    17.
    Li, W. B. et al. The effects of simulated nitrogen deposition on plant root traits: A meta-analysis. Soil Biol. Biochem. 82, 112–118 (2015).
    CAS  Article  Google Scholar 

    18.
    Comas, L. H. & Eissenstat, D. M. Patterns in root trait variation among 25 co-existing North American forest species. New Phytol. 182, 919–928 (2009).
    CAS  PubMed  Article  Google Scholar 

    19.
    Zhang, X. et al. Effects of long-term nitrogen addition and decreased precipitation on the fine root morphology and anatomy of the main tree species in a temperate forest. For. Ecol. Manag. 455, 117664 (2020). https://doi.org/10.1016/j.foreco.2019.117664.
    Article  Google Scholar 

    20.
    Burton, A. J., Pregitzer, K. S. & Hendrick, R. L. Relationships between fine root dynamics and nitrogen availability in Michigan northern hardwood forests. Oecologia 125, 389–399 (2000).
    ADS  CAS  PubMed  Article  Google Scholar 

    21.
    Pregitzer, K. S. et al. Fine root architecture of nine North American trees. Ecol. Monogr. 72, 293–309 (2002).
    Article  Google Scholar 

    22.
    Wurzburger, N. & Wright, S. J. Fine-root responses to fertilization reveal multiple nutrient limitation in a lowland tropical forest. Ecology 96, 2137–2146 (2015).
    PubMed  Article  Google Scholar 

    23.
    Penuelas, J., Sardans, J., Rivas-Ubach, A. & Janssens, I. A. The human-induced imbalance between C, N and P in Earth’s life system. Glob. Change Biol. 18, 3–6 (2012).
    ADS  Article  Google Scholar 

    24.
    Loewe, A., Einig, W., Shi, L., Dizengremel, P. & Hampp, R. Mycorrhiza formation and elevated CO2 both increase the capacity for sucrose synthesis in source leaves of spruce and aspen. New Phytol. 145, 565–574 (2000).
    CAS  Article  Google Scholar 

    25.
    Grechi, I. et al. Effect of light and nitrogen supply on internal C:N balance and control of root-to-shoot biomass allocation in grapevine. Environ. Exp. Bot. 59, 139–149 (2007).
    CAS  Article  Google Scholar 

    26.
    Jing, H. et al. Effect of nitrogen addition on the decomposition and release of compounds from fine roots with different diameters: The importance of initial substrate chemistry. Plant Soil 438, 281–296 (2019).
    CAS  Article  Google Scholar 

    27.
    Mucha, J. et al. Fine root classification matters: Nutrient levels in different functional categories, orders and diameters of roots in boreal Pinus sylvestris across a latitudinal gradient. Plant Soil 447, 507–520 (2019). https://doi.org/10.1007/s11104-019-04395-1.
    CAS  Article  Google Scholar 

    28.
    Aubrey, D. P. & Teskey, R. O. Stored root carbohydrates can maintain root respiration for extended periods. New Phytol. 218, 142–152 (2018).
    CAS  PubMed  Article  Google Scholar 

    29.
    Kou, L. et al. Simulated nitrogen deposition affects stoichiometry of multiple elements in resource-acquiring plant organs in a seasonally dry subtropical forest. Sci. Total Environ. 624, 611–620 (2018). https://doi.org/10.1016/j.scitotenv.2017.12.080.
    ADS  CAS  Article  PubMed  Google Scholar 

    30.
    Yan, X. L., Jia, L. M. & Dai, T. F. Fine root morphology and growth in response to nitrogen addition through drip fertigation in a Populus × euramericana “Guariento” plantation over multiple years. Ann. For. Sci. 76 (2019).

    31.
    Yan, G. et al. Spatial and temporal effects of nitrogen addition on root morphology and growth in a boreal forest. Geoderma 303, 178–187 (2017).
    ADS  CAS  Article  Google Scholar 

    32.
    Lu, X. K. et al. Plant acclimation to long-term high nitrogen deposition in an N-rich tropical forest. Proc. Natl. Acad. Sci. USA 115, 5187–5192 (2018).
    CAS  PubMed  Article  Google Scholar 

    33.
    Van der Sande, M. T. et al. Soil fertility and species traits, but not diversity, drive productivity and biomass stocks in a Guyanese tropical rainforest. Funct. Ecol. 32, 461–474 (2018).
    Article  Google Scholar 

    34.
    Burton, A. J., Jarvey, J. C., Jarvi, M. P., Zak, D. R. & Pregitzer, K. S. Chronic N deposition alters root respiration-tissue N relationship in northern hardwood forests. Glob. Change Biol. 18, 258–266 (2012).
    ADS  Article  Google Scholar 

    35.
    Eissenstat, D. M. & Yanai, R. D. The ecology of root lifespan. Adv. Ecol. Res. 27, 2–60 (1997).
    Google Scholar 

    36.
    Chen, D. M., Lan, Z. C., Hu, S. J. & Bai, Y. F. Effects of nitrogen enrichment on belowground communities in grassland: Relative role of soil nitrogen availability vs soil acidification. Soil Biol. Biochem. 89, 99–108 (2015).
    CAS  Article  Google Scholar 

    37.
    Vanguelova, E. I., Nortcliff, S., Moffat, A. J. & Kennedy, F. Morphology, biomass and nutrient status of fine roots of Scots pine (Pinussylvestris) as influenced by seasonal fluctuations in soil moisture and soil solution chemistry. Plant Soil 270, 233–247 (2005).
    CAS  Article  Google Scholar 

    38.
    Zhang, H., Liu, Y., Zhou, Z. & Zhang, Y. Inorganic nitrogen addition affects soil respiration and belowground organic carbon fraction for a Pinus tabuliformis forest. Forests 10, 369 (2019).
    Article  Google Scholar 

    39.
    Lalnunzira, C., Brearley, F. Q. & Tripathi, S. K. Root growth dynamics during recovery of tropical mountain forest in North-east India. J. Mt. Sci. 16, 2335–2347 (2019).
    Article  Google Scholar 

    40.
    Kochsiek, A., Tan, S. & Russo, S. E. Fine root dynamics in relation to nutrients in oligotrophic Bornean rain forest soils. Plant Ecol. 214, 869–882 (2013).
    Article  Google Scholar 

    41.
    Ostonen, I. et al. Specific root length as an indicator of environmental change. Plant Biosyst. 141, 426–442 (2007).
    Article  Google Scholar 

    42.
    Fitter, A. H., Stickland, T. R., Harvey, M. L. & Wilson, G. W. Architectural analysis of plant root systems 1. Architectural correlates of exploitation efficiency. New Phytol. 118, 375–382 (1991).
    Article  Google Scholar 

    43.
    Hodge, A. The plastic plant: Root responses to heterogeneous supplies of nutrients. New Phytol. 162, 9–24 (2004).
    Article  Google Scholar 

