More stories

  • in

    Dogs (Canis familiaris) recognize their own body as a physical obstacle

    1.
    Bahrick, L. E. & Watson, J. S. Detection of intermodal proprioceptive–visual contingency as a potential basis of self-perception in infancy. Dev. Psychol. 21, 963 (1985).
    Article  Google Scholar 
    2.
    Van Den Bos, E. & Jeannerod, M. Sense of body and sense of action both contribute to self-recognition. Cognition 85, 177–187 (2002).
    Article  Google Scholar 

    3.
    Wilson, M. Six views of embodied cognition. Psychon. B. Rev. 9, 625–636 (2002).
    Article  Google Scholar 

    4.
    Smith, L. & Gasser, M. The development of embodied cognition: Six lessons from babies. Artif. life 11, 13–29 (2005).
    Article  Google Scholar 

    5.
    Shettleworth, S. J. Cognition, Evolution, and Behavior. Oxford University Press.

    6.
    Kohda, M. et al. If a fish can pass the mark test, what are the implications for consciousness and self-awareness testing in animals?. PLoS Biol 17, e3000021 (2019).
    CAS  Article  Google Scholar 

    7.
    Gallup, G. G. Chimpanzees: Self-recognition. Science 167, 86–87 (1970).
    ADS  Article  Google Scholar 

    8.
    Epstein, R., Lanza, R. P. & Skinner, B. F. “Self-awareness” in the pigeon. Science 212, 695–696 (1981).
    ADS  CAS  Article  Google Scholar 

    9.
    Heyes, C. M. Self-recognition in primates: Further reflections create a hall of mirrors. Anim. Behav. 50, 1533–1542 (1995).
    Article  Google Scholar 

    10.
    Suddendorf, T. & Butler, D. L. Response to Gallup et al.: Are rich interpretations of visual self-recognition a bit too rich?. Trends. Cogn. Sci. 18, 58–59 (2014).
    Article  Google Scholar 

    11.
    Reiss, D. & Marino, L. Mirror self-recognition in the bottlenose dolphin: A case of cognitive convergence. Proc. Natl. Acad. Sci. USA 98, 5937–5942 (2001).
    ADS  CAS  Article  Google Scholar 

    12.
    Plotnik, J. M., De Waal, F. B. & Reiss, D. Self-recognition in an Asian elephant. Proc. Natl. Acad. Sci. USA 103, 17053–17057 (2006).
    ADS  CAS  Article  Google Scholar 

    13.
    Prior, H., Schwarz, A. & Güntürkün, O. Mirror-induced behavior in the magpie (Pica pica): Evidence of self-recognition. PLoS Biol 6, e202 (2008).
    Article  Google Scholar 

    14.
    Bekoff, M. & Sherman, P. W. Reflections on animal selves. Trends Ecol. Evol. 19, 176–180 (2004).
    Article  Google Scholar 

    15.
    Lenkei, R., Faragó, T., Kovács, D., Zsilák, B. & Pongrácz, P. That dog won’t fit: Body size awareness in dogs. Anim. Cogn 23, 337–350 (2019).
    Article  Google Scholar 

    16.
    Zazzo, R. Des enfants, des singes et des chiens devant le miroir. Rev. Psychol. Appl. 29, 235–246 (1979).
    Google Scholar 

    17.
    Cuthill, I. & Guilford, T. Perceived risk and obstacle avoidance in flying birds. Anim. Behav. 40, 188–190 (1990).
    Article  Google Scholar 

    18.
    Khvatov, I. A., Sokolov, A. Y. & Kharitonov, A. N. Snakes Elaphe radiata may acquire awareness of their body limits when trying to hide in a shelter. Behav. Sci. 9, 67 (2019).
    Article  Google Scholar 

    19.
    Maeda, T. & Fujita, K. Do dogs (Canis familiaris) recognize their own body size? In Proceedings of the 2nd Canine Science Forum, Vienna, Austria, 52 (2010).

    20.
    Dale, R. & Plotnik, J. M. Elephants know when their bodies are obstacles to success in a novel transfer task. Sci. Rep. 7, 46309 (2017).
    ADS  CAS  Article  Google Scholar 

    21.
    Brownell, C. A., Zerwas, S. & Ramani, G. B. “So big”: The development of body self-awareness in toddlers. Child Dev. 78, 1426–1440 (2007).
    Article  Google Scholar 

    22.
    Povinelli, D. J. & Cant, J. G. Arboreal clambering and the evolution of self-conception. Q. Rev. Biol. 70, 393–421 (1995).
    CAS  Article  Google Scholar 

    23.
    Povinelli, D. J. Failure to find self-recognition in Asian elephants (Elephas maximus) in contrast to their use of mirror cues to discover hidden food. J. Comp. Psychol. 103, 122 (1989).
    Article  Google Scholar 

    24.
    Topál, J. et al. The dog as a model for understanding human social behaviour. Adv. Stud. Behav. 39, 71–116 (2009).
    Article  Google Scholar 

    25.
    Sanford, E. M., Burt, E. R. & Meyers-Manor, J. E. Timmy’s in the well: Empathy and prosocial helping in dogs. Learn. Behav. 46, 374–386 (2018).
    Article  Google Scholar 

    26.
    Pongrácz, P., Bánhegyi, P. & Miklósi, Á. When rank counts—dominant dogs learn better from a human demonstrator in a two-action test. Behaviour 149, 111–132 (2012).
    Article  Google Scholar 

    27.
    Huber, L., Popovová, N., Riener, S., Salobir, K. & Cimarelli, G. Would dogs copy irrelevant actions from their human caregiver?. Learn. Behav. 46, 387–397 (2018).
    Article  Google Scholar 

    28.
    Virányi, Z. S., Topál, J., Miklósi, Á. & Csányi, V. A nonverbal test of knowledge attribution: A comparative study on dogs and children. Anim. Cogn. 9, 13–26 (2006).
    Article  Google Scholar 

    29.
    Polgárdi, R., Topál, J. & Csányi, V. Intentional behaviour in dog-human communication: An experimental analysis of “showing” behaviour in the dog. Anim. Cogn. 3, 159–166 (2000).
    Article  Google Scholar 

    30.
    Pongrácz, P., Hegedüs, D., Sanjurjo, B., Kővári, A. & Miklósi, Á. “We will work for you”—Social influence may suppress individual food preferences in a communicative situation in dogs. Learn. Motiv. 44, 270–281 (2013).
    Article  Google Scholar 

    31.
    Fugazza, C., Pogány, Á. & Miklósi, Á. Recall of others’ actions after incidental encoding reveals episodic-like memory in dogs. Curr. Biol. 26, 3209–3213 (2016).
    CAS  Article  Google Scholar 