    44.
    Zhou, Y. M., Tang, J. W., Melillo, J. M., Butler, S. & Mohan, J. E. Root standing crop and chemistry after six years of soil warming in a temperate forest. Tree Physiol. 31, 707–717 (2011).
    PubMed  Article  CAS  Google Scholar 

    45.
    Fujita, Y., Robroek, B. J. M., de Ruiter, P. C., Heil, G. W. & Wassen, M. J. Increased N affects P uptake of eight grassland species: The role of root surface phosphatase activity. Oikos 119, 1665–1673 (2010).
    CAS  Article  Google Scholar 

    46.
    Alvarez-Clare, S. & Mack, M. C. Do foliar, litter, and root nitrogen and phosphorus concentrations reflect nutrient limitation in a lowland tropical wet forest?. PLoS ONE 10, e0123796 (2015).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    47.
    Koerselman, W. & Meuleman, A. F. M. The vegetation NP ratio a new tool to detect the nature. J. Appl. Ecol. 33, 1441 (1996).
    Article  Google Scholar 

    48.
    Wang, Z. Q. et al. The scaling of fine root nitrogen versus phosphorus in terrestrial plants: A global synthesis. Funct. Ecol. 33, 2081–2094 (2019).
    Article  Google Scholar 

    49.
    Desrochers, A., Landhausser, S. M. & Lieffers, V. J. Coarse and fine root respiration in aspen (Populus tremuloides). Tree Physiol. 22, 725–732 (2002).
    PubMed  Article  Google Scholar 

    50.
    Son, Y. & Hwang, J. H. Fine root biomass, production and turnover in a fertilized Larix leptolepis plantation in central Korea. Ecol. Res. 18, 339–346 (2003).
    Article  Google Scholar 

    51.
    Eissenstat, D. M. & Volder, A. The efficiency of nutrient acquisition over the life of a root, 185–220. In Nutrient Acquisition by Plants: An Ecological Perspective (ed. Barririrad, H.) (Springer, Berlin, Heidelberg, 2005).
    Google Scholar 

    52.
    Chen, L., Deng, Q., Yuan, Z., Mu, X. & Kallenbach, R. L. Age-related C:N:P stoichiometry in two plantation forests in the Loess Plateau of China. Ecol. Eng. 120, 14–22 (2018).
    Article  Google Scholar 

    53.
    Wapongnungsang, R. H. & Tripathi, S. K. Fine root growth and soil nutrient dynamics during shifting cultivation in tropical semi-evergreen forests of northeast India. J. Environ. Biol. 40, 45–52 (2019).
    CAS  Article  Google Scholar 

    54.
    Razaq, M., Salahuddin, Shen, H., Sher, H. & Zhang, P. Influence of biochar and nitrogen on fine root morphology, physiology, and chemistry of Acer mono. Sci. Rep. 7, 5367 (2017). https://doi.org/10.1038/s41598-017-05721-2.

    55.
    Kobe, R. K., Iyer, M. & Walters, M. B. Optimal partitioning theory revisited: Nonstructural carbohydrates dominate root mass responses to nitrogen. Ecology 91, 166–179 (2010).
    PubMed  Article  Google Scholar 

    56.
    Li, W. B. et al. Effects of nitrogen enrichment on tree carbon allocation: A global synthesis. Glob. Ecol. Biogeogr. 29, 573–589 (2020).
    Article  Google Scholar 

    57.
    Wang, T. et al. Age structure of Picea schrenkiana forest along an altitudinal gradient in the central Tianshan Mountains, northwestern China. For. Ecol. Manage. 196, 267–274 (2004).
    Article  Google Scholar 

    58.
    Li, J., Yutao, Z., Li, J., Li, X. & Lu, J. Effect of stimulated nitrogen deposition on the fine root decomposition and related nutrient release of Picea schrenkiana var. tianshanica. Acta Bot. Boreal. Occident. Sin. 35, 0182–0188 (2015) (in chinese).
    Google Scholar 

    59.
    Bremner, J. & Mulvaney, R. Urease Activity in Soils (Academic Press, London, 1978).
    Google Scholar 

    60.
    Liu, Y. et al. Nitrogen addition alleviates microbial nitrogen limitations and promotes soil respiration in a subalpine coniferous forest. Forests 10, 16 (2019).
    Google Scholar 

    61.
    Bao, S. N. Soil Agrochemical Analysis 20–38 (China Agricultural Press, Beijing, 2000) (in Chinese).
    Google Scholar 

    62.
    Buysse, J. & Merckx, R. An improved colorimetric method to quantify sugar content of plant tissue. J. Exp. Bot. 44, 1627–1629 (1993).
    CAS  Article  Google Scholar 

    63.
    Su, L. et al. Soil and fine roots ecological stoichiometry in different vegetation restoration stages in a karst area, southwest China. J. Environ. Manag. 252, 109694 (2019).
    CAS  Article  Google Scholar  More

  • in

    Multispecies for multifunctions: combining four complementary species enhances multifunctionality of sown grassland