    32.
    Horowitz, A. Smelling themselves: Dogs investigate their own odours longer when modified in an “olfactory mirror” test. Behav. Proc. 143, 17–24 (2017).
    Article  Google Scholar 

    33.
    Moore, C., Mealiea, J., Garon, N. & Povinelli, D. J. The development of body self-awareness. Infancy 11, 157–174 (2007).
    Article  Google Scholar 

    34.
    Howell, T. J. & Bennett, P. C. Can dogs (Canis familiaris) use a mirror to solve a problem?. J. Vet. Behav. 6, 306–312 (2011).
    Article  Google Scholar 

    35.
    Bekoff, M. Awareness: Animal reflections. Nature 419, 255 (2002).
    ADS  CAS  Article  Google Scholar 

    36.
    Kaplan, J. T., Aziz-Zadeh, L., Uddin, L. Q. & Iacoboni, M. The self across the senses: An fMRI study of self-face and self-voice recognition. Soc. Cogn. Affect. Neur. 3, 218–223 (2008).
    Article  Google Scholar  More

  • in

    Lifestyle of sponge symbiont phages by host prediction and correlative microscopy

    1.
    Wommack KE, Colwell RR. Virioplankton: viruses in aquatic ecosystems. Microbiol Mol Biol Rev. 2000;64:69–114.
    CAS  PubMed  PubMed Central  Article  Google Scholar 
    2.
    Keen EC, Dantas G. Close encounters of three kinds: bacteriophages, commensal bacteria, and host immunity. Trends Microbiol. 2018;26:943–54.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    3.
    Sausset R, Petit MA, Gaboriau-Routhiau V, De Paepe M. New insights into intestinal phages. Mucosal Immunol. 2020;13:205–15.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    4.
    Van Belleghem J, Dąbrowska K, Vaneechoutte M, Barr J, Bollyky P. Interactions between bacteriophage, bacteria, and the mammalian immune system. Viruses. 2018;11:205–15.
    Google Scholar 

    5.
    Wilhelm SW, Suttle CA. Viruses and nutrient cycles in the sea: viruses play critical roles in the structure and function of aquatic food webs. BioScience. 1999;49:781–8.
    Article  Google Scholar 

    6.
    Thingstad TF. Elements of a theory for the mechanisms controlling abundance, diversity, and biogeochemical role of lytic bacterial viruses in aquatic systems. Limnol Oceanogr. 2000;45:1320–2.
    Article  Google Scholar 

    7.
    Winter C, Bouvier T, Weinbauer MG, Thingstad TF. Trade-offs between competition and defense specialists among unicellular planktonic organisms: the “killing the winner” hypothesis revisited. Microbiol Mol Biol Rev. 2010;74:42–57.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    8.
    Minot S, Bryson A, Chehoud C, Wu GD, Lewis JD, Bushman FD. Rapid evolution of the human gut virome. PNAS. 2013;110:12450–5.
    CAS  PubMed  Article  Google Scholar 

    9.
    Thurber RV, Haynes M, Breitbart M, Wegley L, Rohwer F. Laboratory procedures to generate viral metagenomes. Nat Protocols. 2009;4:470–83..

    10.
    Leigh BA, Bordenstein SR, Brooks AW, Mikaelyan A, Bordenstein SR. Finer-scale phylosymbiosis: insights from insect viromes. mSystems. 2018a;3:e00131–18.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    11.
    Wille M, Shi M, Klaassen M, Hurt AC, Holmes EC. Virome heterogeneity and connectivity in waterfowl and shorebird communities. ISME J. 2019;13:2603–16.
    PubMed  PubMed Central  Article  Google Scholar 

    12.
    Jahn MT, Arkhipova K, Markert SM, Stigloher C, Lachnit T, Pita L et al. A phage protein aids bacterial symbionts in eukaryote immune evasion. Cell Host Microbe. 2019;26:542–50.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    13.
    Leigh BA, Djurhuus A, Breitbart M, Dishaw LJ. The gut virome of the protochordate model organism, Ciona intestinalis subtype A. Virus Res. 2018b;244:137–46.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    14.
    Shkoporov AN, Clooney AG, Sutton TDS, Ryan FJ, Daly KM, Nolan JA, et al. The human gut virome is highly diverse, stable, and individual specific. Cell Host Microbe. 2019;26:527–41.e525.
    CAS  Article  Google Scholar 

    15.
    Fuhrman JA. Marine viruses and their biogeochemical and ecological effects. Nature. 1999;399:541–8.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    16.
    Paul JH. Prophages in marine bacteria: dangerous molecular time bombs or the key to survival in the seas? ISME J. 2008;2:579–89.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    17.
    Touchon M, Bernheim A, Rocha EP. Genetic and life-history traits associated with the distribution of prophages in bacteria. ISME J. 2016;10:2744–54.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    18.
    Howard-Varona C, Hargreaves KR, Abedon ST, Sullivan MB. Lysogeny in nature: mechanisms, impact and ecology of temperate phages. ISME J. 2017;11:1511–20.
    PubMed  PubMed Central  Article  Google Scholar 

    19.
    Weitz JS. Quantitative viral ecology dynamics of viruses and their microbial hosts. Princeton: Princeton University Press; 2015.

    20.
    Bondy-Denomy J, Qian J, Westra ER, Buckling A, Guttman DS, Davidson AR, et al. Prophages mediate defense against phage infection through diverse mechanisms. ISME J. 2016;10:2854–66.
    PubMed  PubMed Central  Article  Google Scholar 

    21.
    Herold S, Karch H, Schmidt H. Shiga toxin-encoding bacteriophages–genomes in motion. Int J Med Microbiol. 2004;294:115–21.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    22.
    Kim M-S, Bae J-W. Lysogeny is prevalent and widely distributed in the murine gut microbiota. ISME J. 2018;12:1127–41.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    23.
    Reyes A, Wu M, McNulty NP, Rohwer FL, Gordon JI. Gnotobiotic mouse model of phage–bacterial host dynamics in the human gut. PNAS. 2013;110:20236–41.

    24.
    Bonilla-Rosso G, Steiner T, Wichmann F, Bexkens E, Engel P. Honey bees harbor a diverse gut virome engaging in nested strain-level interactions with the microbiota. PNAS. 2020;117:7355–62.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    25.
    Sweere JM, Van Belleghem JD, Ishak H, Bach MS, Popescu M, Sunkari V, et al. Bacteriophage trigger antiviral immunity and prevent clearance of bacterial infection. Science. 2019;363:eaat9691.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    26.
    Hadas E, Marie D, Shpigel M, Ilan M. Virus predation by sponges is a new nutrient-flow pathway in coral reef food webs. Limnol Oceanogr. 2006;51:1548–50.
    Article  Google Scholar 

    27.
    Rix L, Ribes M, Coma R, Jahn MT, de Goeij JM, van Oevelen D, et al. Heterotrophy in the earliest gut: a single-cell view of heterotrophic carbon and nitrogen assimilation in sponge-microbe symbioses. ISME J. 2020;14:2554–67.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    28.
    Lurgi M, Thomas T, Wemheuer B, Webster NS, Montoya JM. Modularity and predicted functions of the global sponge-microbiome network. Nat Commun. 2019; 10. https://doi.org/10.1038/s41467-019-08925-4.

    29.
    Reveillaud J, Maignien L, Eren AM, Huber JA, Apprill A, Sogin ML, et al. Host-specificity among abundant and rare taxa in the sponge microbiome. ISME J. 2014;8:1198–209.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    30.
    Laffy PW, Wood-Charlson EM, Turaev D, Jutz S, Pascelli C, Botte ES, et al. Reef invertebrate viromics: diversity, host specificity and functional capacity. Environ Microbiol. 2018;20:2125–41.
    PubMed  Article  Google Scholar 

    31.
    Taylor MW, Radax R, Steger D, Wagner M. Sponge-associated microorganisms: evolution, ecology, and biotechnological potential. Microbiol Mol Biol Rev. 2007;71:295–+.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    32.
    Pascelli C, Laffy PW, Botté E, Kupresanin M, Rattei T, Lurgi M, et al. Viral ecogenomics across the Porifera. Microbiome. 2020;8:144.
    PubMed  PubMed Central  Article  Google Scholar 

    33.
    Allers E, Moraru C, Duhaime MB, Beneze E, Solonenko N, Barrero-Canosa J, et al. Single-cell and population level viral infection dynamics revealed by phageFISH, a method to visualize intracellular and free viruses. Environ Microbiol. 2013;15:2306–18.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    34.
    Edwards RA, McNair K, Faust K, Raes J, Dutilh BE. Computational approaches to predict bacteriophage-host relationships. FEMS Microbiol Rev. 2016;40:258–72.
    CAS  PubMed  Article  Google Scholar 

    35.
    Horn H, Slaby BM, Jahn MT, Bayer K, Moitinho-Silva L, Forster F, et al. An enrichment of CRISPR and other defense-related features in marine sponge-associated microbial metagenomes. Front Microbiol. 2016;7:1751.
    PubMed  PubMed Central  Google Scholar 

    36.
    Slaby BM, Hackl T, Horn H, Bayer K, Hentschel U. Metagenomic binning of a marine sponge microbiome reveals unity in defense but metabolic specialization. ISME J. 2017;11:2465.
    PubMed  PubMed Central  Article  Google Scholar 

    37.
    Fiore CL, Labrie M, Jarett JK, Lesser MP. Transcriptional activity of the giant barrel sponge, Xestospongia muta Holobiont: molecular evidence for metabolic interchange. Front Microbiol. 2015; 6. https://doi.org/10.3389/fmicb.2015.00364.

    38.
    Ryu T, Seridi L, Moitinho-Silva L, Oates M, Liew YJ, Mavromatis C, et al. Hologenome analysis of two marine sponges with different microbiomes. BMC Genom. 2016;17:1–11.
    Article  CAS  Google Scholar 

    39.
    Tully BJ, Sachdeva R, Graham ED, Heidelberg JF. 290 metagenome-assembled genomes from the Mediterranean Sea: a resource for marine microbiology. PeerJ. 2017;5:e3558.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    40.
    Biswas A, Staals RHJ, Morales SE, Fineran PC, Brown CM. CRISPRDetect: a flexible algorithm to define CRISPR arrays. BMC Genom. 2016;17:356–356.
    Article  CAS  Google Scholar 

    41.
    Biswas A, Gagnon JN, Brouns SJ, Fineran PC, Brown CM. CRISPRTarget: bioinformatic prediction and analysis of crRNA targets. RNA Biol. 2013;10:817–27.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    42.
    Burstein D, Harrington LB, Strutt SC, Probst AJ, Anantharaman K, Thomas BC, et al. New CRISPR–Cas systems from uncultivated microbes. Nature. 2016;542:237.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    43.
    Lowe TM, Chan PP. tRNAscan-SE On-line: integrating search and context for analysis of transfer RNA genes. Nucleic Acids Res. 2016;44:W54–57.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    44.
    Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498–504.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    45.
    McNair K, Bailey BA, Edwards RA. PHACTS, a computational approach to classifying the lifestyle of phages. Bioinformatics. 2012;28:614–8.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    46.
    Grazziotin AL, Koonin EV, Kristensen DM. Prokaryotic Virus Orthologous Groups (pVOGs): a resource for comparative genomics and protein family annotation. Nucleic Acids Res. 2017;45:D491–8.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    47.
    Jones P, Binns D, Chang HY, Fraser M, Li W, McAnulla C, et al. InterProScan 5: genome-scale protein function classification. Bioinformatics. 2014;30:1236–40.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    48.
    Jahn MT, Markert SM, Ryu T, Ravasi T, Stigloher C, Hentschel U, et al. Shedding light on cell compartmentation in the candidate phylum Poribacteria by high resolution visualisation and transcriptional profiling. Sci Rep. 2016;6:35860.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    49.
    Chin CR, Perreira JM, Savidis G, Portmann JM, Aker AM, Feeley EM, et al. Direct visualization of HIV-1 replication intermediates shows that capsid and CPSF6 modulate HIV-1 intra-nuclear invasion and integration. Cell Rep. 2015;13:1717–31.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    50.
    Reynolds ES. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol. 1963;17:208–12.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    51.
    Paul-Gilloteaux P, Heiligenstein X, Belle M, Domart MC, Larijani B, Collinson L, et al. eC-CLEM: flexible multidimensional registration software for correlative microscopies. Nat Methods. 2017;14:102–3.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    52.
    Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9:671–5.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    53.
    R Development Core Team. R: a language and environment for statistical computing. In: Computing RFfS (ed): Vienna, Austria 2020.

    54.
    Bayer K, Jahn MT, Slaby BM, Moitinho-Silva L, Hentschel U. Marine sponges as Chloroflexi hot spots: genomic insights and high-resolution visualization of an abundant and diverse symbiotic clade. mSystems. 2018;3:e00150–18.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    55.
    Thomas T, Moitinho-Silva L, Lurgi M, Bjork JR, Easson C, Astudillo-Garcia C, et al. Diversity, structure and convergent evolution of the global sponge microbiome. Nat Commun. 2016;7:11870.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    56.
    Lima-Mendez G, Van Helden J, Toussaint A, Leplae R. Reticulate representation of evolutionary and functional relationships between phage genomes. Mol Biol Evol. 2008;25:762–77.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    57.
    Bavestrello G, Burlando B, Sara M. The architecture of the canal systems of Petrosia ficiformis and Chondrosia reniformis studied by corrosion casts (Porifera, Demospongiae). Zoomorphology. 1988;108:161–6.
    Article  Google Scholar 

    58.
    Van Soest RWM, Boury-Esnault N, Hooper JNA, Rützler K, de Voogd NJ, Alvarez B et al. World porifera database. 2019.