    We used a dataset from a grassland diversity experiment at Zürich-Reckenholz, Switzerland, in the Atlantic central climatic zone of Europe. The data contain measurements on many functions from 78 plots that comprised monocultures and mixtures sown at a wide range of species relative abundances, set up at three levels of N fertiliser application and maintained for 3 years following establishment, which is a typical time in grassland-crop rotations.
    Monocultures and mixtures were sown following a simplex design64. Four perennial species, known to be key forage species in ruminant production, were selected based on the factorial combination of their functional traits related to temporal establishment (fast-establishing vs. temporally persistent), and N acquisition (non-fixing for grasses, N2-fixing for legumes). The species were Lolium perenne L. cultivar (cv.) Lacerta (fast-establishing grass), Dactylis glomerata L. cv. Accord (temporally persistent grass), Trifolium pratense L. cv. Merviot (fast-establishing legume), and Trifolium repens L. cv. Milo (temporally persistent legume). The type of stands were: monocultures (100% of one species), binary mixtures (50% of each of two species), an equi-proportional mixture (25% of each of the four species), dominant mixtures (70% of the dominant species, 10% of each of the other three), and co-dominant mixtures (40% of each of two species, 10% of each of the other two; see Supplementary Table S1). All types of stands were sown at two levels of overall sown density, with the high level being the recommended seed weight (100%) under conditions typical of Switzerland, and the low level being 60%.
    The experiment was sown in August 2002 on plots of 3 m × 6 m and was maintained from 2003 (year 1) to 2005 (year 3). The plots were fertilised with N fertiliser (as NH4NO3) at rates following a geometric series: 50, 150, or 450 kg N ha−1 yr−1 (N50, N150, and N450, respectively), split into five equal applications. In early spring, all plots received phosphorus and potassium in amounts expected to be non-limiting for intensively managed grasslands on fertile soils in Switzerland. At the N150 treatment, all types of monocultures and mixtures were established, whereas the N50 and N450 treatments only included the monocultures, the equi-proportional mixture, and the dominant mixtures. The 78 plots were arranged in a fully randomised design. Consult Nyfeler et al.37 for full details of the experimental design, establishment, and maintenance.
    Ten functions were measured representing (i) forage production: aboveground biomass yield, standard deviation of yield, temporal stability, weed biomass; (ii) N cycling: symbiotic N2 fixation, N efficiency, NO3 in soil solution; and (iii) forage quality: crude protein content, organic matter digestibility, metabolisable energy content (Table 1). To date, detailed analyses from the experiment have been published on two functions, namely biomass yield37 and symbiotic N2 fixation33.
    Measurement of functions
    Aboveground biomass yield and weed biomass
    All plots were harvested five times annually at 5 cm above ground surface. Aboveground biomass yield at each harvest was determined by drying a representative subsample to constant weight (65° C for 48 h), and this data was summed to give total annual biomass yield. Biomass proportions of the four sown and pooled unsown species (weeds) were measured by manually separating samples from permanent sub-plots (0.8 m × 0.3 m), which was done at the first, third, and fifth harvest of each year. These data allowed for calculation of weed biomass per ha and year.
    Standard deviation and stability of yield
    Year-to-year standard deviation of yield (SDyield) was calculated from the annual yields of the three experimental years, and stability was defined as the ratio of averaged annual yields to year-to-year SDyield (following Lehman and Tilman65). To measure yield variation within each year, seasonal SDyield was calculated from the five annual harvests, and seasonal stability was defined as the ratio of total annual yield to seasonal SDyield. We purposely use both SDyield and stability as both measures are essential to evaluate yield variation66.
    Symbiotic N 2fixation
    Symbiotic N2 fixation (Nsym) was determined by the isotope dilution method67. Double-labelled 15N-enriched 15NH415NO3 was applied on a permanently defined, central part of each plot (1.4 m × 1.5 m). Plant samples were analysed for 15N and 14N abundance by gas isotope ratio mass spectrometry and by thermal conductometry. Nsym in the sward, as calculated here, comprises legume N derived from the atmosphere (Ndfa) plus N derived from apparent Ndfa transfer to the grass (Ntrans). See Supplementary Appendix S1 and Nyfeler et al.33 for full details of measurements and calculations.
    N efficiency
    N efficiency was defined as the ratio of total N yield to the amount of applied fertiliser N and therefore measures the total N output of the system in relation to the fertiliser N input. Total N yield was calculated by first multiplying N content from biomass samples with their total dry mass to give the N yield per harvest. Annual total N yield was then computed as the sum of all harvests.
    NO 3in soil solution (NO3)
    Porous cup tension lysimeters were installed to extract soil water from a depth of 60 cm below ground surface. In 2-week intervals from October 2004 to April 2006, a suction of 80 kPa was applied 1 day prior to sampling, and concentrations of nitrate–N (NO3-N) were determined by spectrophotometry. We note that NO3 data were only available for years 2 and 3. See Supplementary Appendix S1 for details of the measurements.
    Crude protein content 
    Crude protein content (CP) in stand biomass was calculated from the N content in biomass samples, multiplied by 6.25. The justification for the multiplicative factor is given by the fact that all biological proteins contain on average 16% N68.
    Organic matter digestibility
    Organic matter digestibility (OM digestibility) was determined from biomass samples of the second and fourth harvest following the two-stage in vitro fermentation process with rumen liquor and acidic pepsin solution according to Tilley and Terry69; see Supplementary Appendix S1 for details. Information on OM digestibility was only available for years 2 and 3 of the study.
    Metabolisable energy content
    Metabolisable energy content (ME) of stand biomass was calculated based on OM digestibility and CP following a reference manual of Agroscope70; see Supplementary Appendix S1 for calculation. Due to the connection with the measurement OM digestibility, ME data were only available for years 2 and 3.
    Data for each function were computed at the plot level for each of three experimental years (the three exceptions as noted). For analyses across years, data was averaged across available years, except SDyield and stability (see above).
    Data analyses
    We applied the multivariate modelling framework13 to estimate simultaneously species identity and diversity effects of the ten functions along with effects of N fertilisation. To allow direct comparisons of the model terms, all functions’ data were standardised to a common scale by dividing them by their maximum value (at a single year) over the 3-year experiment and N fertilisation treatments. This scaling allowed for a direct comparison of results among years. Note that the multivariate approach is a generalisation of the univariate diversity interaction model61, and we refer to Supplementary Appendix S1 for a summary to the univariate regression.
    In the following, we generally refer to the analysis of data averaged across experimental years, and all equations model the response at a single plot (plot subscripts are omitted). A preliminary regression equation was specified for the kth function (k = 1–10) with:

    $${y}_{k}={alpha }_{k}mathrm{DENS}+sum_{f=1}^{3}sum_{i=1}^{4}{beta }_{ifk}{P}_{i}times {mathrm{N}_mathrm{Treat}}_{f}+sum_{begin{array}{c}i,j=1\ i More

  • in

    Flooding is a key driver of the Tonle Sap dai fishery in Cambodia

    arising from: P. B. Ngor et al.; Scientific Reports https://doi.org/10.1038/s41598-018-27340-1 (2018).
    As one of the richest sources of fisheries-related data in the lower Mekong basin, the Tonle Sap dai fishery has received considerable attention in the literature in recent years as concerns grow over the impacts of hydropower dams on fisheries, which are important for livelihoods and food security1,2,3.
    Ngor et al.4 reported a decline since 2000 in the catch of larger species which tend to occupy higher trophic levels; compensatory increases in the catch of smaller species; and declines in the mean body weight (and length) of common species in the Tonle Sap dai fishery, as evidence of the effects of indiscriminate fishing or “fishing-down” of the multi-species fish assemblage in the lower Mekong basin. We provide evidence below that suggest that these apparent recent changes are more likely to reflect changing hydrological conditions than fishing-down effects, possibly caused by climate change and recently also by hydropower development.
    The dai fishery has been reliably monitored since 1997–98. Without explanation, Ngor et al. excluded the first three seasons (1997–98 to 1999–2000) of monitoring data which include one of the driest fishing seasons on record (1998–99). The authors thereby created a time series beginning with the three wettest seasons (largest floods) since monitoring began (2000–1 to 2002–3) that were followed by 12 seasons of variable, but decreasing flows caused by hydropower dam construction, low rainfalls possibly resulting from climate change, and abstractions for agriculture5,6 (Fig. 1).
    Figure 1

    Source: Mekong River Commission Secretariat.