    59.
    Oh JH, Alexander LM, Pan M, Schueler KL, Keller MP, Attie AD, et al. Dietary fructose and microbiota-derived short-chain fatty acids promote bacteriophage production in the gut symbiont Lactobacillus reuteri. Cell Host Microbe. 2019;25:273–84 e276.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    60.
    De Paepe M, Tournier L, Moncaut E, Son O, Langella P, Petit MA. Carriage of lambda latent virus is costly for its bacterial host due to frequent reactivation in monoxenic mouse intestine. PLoS Genet. 2016;12:e1005861.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    61.
    Barr JJ, Auro R, Furlan M, Whiteson KL, Erb ML, Pogliano J, et al. Bacteriophage adhering to mucus provide a non-host-derived immunity. PNAS. 2013;110:10771–6.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    62.
    Roux S. A viral ecogenomics framework to uncover the secrets of nature’s “microbe whisperers”. mSystems. 2019;4:e00111–9.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    63.
    Paez-Espino D, Roux S, Chen IA, Palaniappan K, Ratner A, Chu K, et al. IMG/VR v.2.0: an integrated data management and analysis system for cultivated and environmental viral genomes. Nucleic Acids Res. 2019;47:D678–86.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    64.
    Deng L, Ignacio-Espinoza JC, Gregory AC, Poulos BT, Weitz JS, Hugenholtz P, et al. Viral tagging reveals discrete populations in Synechococcus viral genome sequence space. Nature. 2014;513:242–45.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    65.
    Džunková M, Low SJ, Daly JN, Deng L, Rinke C, Hugenholtz P. Defining the human gut host–phage network through single-cell viral tagging. Nat Microbiol. 2019;4:2192–203.
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    66.
    Marbouty M, Baudry L, Cournac A, Koszul R. Scaffolding bacterial genomes and probing host-virus interactions in gut microbiome by proximity ligation (chromosome capture) assay. Sci Adv. 2017;3:e1602105.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    67.
    Sullivan MB, Waterbury JB, Chisholm SW. Cyanophages infecting the oceanic cyanobacterium Prochlorococcus. Nature. 2003;424:1047–51.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    68.
    de Jonge PA, Nobrega FL, Brouns SJJ, Dutilh BE. Molecular and evolutionary determinants of bacteriophage host range. Trends Microbiol. 2019;27:51–63.
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    69.
    Kauffman KM, Hussain FA, Yang J, Arevalo P, Brown JM, Chang WK, et al. A major lineage of non-tailed dsDNA viruses as unrecognized killers of marine bacteria. Nature. 2018;554:118–22.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    70.
    Flores CO, Valverde S, Weitz JS. Multi-scale structure and geographic drivers of cross-infection within marine bacteria and phages. ISME J. 2013;7:520–32.
    PubMed  Article  PubMed Central  Google Scholar 

    71.
    Soffer N, Zaneveld J, Vega Thurber R. Phage-bacteria network analysis and its implication for the understanding of coral disease. Environ Microbiol. 2015;17:1203–18.
    CAS  Article  Google Scholar 

    72.
    Tzipilevich E, Habusha M, Ben-Yehuda S. Acquisition of phage sensitivity by bacteria through exchange of phage receptors. Cell. 2017;168:186–99 e112.
    CAS  PubMed  Article  Google Scholar 

    73.
    Battich N, Stoeger T, Pelkmans L. Image-based transcriptomics in thousands of single human cells at single-molecule resolution. Nat Methods. 2013;10:1127–33.
    CAS  PubMed  Article  Google Scholar 

    74.
    Li X-Y, Lachnit T, Fraune S, Bosch TCG, Traulsen A, Sieber M. Temperate phages as self-replicating weapons in bacterial competition. J R Soc Interface. 2017;14:20170563.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    75.
    Pascelli C, Laffy PW, Kupresanin M, Ravasi T, Webster NS. Morphological characterization of virus-like particles in coral reef sponges. PeerJ. 2018;6:e5625–5625.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    76.
    Sime-Ngando T. Environmental bacteriophages: viruses of microbes in aquatic ecosystems. Front Microbiol. 2014;5:355.
    PubMed  PubMed Central  Article  Google Scholar 

    77.
    Knowles B, Silveira CB, Bailey BA, Barott K, Cantu VA, Cobián-Güemes AG, et al. Lytic to temperate switching of viral communities. Nature. 2016;531:466.
    CAS  PubMed  Article  Google Scholar 

    78.
    Duerkop BA, Clements CV, Rollins D, Rodrigues JLM, Hooper LV. A composite bacteriophage alters colonization by an intestinal commensal bacterium. PNAS. 2012;109:17621–6.

    79.
    Thingstad TF, Vage S, Storesund JE, Sandaa RA, Giske J. A theoretical analysis of how strain-specific viruses can control microbial species diversity. PNAS. 2014;111:7813–8.
    CAS  PubMed  Article  Google Scholar 

    80.
    Morella NM, Gomez AL, Wang G, Leung MS, Koskella B. The impact of bacteriophages on phyllosphere bacterial abundance and composition. Mol Ecol. 2018;27:2025–38.
    PubMed  Article  PubMed Central  Google Scholar 

    81.
    Wattam AR, Davis JJ, Assaf R, Boisvert S, Brettin T, Bun C, et al. Improvements to PATRIC, the all-bacterial Bioinformatics Database and Analysis Resource Center. Nucleic Acids Res. 2017;45:D535–42.
    CAS  PubMed  Article  PubMed Central  Google Scholar  More

  • in

    Large-scale farmer-led experiment demonstrates positive impact of cover crops on multiple soil health indicators

    1.
    Seifert, C. A., Azzari, G. & Lobell, D. B. Satellite detection of cover crops and their effects on crop yield in the Midwestern United States. Environ. Res. Lett. 13, 064033 (2018).
    ADS  Article  Google Scholar 
    2.
    2017 Census of Agriculture, Summary and State Data (USDA, 2019); https://www.nass.usda.gov/Publications/AgCensus/2017/Full_Report/Volume_1,_Chapter_1_US/usv1.pdf

    3.
    Basche, A. D. et al. Soil water improvements with the long-term use of a winter rye cover crop. Agric. Water Manag. 172, 40–50 (2016).
    Article  Google Scholar 

    4.
    Schipanski, M. E. et al. A framework for evaluating ecosystem services provided by cover crops in agroecosystems. Agric. Syst. 125, 12–22 (2014).
    Article  Google Scholar 

    5.
    Blanco-Canqui, H. et al. Cover crops and ecosystem services: insights from studies in temperate soils. Agron. J. 107, 2449–2474 (2015).
    CAS  Article  Google Scholar 

    6.
    Andrews, S. S. et al. On‐farm assessment of soil quality in California’s central valley. Agron. J. 94, 12–23 (2002).
    Article  Google Scholar 

    7.
    Welch, R. Y., Behnke, G. D., Davis, A. S., Masiunas, J. & Villamil, M. B. Using cover crops in headlands of organic grain farms: effects on soil properties, weeds and crop yields. Agric. Ecosyst. Environ. 216, 322–332 (2016).
    Article  Google Scholar 

    8.
    Wyland, L. Winter cover crops in a vegetable cropping system: impacts on nitrate leaching, soil water, crop yield, pests and management costs. Agric. Ecosyst. Environ. 59, 1–17 (1996).
    Article  Google Scholar 

    9.
    Karlen, D. L. & Doran, J. W. Cover crop management effects on soybean and corn growth and nitrogen dynamics in an on-farm study. Am. J. Altern. Agric. 6, 71–82 (1991).
    Article  Google Scholar 

    10.
    Koch, R. L. et al. On-farm evaluation of a fall-seeded rye cover crop for suppression of soybean aphid (Hemiptera: Aphididae) on soybean: suppression of soybean aphid with rye cover crop. Agric. For. Entomol. 17, 239–246 (2015).
    Article  Google Scholar 

    11.
    Sayre, N. F., deBuys, W., Bestelmeyer, B. T. & Havstad, K. M. “The Range Problem” after a century of rangeland science: new research themes for altered landscapes. Rangeland Ecol. Manag. 65, 545–552 (2012).
    Article  Google Scholar 

    12.
    Kladivko, E. J. et al. State-wide soil health programs for education and on-farm assessment: lessons learned. J. Soil Water Conserv. 74, 12A–17A (2019).
    Article  Google Scholar 

    13.
    Poeplau, C. & Don, A. Carbon sequestration in agricultural soils via cultivation of cover crops – a meta-analysis. Agric. Ecosyst. Environ. 200, 33–41 (2015).
    CAS  Article  Google Scholar 

    14.
    Vermeulen, S. et al. A global agenda for collective action on soil carbon. Nat. Sustain. 2, 2–4 (2019).
    Article  Google Scholar 

    15.
    Lehmann, J., Bossio, D. A., Kögel-Knabner, I. & Rillig, M. C. The concept and future prospects of soil health. Nat. Rev. Earth Environ. 1, 544–553 (2020).
    ADS  PubMed  Article  Google Scholar 

    16.
    Stewart, R. D. et al. What we talk about when we talk about soil health. Agric. Environ. Lett. 3, 180033 (2018).
    Article  CAS  Google Scholar 

    17.
    Norris, C. E. et al. Introducing the North American project to evaluate soil health measurements. Agron. J. 112, 3195–3215 (2020).
    Article  Google Scholar 

    18.
    Sanderman, J., Savage, K. & Dangal, S. R. S. Mid‐infrared spectroscopy for prediction of soil health indicators in the United States. Soil Sci. Soc. Am. J. 84, 251–261 (2020).
    ADS  CAS  Article  Google Scholar 

    19.
    Rorick, J. D. & Kladivko, E. J. Cereal rye cover crop effects on soil carbon and physical properties in Southeastern Indiana. J. Soil Water Conserv. 72, 260–265 (2017).
    Article  Google Scholar 

    20.
    Faé, G. S. et al. Integrating winter annual forages into a no-till corn silage system. Agron. J. 101, 1286–1296 (2009).
    Article  Google Scholar 

    21.
    Wegner, B. R. et al. Soil response to corn residue removal and cover crops in eastern South Dakota. Soil Sci. Soc. Am. J. 79, 1179–1187 (2015).
    ADS  CAS  Article  Google Scholar 

    22.
    Karlen, D. L., Goeser, N. J., Veum, K. S. & Yost, M. A. On-farm soil health evaluations: challenges and opportunities. J. Soil Water Conserv. 72, 26A–31A (2017).
    Article  Google Scholar 

    23.
    Wade, J. et al. Improved soil biological health increases corn grain yield in N fertilized systems across the Corn Belt. Sci. Rep. 10, 3917 (2020).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    24.
    Bossio, D. A. et al. The role of soil carbon in natural climate solutions. Nat. Sustain. 3, 391–398 (2020).
    Article  Google Scholar 

    25.
    Stanton, C. Y. et al. Managing cropland and rangeland for climate mitigation: an expert elicitation on soil carbon in California. Clim. Change 147, 633–646 (2018).
    ADS  CAS  Article  Google Scholar 

    26.
    Lugato, E., Leip, A. & Jones, A. Mitigation potential of soil carbon management overestimated by neglecting N2O emissions. Nat. Clim. Change 8, 219–223 (2018).
    ADS  CAS  Article  Google Scholar 

    27.
    Kaye, J. P. & Quemada, M. Using cover crops to mitigate and adapt to climate change. A review. Agron. Sustain. Dev. 37, 4 (2017).
    Article  Google Scholar 

    28.
    Basche, A. D. & DeLonge, M. S. Comparing infiltration rates in soils managed with conventional and alternative farming methods: a meta-analysis. PLoS ONE 14, e0215702 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    29.
    Basche, A. & DeLonge, M. The impact of continuous living cover on soil hydrologic properties: a meta-analysis. Soil Sci. Soc. Am. J. 81, 1179–1190 (2017).
    ADS  CAS  Article  Google Scholar 

    30.
    Roper, W. R., Osmond, D. L. & Heitman, J. L. A response to “Reanalysis validates soil health indicator sensitivity and correlation with long‐term crop yields”. Soil Sci. Soc. Am. J. 83, 1842–1845 (2019).
    ADS  CAS  Article  Google Scholar 

    31.
    King, A. E., Ali, G. A., Gillespie, A. W. & Wagner-Riddle, C. Soil organic matter as catalyst of crop resource capture. Front. Environ. Sci. 8, 50 (2020).
    Article  Google Scholar 

    32.
    Oldfield, E. E., Bradford, M. A. & Wood, S. A. Global meta-analysis of the relationship between soil organic matter and crop yields. SOIL 5, 15–32 (2019).
    CAS  Article  Google Scholar 

    33.
    Oldfield, E. E., Wood, S. A. & Bradford, M. A. Direct evidence using a controlled greenhouse study for threshold effects of soil organic matter on crop growth. Ecol. Appl. 30, e02073 (2020).
    PubMed  Article  Google Scholar 

    34.
    Wood, S. A. et al. Opposing effects of different soil organic matter fractions on crop yields. Ecol. Appl. 26, 2072–2085 (2016).
    PubMed  Article  Google Scholar 

    35.
    Fine, A. K., van Es, H. M. & Schindelbeck, R. R. Statistics, scoring functions, and regional analysis of a comprehensive soil health database. Soil Sci. Soc. Am. J. 81, 589 (2017).
    ADS  CAS  Article  Google Scholar 

    36.
    Fine, A. K., Ristow, A., Schindelbeck, R. R. & van Es, H. M. Update of scoring functions for Cornell Soil Health Test. What’s Cropping Up? Blog https://blogs.cornell.edu/whatscroppingup/2016/11/30/update-of-scoring-functions-for-cornell-soil-health-test/ (2016).