    The flood index (FI) or flood pulse14 in the Tonle Sap Great Lake System (1997/08–2014/15). The FI is a measure of the flood extent and duration, calculated as the sum of the flooded area days above the mean flooded area from April to March of the following year2. Whilst highly variable, a downward decline (p-value = 0.06) in the FI is observed between 2000/01 (Year 2001) and 2014/15 (Year 2015) shown by solid circles. Adding the most recent data for 2016–2018 (not shown here), confirmed that a downward linear trend in the FI since the 2000/01 season is statistically significant (p-value  45 cm) excluding those with zero catch in any year. These 28 species formed approximately 16% of the total catch during the study period. We also found negative regression coefficients for all 28 species, supporting the findings of Ngor et al. However, the combined annual catch of these 28 species did not decline significantly through time (R2 = 0.22; p-value = 0.07).
    We did however find that the combined annual catch of these 28 larger species varied significantly with the annual flood index (FI)—a measure of flood extent and duration (R2 = 0.46; p-value  45 cm) species and the flood index (R2 = 0.46; p-value  More

  • in

    Ecology directs host–parasite coevolutionary trajectories across Daphnia–microparasite populations

    1.
    Paterson, S. et al. Antagonistic coevolution accelerates molecular evolution. Nature 464, 275–278 (2010).
    CAS  PubMed  PubMed Central  Article  Google Scholar 
    2.
    Schulte, R. D., Makus, C., Hasert, B., Michiels, N. K. & Schulenburg, H. Multiple reciprocal adaptations and rapid genetic change upon experimental coevolution of an animal host and its microbial parasite. Proc. Natl Acad. Sci. USA 107, 7359–7364 (2010).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    3.
    Koskella, B. & Lively, C. M. Evidence for negative frequency-dependent selection during experimental coevolution of a freshwater snail and a sterilizing trematode. Evolution 63, 2213–2221 (2009).
    PubMed  Article  PubMed Central  Google Scholar 

    4.
    Decaestecker, E. et al. Host–parasite ‘Red Queen’ dynamics archived in pond sediment. Nature 450, 870–873 (2007).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    5.
    Gómez, P. & Buckling, A. Bacteria–phage antagonistic coevolution in soil. Science 332, 106–109 (2011).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    6.
    Refardt, D. & Ebert, D. Inference of parasite local adaptation using two different fitness components. J. Evol. Biol. 20, 921–929 (2007).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    7.
    Duffy, M. A., Hall, S. R., Cáceres, C. E. & Ives, A. R. Rapid evolution, seasonality, and the termination of parasite epidemics. Ecology 90, 1441–1448 (2009).
    PubMed  Article  Google Scholar 

    8.
    Springer, Y. P. Clinical resistance structure and pathogen local adaptation in a serpentine flax–flax rust interaction. Evolution 61, 1812–1822 (2007).
    PubMed  Article  PubMed Central  Google Scholar 

    9.
    Tack, A. J. M., Laine, A.-L., Burdon, J. J., Bissett, A. & Thrall, P. H. Below-ground abiotic and biotic heterogeneity shapes above-ground infection outcomes and spatial divergence in a host–parasite interaction. New Phytol. 207, 1159–1169 (2015).
    PubMed  PubMed Central  Article  Google Scholar 

    10.
    Wolinska, J. & King, K. C. Environment can alter selection in host–parasite interactions. Trends Parasitol. 25, 236–244 (2009).
    PubMed  Article  PubMed Central  Google Scholar 

    11.
    Auld, S. K. J. R., Hall, S. R., Ochs, J. H., Sebastian, M. & Duffy, M. A. Predators and patterns of within-host growth can mediate both among-host competition and evolution of transmission potential of parasites. Am. Nat. 184, S77–S90 (2014).
    PubMed  Article  PubMed Central  Google Scholar 

    12.
    Wright, R. C. T., Brockhurst, M. A. & Harrison, E. Ecological conditions determine extinction risk in co-evolving bacteria–phage populations. BMC Evol. Biol. 16, 227 (2016).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    13.
    Duffy, M. A. et al. Ecological context influences epidemic size and parasite-driven evolution. Science 335, 1636–1638 (2012).
    CAS  PubMed  Article  Google Scholar 

    14.
    Auld, S. K. J. R. & Brand, J. Environmental variation causes different (co) evolutionary routes to the same adaptive destination across parasite populations. Evol. Lett. 1, 245–254 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    15.
    Su, M. & Boots, M. The impact of resource quality on the evolution of virulence in spatially heterogeneous environments. J. Theor. Biol. 416, 1–7 (2017).
    PubMed  Article  PubMed Central  Google Scholar 

    16.
    Auld, S. K. J. R. & Tinsley, M. C. The evolutionary ecology of complex lifecycle parasites: linking phenomena with mechanisms. Heredity 114, 125–132 (2015).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    17.
    Cardon, M., Loot, G., Grenouillet, G. & Blanchet, S. Host characteristics and environmental factors differentially drive the burden and pathogenicity of an ectoparasite: a multilevel causal analysis. J. Anim. Ecol. 80, 657–667 (2011).
    PubMed  Article  PubMed Central  Google Scholar 

    18.
    Mahmud, M. A., Bradley, J. E. & MacColl, A. D. C. Abiotic environmental variation drives virulence evolution in a fish host–parasite geographic mosaic. Funct. Ecol. 31, 2138–2146 (2017).
    Article  Google Scholar 

    19.
    Arruda, J. A., Marzolf, G. R. & Faulk, R. T. The role of suspended sediments in the nutrition of zooplankton in turbid reservoirs. Ecology 64, 1225–1235 (1983).
    Article  Google Scholar 

    20.
    Mostowy, R. & Engelstädter, J. The impact of environmental change on host–parasite coevolutionary dynamics. Proc. R. Soc. B 278, 2283–2292 (2011).
    PubMed  Article  Google Scholar 

    21.
    Thompson, J. N. The Geographic Mosaic of Coevolution (Univ. Chicago Press, 2005).

    22.
    Brett, M. T. Chaoborus and fish-mediated influences on Daphnia longispina population structure, dynamics and life history strategies. Oecologia 89, 69–77 (1992).
    PubMed  Article  Google Scholar 

    23.
    Goss, L. B. & Bunting, D. L. Daphnia development and reproduction: responses to temperature. J. Therm. Biol. 8, 375–380 (1983).
    Article  Google Scholar 

    24.
    Luijckx, P., Fienberg, H., Duneau, D. & Ebert, D. A matching-allele model explains host resistance to parasites. Curr. Biol. 23, 1085–1088 (2013).
    CAS  PubMed  Article  Google Scholar 

    25.
    Bento, G. et al. The genetic basis of resistance and matching-allele interactions of a host–parasite system: the Daphnia magna–Pasteuria ramosa model. PLoS Genet. 13, e1006596 (2017).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    26.
    Grosberg, R. K. Mate selection and the evolution of highly polymorphic self/nonself recognition genes. Science 289, 2111–2114 (2000).
    CAS  PubMed  Article  Google Scholar 

    27.
    Hutchinson, G. E. The Ecological Theater and the Evolutionary Play (Yale Univ. Press, 1965).

    28.
    Stuart, Y. E. et al. Contrasting effects of environment and genetics generate a continuum of parallel evolution. Nat. Ecol. Evol. 1, 0158 (2017).
    Article  Google Scholar 