    37.
    Bradford, M. A. et al. Discontinuity in the responses of ecosystem processes and multifunctionality to altered soil community composition. Proc. Natl Acad. Sci. USA 111, 14478–14483 (2014).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    38.
    Bradford, M. A. et al. Reply to Byrnes et al.: Aggregation can obscure understanding of ecosystem multifunctionality. Proc. Natl Acad. Sci. USA 111, E5491 (2014).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    39.
    Kettler, T. A., Doran, J. W. & Gilbert, T. L. Simplified method for soil particle-size determination to accompany soil-quality analyses. Soil Sci. Soc. Am. J. 65, 849–852 (2001).
    ADS  CAS  Article  Google Scholar 

    40.
    Moebius, B. N. et al. Evaluation of laboratory-measured soil properties as indicators of soil physical quality. Soil Sci. 172, 895–912 (2007).
    ADS  CAS  Article  Google Scholar 

    41.
    Reynolds, W. & Topp, G. in Soil Sampling and Methods of Analysis (eds Carter, M. R. & Gregorich, E. G.) 981–997 (CRC Press, 2008).

    42.
    Nelson, D. & Sommers, D. in Methods of Soil Analysis. Part 3 (Sparks, D. L., Page, A. L., Helmke, P. A. & Loeppert, R. H.) 961–1010 (Soil Science Society of America, 1996).

    43.
    Weil, R. R., Islam, K. R., Stine, M. A., Gruver, J. B. & Samson-Liebig, S. E. Estimating active carbon for soil quality assessment: a simplified method for laboratory and field use. Am. J. Altern. Agric. 18, 3–17 (2003).
    Article  Google Scholar 

    44.
    Haney, R. L. & Haney, E. B. Simple and rapid laboratory method for rewetting dry soil for incubations. Commun. Soil Sci. Plant Anal. 41, 1493–1501 (2010).
    CAS  Article  Google Scholar 

    45.
    Wright, S. F. & Upadhyaya, A. Extraction of an abundant and unusual protein from soil and comparison with hyphal protein of arbuscular mycorrhizal fungi. Soil Sci. 161, 575–586 (1996).
    ADS  CAS  Article  Google Scholar 

    46.
    Bunnefeld, N. & Phillimore, A. B. Island, archipelago and taxon effects: mixed models as a means of dealing with the imperfect design of nature’s experiments. Ecography 35, 15–22 (2012).
    Article  Google Scholar 

    47.
    Gelman, A. Scaling regression inputs by dividing by two standard deviations. Stat. Med. 27, 2865–2873 (2008).
    MathSciNet  PubMed  Article  Google Scholar 

    48.
    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).
    Article  Google Scholar 

    49.
    R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019).

    50.
    Stan Development Team. RStan: the R interface to Stan. R package v2.17.3 (2018).

    51.
    Rasmussen, C. et al. Beyond clay: towards an improved set of variables for predicting soil organic matter content. Biogeochemistry 137, 297–306 (2018).
    CAS  Article  Google Scholar 

    52.
    Gelman, A. et al. Bayesian Data Analysis 3rd edn (Chapman and Hall, CRC, 2013).

    53.
    Howard, P. J. A. & Howard, D. M. Use of organic carbon and loss-on-ignition to estimate soil organic matter in different soil types and horizons. Biol. Fertil. Soils 9, 306–310 (1990).
    CAS  Article  Google Scholar  More

  • in

    Insecticidal and oviposition deterrent effects of essential oils of Baccharis spp. and histological assessment against Drosophila suzukii (Diptera: Drosophilidae)

    1.
    Budel, J. et al. Essential oils of five Baccharis species: Investigations on the chemical composition and biological activities. Molecules 23, 1–19 (2018).
    Article  CAS  Google Scholar 
    2.
    Heiden, G. & Schneider, A. Baccharis in Lista de Espécies da Flora do Brasil, Jardim Botânico do Rio de Janeiro (2015). http://floradobrasil.jbrj.gov.br/jabot/floradobrasil/FB5255. Accessed 10 September 2020.

    3.
    Forzza, R. C. et al. New Brazilian floristic list highlights conservation challenges. Bioscience 62, 39–45 (2012).
    Article  Google Scholar 

    4.
    Ramos Campos, F., Bressan, J. & Jasinski, V. C. G. Baccharis (Asteraceae): Chemical constituents and biological activities. Chem. Biodivers. 13, 1–17 (2016).
    CAS  PubMed  Article  Google Scholar 

    5.
    Trombin-Souza, M. et al. Chemical composition of the essential oils of Baccharis species from southern Brazil: A comparative study using multivariate statistical analysis. J. Essent. Oil Res. 29, 400–406 (2017).
    CAS  Article  Google Scholar 

    6.
    Alves, K. F. et al. Baccharis dracunculifolia (Asteraceae) essential oil toxicity to Culex quinquefasciatus (Culicidae). Environ. Sci. Pollut. Res. 25, 31718–31726 (2018).
    CAS  Article  Google Scholar 

    7.
    García, M., Donadel, O. J., Ardanaz, C. E., Tonn, C. E. & Sosa, M. E. Toxic and repellent effects of Baccharis salicifolia essential oil on Tribolium castaneum. Pest Manage. Sci. 61, 612–618 (2005).
    Article  CAS  Google Scholar 

    8.
    Buss, E.A. & Park-Brown, S.G. Natural Products for Insect Pest Management. Preprint at https://edis.ifas.ufl.edu/in197 (2002).

    9.
    Park, C. G., Jang, M., Yoon, K. A. & Kim, J. Insecticidal and acetylcholinesterase inhibitory activities of Lamiaceae plant essential oils and their major components against Drosophila suzukii (Diptera: Drosophilidae). Ind. Crop Prod. 89, 507–513 (2016).
    CAS  Article  Google Scholar 

    10.
    Asplen, M. K. et al. Invasion biology of Spotted Wing Drosophila (Drosophila suzukii): A global perspective and future priorities. J. Pest Sci. 88, 469–494 (2015).
    Article  Google Scholar 

    11.
    De La Veja, G. J., Corley, J. C. & Soliani, C. Genetic assessment of the invasion history of Drosophila suzukii in Argentina. J. Pest Sci. 93, 63–75 (2020).
    Article  Google Scholar 

    12.
    Rota-Stabelli, O. et al. Distinct genotypes and phenotypes in European and American strains of Drosophila suzukii: Implications for biology and management of an invasive organism. J. Pest Sci. 93, 77–89 (2020).
    Article  Google Scholar 

    13.
    Bernardi, D. et al. Potential use of Annona by products to control Drosophila suzukii and toxicity to its parasitoid Trichopria anastrephae. Ind. Crop Prod. 110, 30–35 (2017).
    CAS  Article  Google Scholar 

    14.
    Kienzle, R., Groß, L. B., Caughman, S. & Rohlfs, M. Resource use by individual Drosophila suzukii reveals a flexible preference for oviposition into healthy fruits. Sci. Rep. 10, 3132 (2020).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    15.
    Souza, M. T. et al. Physicochemical characteristics and superficial damage modulate persimmon infestation by Drosophila suzukii and Zaprionus indianus (Diptera: Drosophilidae). Environ. Entomol. 49, 1290–1299 (2020).
    Article  Google Scholar 

    16.
    Hamby, K. A. et al. Biotic and abiotic factors impacting development, behavior, phenology, and reproductive biology of Drosophila suzukii. J. Pest Sci. 89, 605–619 (2016).
    Article  Google Scholar 

    17.
    Sánchez-Ramos, I., Gómez-Casado, E., Fernández, C. E. & González-Núñez, M. Reproductive potential and population increase of Drosophila suzukii at constant temperatures. Entomol. Gen. 39, 103–115 (2019).
    Article  Google Scholar 

    18.
    Spitaler, U. et al. Yeast species affects feeding and fitness of Drosophila suzukii adults. J. Pest Sci. 93, 1295–1309 (2020).
    Article  Google Scholar 

    19.
    Santoiemma, G. et al. Habitat preference of Drosophila suzukii across heterogeneous landscapes. J. Pest Sci. 92, 485–494 (2019).
    Article  Google Scholar 

    20.
    Tait, G. et al. Drosophila suzukii daily dispersal between distinctly different habitats. Entomol. Gen. 40, 25–37 (2020).
    Article  Google Scholar 

    21.
    Delbac, L., Rusch, A. & Thiéry, D. Temporal dynamics of Drosophila suzukii in vineyard landscapes. Entomol. Gen. 40, 285–295 (2020).
    Article  Google Scholar 

    22.
    Renkema, J. M., Wright, D., Buitenhuis, R. & Hallett, R. H. Plant essential oils and potassium metabisulfite as repellents for Drosophila suzukii (Diptera: Drosophilidae). Sci. Rep. 6, 21432 (2016).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    23.
    Wiman, N. G. et al. Drosophila suzukii population response to environment and management strategies. J. Pest Sci. 89, 653–665 (2016).
    Article  Google Scholar 

    24.
    Santoiemma, G. et al. Integrated management of Drosophila suzukii in sweet cherry orchards. Entomol. Gen. 40, 297–305 (2020).
    Article  Google Scholar 

    25.
    Mermer, S. et al. Timing and order of different insecticide classes drive control of Drosophila suzukii; a modeling approach. J. Pest Sci. https://doi.org/10.1007/s10340-020-01292-w (2020).
    Article  Google Scholar 

    26.
    Gress, B. E. & Zalom, F. G. Identification and risk assessment of spinosad resistance in a California population of Drosophila suzukii. Pest Manage. Sci. 75, 1270–1276 (2018).
    Article  CAS  Google Scholar 

    27.
    Van Timmeren, S., Sial, A. A., Lanka, S. K., Spaulding, N. R. & Isaacs, R. Development of a rapid assessment method for detecting insecticide resistance in Spotted Wing Drosophila (Drosophila suzukii Matsumura). Pest Manage. Sci. 75, 1782–1793 (2019).
    Article  CAS  Google Scholar 

    28.
    Zanardi, O. Z. et al. Bioactivity of a matrine-based biopesticide against four pest species of agricultural importance. Crop Prot. 67, 160–167 (2015).
    Article  Google Scholar 

    29.
    Souza, M. T. et al. Chemical composition of essential oils of selected species of Piper and their insecticidal activity against Drosophila suzukii and Trichopria anastrephae. Environ. Sci. Pollut. Res. 27, 13056–13065 (2020).
    Article  CAS  Google Scholar 

    30.
    Kostyukovsky, M., Rafaeli, A., Gileadi, C., Demchenko, N. & Shaaya, E. Activation of octopaminergic receptors by essential oil constituents isolated from aromatic plants: Possible mode of action against insect pests. Pest Manage. Sci. 58, 1101–1106 (2002).
    CAS  Article  Google Scholar 

    31.
    Chaaban, A. et al. Insecticide activity of Baccharis dracunculifolia essential oil against Cochliomyia macellaria (Diptera: calliphoridae). Nat. Prod. Res. 32, 2854–2958 (2017).
    Google Scholar 

    32.
    Charlie-Silva, I., Souza, L. M., Pereira, C. C., Mazzonetto, F. & Belo, M. A. A. Insecticidal efficacy of aqueous extracts of Ricinus communis, Baccharis trimera and Chenopodium ambrosioides on adults of Alphitobius diaperinus. Ars. Vet. 35, 7–11 (2019).
    CAS  Article  Google Scholar 

    33.
    Khorram, M. S., Nasabi, N. T., Jafarnia, S. & Khosroshahi, S. The toxicity of selected monoterpene hydrocarbons as singles compounds and mixtures against different developmental stages of colorado potato beetle, Leptinotarsa decemlineata Say (Coleoptera: Chrysomelidae). J. Entomol. 8, 404–416 (2011).
    CAS  Article  Google Scholar 

    34.
    Fang, R. et al. Insecticidal activity of essential oil of carum carvi fruits from China and its main components against two grain storage insects. Molecules 15, 9391–9402 (2010).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    35.
    Malacrinò, A., Campolo, O. & Laudani, F. Fumigant and repellent activity of limonene enantiomers against Tribolium confusum du Val. Neotrop. Entomol. 45, 597–603 (2016).
    PubMed  Article  Google Scholar 

    36.
    Macchioni, F. et al. Acaricidal activity of pine essential oils and their main components against Tyrophagus putrescentiae, a stored food mite. J. Agric. Food Chem. 50, 4586–4588 (2002).
    CAS  PubMed  Article  Google Scholar 

    37.
    Tiberi, R. et al. The role of the monoterpene composition in Pinus spp. needles, in host selection by the pine processionary caterpillar, Thaumetopoea pityocampa. Phytoparas. 27, 263–272 (1999).
    CAS  Article  Google Scholar 

    38.
    Schuster, D. J., Thompson, S., Ortega, L. D. & Polston, J. E. Laboratory evaluation of products to reduce settling of sweet potato whitefly adults. J. Econ. Entomol. 102, 1482–1489 (2009).
    CAS  PubMed  Article  Google Scholar 