    29.
    Klüttgen, B., Dülmer, U., Engels, M. & Ratte, H. ADaM, an artificial freshwater for the culture of zooplankton. Water Res. 28, 743–746 (1994).
    Article  Google Scholar 

    30.
    Ebert, D., Zschokke-Rohringer, C. D. & Carius, H. J. Within- and between-population variation for resistance of Daphnia magna to the bacterial endoparasite Pasteuria ramosa. Proc. R. Soc. B 265, 2127–2134 (1998).
    Article  Google Scholar 

    31.
    Auld, S. K. J. R. & Brand, J. Simulated climate change, epidemic size, and host evolution across host–parasite populations. Glob. Change Biol. 23, 5045–5053 (2017).
    Article  Google Scholar 

    32.
    Holm, S. A simple sequentially rejective multiple test procedure. Scand. J. Stat. 6, 65–70 (1979).
    Google Scholar 

    33.
    R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019).

    34.
    Brereton, R. G. & Lloyd, G. R. Re-evaluating the role of the Mahalanobis distance measure. J. Chemom. 30, 134–143 (2016).
    CAS  Article  Google Scholar 

    35.
    D’Orazio, M. StatMatch: Statistical Matching or Data Fusion. R package version 1.4.0 (2019).

    36.
    Goslee, S. C. & Urban, D. L. The ecodist package for dissimilarity-based analysis of ecological data. J. Stat. Softw. 22, 1–22 (2007).
    Article  Google Scholar 

    37.
    Lefcheck, J. S. piecewiseSEM: piecewise structural equation modelling in R for ecology, evolution and systematics. Methods Ecol. Evol. 7, 573–579 (2016).
    Article  Google Scholar 

    38.
    Auld, S. K. J. R., Wilson, P. J. & Little, T. J. Rapid change in parasite infection traits over the course of an epidemic in a wild host–parasite population. Oikos 123, 232–238 (2014).
    Article  Google Scholar 

    39.
    Shocket, M. S. et al. Parasite rearing and infection temperatures jointly influence disease transmission and shape seasonality of epidemics. Ecology 99, 1975–1987 (2018).
    PubMed  Article  PubMed Central  Google Scholar 

    40.
    Duncan, A. B., Mitchell, S. E. & Little, T. J. Parasite-mediated selection and the role of sex and diapause in Daphnia. J. Evol. Biol. 19, 1183–1189 (2006).
    CAS  PubMed  Article  Google Scholar 

    41.
    Auld, S. K. J. R. et al. Variation in costs of parasite resistance among natural host populations. J. Evol. Biol. 26, 2479–2486 (2013).
    CAS  PubMed  Article  Google Scholar 

    42.
    Laine, A.-L. Evolution of host resistance: looking for coevolutionary hotspots at small spatial scales. Proc. R. Soc. B 273, 267–273 (2006).
    PubMed  Article  Google Scholar 

    43.
    Lohse, K., Gutierrez, A. & Kaltz, O. Experimental evolution of resistance in Paramecium caudatum against the bacterial parasite Holospora undulata. Evolution 60, 1177–1186 (2006).
    Article  Google Scholar 

    44.
    Duffy, M. A. & Sivars-Becker, L. Rapid evolution and ecological host–parasite dynamics. Ecol. Lett. 10, 44–53 (2007).
    PubMed  Article  Google Scholar 

    45.
    Brewer, M. J., Butler, A. & Cooksley, S. L. The relative performance of AIC, AICC and BIC in the presence of unobserved heterogeneity. Methods Ecol. Evol. 7, 679–692 (2016).
    Article  Google Scholar 

    46.
    Shipley, B. A new inferential test for path models based on directed acyclic graphs. Struct. Equ. Model. 7, 206–218 (2000).
    Article  Google Scholar  More

  • in

    Resolving cryptic species complexes in marine protists: phylogenetic haplotype networks meet global DNA metabarcoding datasets

    1.
    Mayr E. Populations, species, and evolution: an abridgment of animal species and evolution. Cambridge: Belknap Press of Harvard University Press; 1970.
    2.
    Bickford D, Lohman DJ, Sodhi NS, Ng PKL, Meier R, Winker K, et al. Cryptic species as a window on diversity and conservation. Trends Ecol Evol. 2007;22:148–55.
    PubMed  Article  Google Scholar 

    3.
    Fišer C, Robinson CT, Malard F. Cryptic species as a window into the paradigm shift of the species concept. Mol Ecol. 2018;27:613–35.
    PubMed  Article  Google Scholar 

    4.
    Struck TH, Feder JL, Bendiksby M, Birkeland S, Cerca J, Gusarov VI, et al. Finding evolutionary processes hidden in cryptic species. Trends Ecol Evol. 2018;33:153–63.
    PubMed  Article  Google Scholar 

    5.
    Sarno D, Kooistra WHCF, Medlin LK, Percopo I, Zingone A. Diversity in the genus Skeletonema (Bacillariophyceae). II. An assessment of the taxonomy of S. costatum-like species with the description of four new species. J Phycol. 2005;41:151–76.
    Article  Google Scholar 

    6.
    Gaonkar CC, Kooistra WHCF, Lange CB, Montresor M, Sarno D. Two new species in the Chaetoceros socialis complex (Bacillariophyta): C. sporotruncatus and C. dichatoensis, and characterization of its relatives. J Phycol. 2017;53:889–907.
    CAS  PubMed  Article  Google Scholar 

    7.
    Li Y, Boonprakob A, Gaonkar CC, Kooistra WHCF, Lange CB, Hernández-Becerril D, et al. Diversity in the globally distributed diatom genus Chaetoceros (Bacillariophyceae): three new species from warm-temperate waters. PLoS ONE. 2017;12:e0168887.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    8.
    Finlay BJ, Clarke KJ. Ubiquitous dispersal of microbial species. Nature. 1999;400:828.
    CAS  Article  Google Scholar 

    9.
    Finlay BJ, Fenchel T. Divergent perspectives on protist species richness. Protist. 1999;150:229–33.
    CAS  PubMed  Article  Google Scholar 

    10.
    Fenchel T, Finlay BJ. The ubiquity of small species: patterns of local and global diversity. Bioscience. 2004;54:777.
    Article  Google Scholar 

    11.
    Fenchel T. Cosmopolitan microbes and their ‘cryptic’ species. Aquat Microb Ecol. 2005;41:49–54.
    Article  Google Scholar 

    12.
    Miglietta MP, Faucci A, Santini F. Speciation in the sea: overview of the symposium and discussion of future directions. Integr Comp Biol. 2011;51:449–55.
    PubMed  Article  Google Scholar 

    13.
    Kooistra WHCF, Sarno D, Balzano S, Gu H, Andersen RA, Zingone A. Global diversity and biogeography of Skeletonema species (Bacillariophyta). Protist. 2008;159:177–93.
    CAS  PubMed  Article  Google Scholar 

    14.
    Nanjappa D, Audic S, Romac S, Kooistra WHCF, Zingone A. Assessment of species diversity and distribution of an ancient diatom lineage using a DNA metabarcoding approach. PLoS ONE. 2014;9:e103810.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    15.
    Kaczmarska I, Mather L, Luddington IA, Muise F, Ehrman JM. Cryptic diversity in a cosmopolitan diatom known as Asterionellopsis glacialis (Fragilariaceae): Implications for ecology, biogeography, and taxonomy. Am J Bot. 2014;101:267–86.
    PubMed  Article  Google Scholar 

    16.
    Zhao Y, Yi Z, Gentekaki E, Zhan A, Al-Farraj SA, Song W. Utility of combining morphological characters, nuclear and mitochondrial genes: An attempt to resolve the conflicts of species identification for ciliated protists. Mol Phylogenet Evol. 2016;94:718–29.
    PubMed  Article  Google Scholar 

    17.
    Weiner A, Aurahs R, Kurasawa A, Kitazato H, Kucera M. Vertical niche partitioning between cryptic sibling species of a cosmopolitan marine planktonic protist. Mol Ecol. 2012;21:4063–73.
    PubMed  Article  Google Scholar 

    18.
    Lamari N, Ruggiero MV, d’Ippolito G, Kooistra WHCF, Fontana A, Montresor M. Specificity of lipoxygenase pathways supports species delineation in the marine diatom genus Pseudo-nitzschia. PLoS ONE. 2013;8:e73281.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    19.
    Škaloud P, Friedl T, Hallmann C, Beck A, Dal Grande F. Taxonomic revision and species delimitation of coccoid green algae currently assigned to the genus Dictyochloropsis (Trebouxiophyceae, Chlorophyta). J Phycol. 2016;52:599–617.
    PubMed  Article  CAS  Google Scholar 

    20.
    de Jesus PB, Costa AL, de Castro Nunes JM, Manghisi A, Genovese G, Morabito M, et al. Species delimitation methods reveal cryptic diversity in the Hypnea cornuta complex (Cystocloniaceae, Rhodophyta). Eur J Phycol. 2019;54:135–53.
    Article  CAS  Google Scholar 

    21.
    Díaz-Tapia P, Ly M, Verbruggen H. Extensive cryptic diversity in the widely distributed Polysiphonia scopulorum (Rhodomelaceae, Rhodophyta): molecular species delimitation and morphometric analyses. Mol Phylogenet Evol. 2020;152:106909.
    PubMed  Article  Google Scholar 

    22.
    Huson DH, Rupp R, Scornavacca C. Phylogenetic networks. Cambridge: Cambridge University Press; 2009.

    23.
    Huson DH, Bryant D. Application of phylogenetic networks in evolutionary studies. Mol Biol Evol. 2006;23:254–67.
    CAS  PubMed  Article  Google Scholar 

    24.
    Solís-Lemus C, Yang M, Ané C. Inconsistency of species tree methods under gene flow. Syst Biol. 2016;65:843–51.
    PubMed  Article  Google Scholar 

    25.
    Deiner K, Bik HM, Mächler E, Seymour M, Lacoursière-Roussel A, Altermatt F, et al. Environmental DNA metabarcoding: Transforming how we survey animal and plant communities. Mol Ecol. 2017;26:5872–95.
    PubMed  Article  Google Scholar 

    26.
    Pawlowski J, Audic S, Adl S, Bass D, Belbahri L, Berney C, et al. CBOL protist working group: barcoding eukaryotic richness beyond the animal, plant, and fungal kingdoms. PLoS Biol. 2012;10:e1001419.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    27.
    Trobajo R, Mann DG, Clavero E, Evans KM, Vanormelingen P, McGregor RC. The use of partial cox1, rbcL and LSU rDNA sequences for phylogenetics and species identification within the Nitzschia palea species complex (Bacillariophyceae). Eur J Phycol. 2010;45:413–25.
    CAS  Article  Google Scholar 

    28.
    Decelle J, Suzuki N, Mahé F, De Vargas C, Not F. Molecular phylogeny and morphological evolution of the acantharia (Radiolaria). Protist. 2012;163:435–50.
    PubMed  Article  Google Scholar 

    29.
    Stoeck T, Przybos E, Dunthorn M. The D1-D2 region of the large subunit ribosomal DNA as barcode for ciliates. Mol Ecol Resour. 2014;14:458–68.
    CAS  PubMed  Article  Google Scholar 

    30.
    Moniz MBJ, Kaczmarska I. Barcoding of diatoms: nuclear encoded ITS revisited. Protist. 2010;161:7–34.
    CAS  PubMed  Article  Google Scholar 

    31.
    Gile GH, Stern RF, James ER, Keeling PJ. DNA barcoding of chlorarachniophytes using nucleomorph ITS sequences. J Phycol. 2010;46:743–50.
    CAS  Article  Google Scholar 

    32.
    Stern RF, Andersen RA, Jameson I, Küpper FC, Coffroth M-A, Vaulot D, et al. Evaluating the ribosomal internal transcribed spacer (ITS) as a candidate dinoflagellate barcode marker. PLoS ONE. 2012;7:e42780.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    33.
    Saunders GW. Applying DNA barcoding to red macroalgae: a preliminary appraisal holds promise for future applications. Philos Trans R Soc B Biol Sci. 2005;360:1879–88.

    34.
    MacGillivary ML, Kaczmarska I. Survey of the efficacy of a short fragment of the rbcL gene as a supplemental DNA barcode for diatoms. J Eukaryot Microbiol. 2011;58:529–36.
    CAS  PubMed  Article  Google Scholar 

    35.
    Zimmermann J, Jahn R, Gemeinholzer B. Barcoding diatoms: evaluation of the V4 subregion on the 18S rRNA gene, including new primers and protocols. Org Divers Evol. 2011;11:173–92.
    Article  Google Scholar 

    36.
    Piredda R, Tomasino MP, D’Erchia AM, Manzari C, Pesole G, Montresor M, et al. Diversity and temporal patterns of planktonic protist assemblages at a Mediterranean Long Term Ecological Research site. FEMS Microbiol Ecol. 2016;93:fiw200.
    PubMed  Article  CAS  Google Scholar 

    37.
    Pawlowski J, Lecroq B. Short rDNA barcodes for species identification in foraminifera. J Eukaryot Microbiol. 2010;57:197–205.
    CAS  PubMed  Article  Google Scholar 

    38.
    Mordret S, Piredda R, Vaulot D, Montresor M. Kooistra WHCF, Sarno D. dinoref: a curated dinoflagellate (Dinophyceae) reference database for the 18S rRNA gene. Mol Ecol Resour. 2018;18:974–87.
    CAS  Article  Google Scholar 

    39.
    Gaonkar CC, Piredda R, Minucci C, Mann DG, Montresor M, Sarno D, et al. Annotated 18S and 28S rDNA reference sequences of taxa in the planktonic diatom family Chaetocerotaceae. PLoS ONE. 2018;13:e0208929.
    PubMed  PubMed Central  Article  Google Scholar 

    40.
    Balzano S, Percopo I, Siano R, Gourvil P, Chanoine M, Marie D, et al. Morphological and genetic diversity of Beaufort Sea diatoms with high contributions from the Chaetoceros neogracilis species complex. J Phycol. 2017;53:161–87.
    CAS  PubMed  Article  Google Scholar 

    41.
    Kopf A, Bicak M, Kottmann R, Schnetzer J, Kostadinov I, Lehmann K, et al. The ocean sampling day consortium. Gigascience. 2015;4. https://doi.org/10.1186/s13742-015-0066-5.

    42.
    Pesant S, Not F, Picheral M, Kandels-Lewis S, Le Bescot N, Gorsky G, et al. Open science resources for the discovery and analysis of Tara Oceans data. Sci Data. 2015;2:150023.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    43.
    Yau S, Lopes dos Santos A, Eikrem W, Gérikas Ribeiro C, Gourvil P, Balzano S, et al. Mantoniella beaufortii and Mantoniella baffinensis sp. nov. (Mamiellales, Mamiellophyceae), two new green algal species from the high arctic. J Phycol. 2020;56:37–51.
    PubMed  Article  Google Scholar 

    44.
    Lopes Dos Santos A, Gourvil P, Tragin M, Noël M-H, Decelle J, Romac S, et al. Diversity and oceanic distribution of prasinophytes clade VII, the dominant group of green algae in oceanic waters. ISME J. 2017;11:512–28.
    PubMed  Article  Google Scholar 

    45.
    Kuwata A, Yamada K, Ichinomiya M, Yoshikawa S, Tragin M, Vaulot D, et al. Bolidophyceae, a sister picoplanktonic group of diatoms—a review. Front Mar Sci. 2018;5:370.
    Article  Google Scholar 

    46.
    Segawa T, Matsuzaki R, Takeuchi N, Akiyoshi A, Navarro F, Sugiyama S, et al. Bipolar dispersal of red-snow algae. Nat Commun. 2018;9:1–8.
    CAS  Article  Google Scholar 

    47.
    Ichinomiya M, Dos Santos AL, Gourvil P, Yoshikawa S, Kamiya M, Ohki K, et al. Diversity and oceanic distribution of the Parmales (Bolidophyceae), a picoplanktonic group closely related to diatoms. ISME J. 2016;10:2419–34.
    PubMed  PubMed Central  Article  Google Scholar 

    48.
    Tragin M, Vaulot D. Novel diversity within marine Mamiellophyceae (Chlorophyta) unveiled by metabarcoding. Sci Rep. 2019;9:1–14.
    CAS  Article  Google Scholar 

    49.
    Morard R, Vollmar NM, Greco M, Kucera M. Unassigned diversity of planktonic foraminifera from environmental sequencing revealed as known but neglected species. PLoS ONE. 2019;14:e0213936.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    50.
    Pinseel E, Janssens SB, Verleyen E, Vanormelingen P, Kohler TJ, Biersma EM, et al. Global radiation in a rare biosphere soil diatom. Nat Commun. 2020;11:1–12.
    Article  CAS  Google Scholar 

    51.
    Hasle GR, Syvertsen EE. Marine diatoms. In: Tomas CR, editor. Identifying marine phytoplankton. San Diego: Academic Press; 1997. pp 5–385.

    52.
    Kooistra WHCF, Sarno D, Hernández-Becerril DU, Assmy P, Di Prisco C, Montresor M. Comparative molecular and morphological phylogenetic analyses of taxa in the Chaetocerotaceae (Bacillariophyta). Phycologia. 2010;49:471–500.
    Article  Google Scholar 

    53.
    De Luca D, Sarno D, Piredda R, Kooistra WHCF. A multigene phylogeny to infer the evolutionary history of Chaetocerotaceae (Bacillariophyta). Mol Phylogenet Evol. 2019;140:106575.
    PubMed  Article  Google Scholar 

    54.
    Longhurst AR. Toward and ecological geography of the sea. In: Longhurst AR, editor. Ecological geography of the sea. 2nd ed. Cambridge: Academic Press; 2007. pp 1–17.

    55.
    Stoeck T, Bass D, Nebel M, Christen R, Jones MDM, Breiner H-W, et al. Multiple marker parallel tag environmental DNA sequencing reveals a highly complex eukaryotic community in marine anoxic water. Mol Ecol. 2010;19:21–31.
    CAS  PubMed  Article  Google Scholar 

    56.
    Amaral-Zettler LA, McCliment EA, Ducklow HW, Huse SM. A method for studying protistan diversity using massively parallel sequencing of V9 hypervariable regions of small-subunit ribosomal RNA genes. PLoS ONE. 2009;4:e6372.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    57.
    Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol. 2009;75:7537–41.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    58.
    De Vargas C, Audic S, Tara Oceans Consortium C, Tara Oceans Expedition P. Total V9 rDNA information organized at the metabarcode level for the Tara Oceans Expedition (2009–12). 2017. PANGAEA. https://doi.org/10.1594/PANGAEA.873277.

    59.
    Ibarbalz FM, Henry N, Brandão MC, Martini S, Busseni G, Byrne H, et al. Global trends in marine plankton diversity across kingdoms of life. Cell. 2019;179:1084–97.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    60.
    Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215:403–10.
    CAS  Article  Google Scholar 

    61.
    Katoh K, Rozewicki J, Yamada KD. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief Bioinform. 2019;20:1160–6.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    62.
    Price MN, Dehal PS, Arkin AP. FastTree 2—approximately maximum-likelihood trees for large alignments. PLoS ONE. 2010;5:e9490.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    63.
    Han MV, Zmasek CM. phyloXML: XML for evolutionary biology and comparative genomics. BMC Bioinform. 2009;10:356.
    Article  CAS  Google Scholar 

    64.
    Templeton AR, Crandall KA, Sing CF. A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping and DNA sequence data. III. Cladogram estimation. Genetics. 1992;132:619–33.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    65.
    Clement M, Posada D, Crandall KA. TCS: a computer program to estimate gene genealogies. Mol Ecol. 2000;9:1657–9.
    CAS  PubMed  Article  Google Scholar 

    66.
    Leigh JW, Bryant D. popart: full‐feature software for haplotype network construction. Methods Ecol Evol. 2015;6:1110–6.
    Article  Google Scholar 

    67.
    Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 2015;32:268–74.
    CAS  Article  Google Scholar 

    68.
    Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods. 2017;14:587–9.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    69.
    Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol. 2013;30:2725–9.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    70.
    Jukes TH, Cantor CR. Evolution of protein molecules. Mamm Protein Metab. 1969;3:21–132.
    CAS  Article  Google Scholar 

    71.
    Meyer CP, Paulay G. DNA barcoding: error rates based on comprehensive sampling. PLoS Biol. 2005;3:e422.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    72.
    R Core Team. R: a language and environment for statistical computing. 2019. Vienna, Austria: R Foundation for Statistical Computing; 2019.

    73.
    McMurdie PJ, Holmes S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE. 2013;8:e61217.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    74.
    Wickham H. ggplot2: elegant graphics for data analysis. New York: Springer-Verlag; 2016. https://ggplot2.tidyverse.org.

    75.
    Becker A, Wilks AR. Maps: draw geographical maps. 2018. https://CRAN.R-project.org/package=maps.

    76.
    Markmann M, Tautz D. Reverse taxonomy: an approach towards determining the diversity of meiobenthic organisms based on ribosomal RNA signature sequences. Philos Trans R Soc Lond B Biol Sci. 2005;360:1917–24.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    77.
    López-Escardó D, Paps J, de Vargas C, Massana R, Ruiz-Trillo I, Del Campo J. Metabarcoding analysis on European coastal samples reveals new molecular metazoan diversity. Sci Rep. 2018;8:9106.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    78.
    Álvarez I, Wendel JF. Ribosomal ITS sequences and plant phylogenetic inference. Mol Phylogenet Evol. 2003;29:417–34.

    79.
    Alverson AJ, Kolnick L. Intragenomic nucleotide polymorphism among small subunit (18S) rDNA paralogs in the diatom genus Skeletonema (Bacillariophyta). J Phycol. 2005;41:1248–57.
    CAS  Article  Google Scholar 

    80.
    Gaonkar CC, Piredda R, Sarno D, Zingone A, Montresor M, Kooistra WHCF. Species detection and delineation in the marine planktonic diatoms Chaetoceros and Bacteriastrum through metabarcoding: making biological sense of haplotype diversity. Environ Microbiol. 2020;22:1917–29.
    CAS  PubMed  Article  Google Scholar 

    81.
    Cleve PT. Pelagisk Diatomeer från Kattegat. In: Petersen CGJ, editor. Det Videnskabelige Udbytte af Kanonbaaden ‘Hauchs’ Togter i de Danske Have Indefor Skagen, I. Aarene 1883–86. Kjøbenhavn: Andr. Fred. Høst & Sons Forlag; 1889. pp 53–56.

    82.
    Gran HH. Den Norske Nordhaus-Expedition 1876-1878. Botanik, Protophyta: Diatomaceae, Silicoflagellata og Cilioflagellata. Christiania: Grøndal & Søns; 1897.

    83.
    De Luca D, Kooistra WHCF, Sarno D, Gaonkar CC, Piredda R. Global distribution and diversity of Chaetoceros (Bacillariophyta, Mediophyceae): integration of classical and novel strategies. PeerJ. 2019;7:e7410.
    PubMed  PubMed Central  Article  Google Scholar 

    84.
    Wang J, Wu J. Occurrence and potential risks of harmful algal blooms in the East China Sea. Sci Total Environ. 2009;407:4012–21.
    CAS  PubMed  Article  Google Scholar 

    85.
    Zhen Y, Mi T, Yu Z. Detection of several harmful algal species by sandwich hybridization integrated with a nuclease protection assay. Harmful Algae. 2009;8:651–7.
    CAS  Article  Google Scholar 

    86.
    Richter DJ, Watteaux R, Vannier T, Leconte J, Frémont P, Reygondeau G, et al. Genomic evidence for global ocean plankton biogeography shaped by large-scale current systems. bioRxiv. 2019. https://doi.org/10.1101/867739.

    87.
    Sarno D, Kooistra WHCF, Balzano S, Hargraves PE, Zingone A. Diversity in the genus Skeletonema (Bacillariophyceae). III. Phylogenetic position and morphological variability of Skeletonema costatum and Skeletonema grevillei, with the description of Skeletonema ardens sp. nov. J Phycol. 2007;43:156–70.
    CAS  Article  Google Scholar 

    88.
    Hasle GR. The biogeography of some marine planktonic diatoms. Deep Sea Res Oceanogr Abstr. 1976;23:319–338, IN1-IN6.

    89.
    Pargana A. Functional and molecular diversity of the diatom family Leptocylindraceae. 2017. PhD Thesis, The Open University, Milton Keynes, UK.

    90.
    Novis PM. Taxonomy of Klebsormidium (Klebsormidiales, Charophyceae) in New Zealand streams and the significance of low-pH habitats. Phycologia. 2006;45:293–301.
    Article  Google Scholar 

    91.
    Rindi F, Guiry MD, López-Bautista JM. Distribution, morphology, and phylogeny of Klebsormidium (Klebsormidiales, Charophyceae) in urban environments in Europe. J Phycol. 2008;44:1529–40.
    PubMed  Article  Google Scholar 

    92.
    Rindi F, Mikhailyuk TI, Sluiman HJ, Friedl T, López-Bautista JM. Phylogenetic relationships in Interfilum and Klebsormidium (Klebsormidiophyceae, Streptophyta). Mol Phylogenet Evol. 2011;58:218–31.
    PubMed  Article  Google Scholar 

    93.
    Škaloud P, Rindi F. Ecological differentiation of cryptic species within an asexual protist morphospecies: a case study of filamentous green alga Klebsormidium (Streptophyta). J Eukaryot Microbiol. 2013;60:350–62.
    PubMed  Article  CAS  Google Scholar 

    94.
    Baas Becking LGM. Geobiologie of Inleiding tot de Milieukunde. The Hague: Van Stockum & Zoon; 1934).

    95.
    Shapiro BJ, Leducq J-B, Mallet J. What is speciation? PLoS Genet. 2016;12:e1005860.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    96.
    Godhe A, Rynearson T. The role of intraspecific variation in the ecological and evolutionary success of diatoms in changing environments. Philos Trans R Soc Lond B Biol Sci. 2017;372:20160399.
    PubMed  PubMed Central  Article  Google Scholar 

    97.
    de Vargas C, Norris R, Zaninetti L, Gibb SW, Pawlowski J. Molecular evidence of cryptic speciation in planktonic foraminifers and their relation to oceanic provinces. Proc Natl Acad Sci USA. 1999;96:2864–8.
    PubMed  Article  Google Scholar 

    98.
    Amato A, Kooistra WHCF, Levialdi Ghiron JH, Mann DG, Pröschold T, Montresor M. Reproductive isolation among sympatric cryptic species in marine diatoms. Protist. 2007;158:193–207.
    CAS  PubMed  Article  Google Scholar 

    99.
    Weisse T. Distribution and diversity of aquatic protists: an evolutionary and ecological perspective. Biodivers Conserv. 2007;17:243–59.
    Article  Google Scholar 

    100.
    Vanelslander B, Créach V, Vanormelingen P, Ernst A, Chepurnov VA, Sahan E, et al. Ecological differentiation between sympatric pseudocryptic species in the estuarine benthic diatom Navicula phyllepta (Bacillariophyceae). J Phycol. 2009;45:1278–89.
    CAS  PubMed  Article  Google Scholar  More