    39.
    Raina, A. et al. Effects of orange oil extract on the Formosan Subterranean Termite (Isoptera: Rhinotermitidae). J. Econ. Entomol. 100, 880–885 (2010).
    Article  Google Scholar 

    40.
    Andreazza, F. et al. Toxicities and effects of insecticidal toxic baits to control Drosophila suzukii and Zaprionus indianus (Diptera: Drosophilidae). Pest Manage. Sci. 73, 146–152 (2017).
    CAS  Article  Google Scholar 

    41.
    Bruck, D. J. et al. Laboratory and field comparisons of insecticides to reduce infestation of Drosophila suzukii in berry crops. Pest Manage. Sci. 67, 1375–1385 (2011).
    CAS  Article  Google Scholar 

    42.
    Beers, E. H. et al. Developing Drosophila suzukii management programs for sweet cherry in the western United States. Pest Manage. Sci. 67, 1386–1395 (2011).
    CAS  Article  Google Scholar 

    43.
    Van Timmeren, S. & Isaacs, R. Control of spotted wing drosophila, Drosophila suzukii, by specific insecticides and by conventional and organic crop protection programs. Crop Prot. 54, 126–133 (2013).
    Article  CAS  Google Scholar 

    44.
    Pavela, R. Acute, synergistic and antagonistic effects of some aromatic compounds on the Spodoptera littoralis Boisd. (Lep., Noctuidae) larvae. Ind. Crop Prod. 60, 247–258 (2014).
    CAS  Article  Google Scholar 

    45.
    Dias, C. N. & Moraes, D. F. C. Essential oils and their compounds as Aedes aegypti L. (Diptera: Culicidae) larvicides: A review. Parasitol. Res. 113, 565–592 (2014).
    PubMed  Article  PubMed Central  Google Scholar 

    46.
    Jankowska, M., Rogalska, J., Wyszkowska, J. & Stankiewicz, M. Molecular targets for components of essential oils in the insect nervous system–A review. Molecules https://doi.org/10.3390/molecules23010034 (2017).
    Article  PubMed  PubMed Central  Google Scholar 

    47.
    Trombetta, D. et al. Mechanisms of antibacterial action of three monoterpenes. Antimicrob. Agents Chemother. 49, 2474–2478 (2005).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    48.
    Holley, R. A. & Patel, D. Improvement in shelf-life and safety of perishable foods by plant essential oils and smoke antimicrobials. Food Microbiol. 22, 273–292 (2005).
    CAS  Article  Google Scholar 

    49.
    Oussalah, M., Caillet, S., Saucier, L. & Lacroix, M. Inhibitory effects of selected plant essential oils on the growth of four pathogenic bacteria: E. coli O157:H7, Salmonella Typhimurium, Staphylococcus aureus and Listeria monocytogenes. Food Control 18, 414–420 (2007).
    CAS  Article  Google Scholar 

    50.
    Abdelgaleil, S., Badawy, M., Shawir, M. & Mohamed, M. Chemical composition, fumigant and contact toxicities of essential oils isolated from egyptian plants against the stored grain insects; Sitophilus oryzae L. and Tribolium castaneum (Herbst). Egypt J. Biol. Pest Co 25, 639–647 (2015).
    Google Scholar 

    51.
    Badawy, M. E. I., El-Arami, S. A. A. & Abdelgaleil, S. A. M. Acaricidal and quantitative structure activity relationship of monoterpenes against the two-spotted spider mite, Tetranychus urticae. Exp. Appl. Acarol. 52, 261–274 (2010).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    52.
    Chaaban, A. et al. Essential oil from Curcuma longa leaves: Can an overlooked by-product from turmeric industry be effective for myiasis control?. Ind. Crop Prod. 132, 352–364 (2019).
    CAS  Article  Google Scholar 

    53.
    Kumar, P., Mishra, S., Malik, A. & Satya, S. Biocontrol potential of essential oil monoterpenes against housefly, Musca domestica (Diptera: muscidae). Ecotoxicol. Environ. Safe 100, 1–6 (2014).
    CAS  Article  Google Scholar 

    54.
    Benelli, G. et al. Acute and sub-lethal toxicity of eight essential oils of commercial interest against the filariasis mosquito Culex quinquefasciatus and the housefly Musca domestica. Ind. Crop Prod. 112, 668–680 (2018).
    CAS  Article  Google Scholar 

    55.
    Pavela, R. et al. Outstanding insecticidal activity and sublethal effects of Carlina acaulis root essential oil on the housefly, Musca domestica, with insights on its toxicity on human cells. Food Chem. Toxicol. 136, 111037 (2020).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    56.
    Pavela, R. Lethal and sublethal effects of thyme oil (Thymus vulgaris L.) on the house fly (Musca domestica Lin.). J. Essent. Oil-Bear. Plants 10, 346–356 (2007).
    CAS  Article  Google Scholar 

    57.
    Haviland, D. R. & Beers, E. H. Chemical control programs for Drosophila suzukii that comply with international limitations on pesticide residues for exported sweet cherries. J. Integr. Pest Manage. 3, 1–6 (2012).
    Article  Google Scholar 

    58.
    Shaw, B., Brain, P., Wijnen, H. & Fountain, M. T. Implications of sub-lethal rates of insecticides and daily time of application on Drosophila suzukii lifecycle. Crop Prot. 121, 182–194 (2019).
    CAS  Article  Google Scholar 

    59.
    Richards, O. W. & Davies, R. G. Imms’ General Textbook of Entomology: Structure, Physiology and Development 101–263 (Chapman and Hall, London, 1977).
    Google Scholar 

    60.
    Alves, S. N., Serrão, J. E. & Melo, A. L. Alterations in the fat body and midgut of Culex quinquefasciatus larvae following exposure to different insecticides. Micron 41, 592–597 (2010).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    61.
    Rossi, C. A., Roat, T. C., Tavares, D. A., Cintra-Socolowski, P. & Malaspina, O. Effects of sublethal doses of imidacloprid in malpighian tubules of africanized Apis melífera (Hymenoptera, Apidae). Microsc. Res. Techniq. 76, 552–558 (2013).
    CAS  Article  Google Scholar 

    62.
    Kerr, J. F. R. History of the events leading to the formulation of the apoptosis concept. Toxicology 181–182, 471–474 (2002).
    PubMed  Article  PubMed Central  Google Scholar 

    63.
    Rossi-Stacconi, M. V. et al. Host location and dispersal ability of the cosmopolitan parasitoid Trichopria drosophilae released to control the invasive Spotted Wing Drosophila. Biol. Control 117, 188–196 (2018).
    Article  Google Scholar 

    64.
    Giorgini, M. et al. Exploration for native parasitoids of Drosophila suzukii in China reveals a diversity of parasitoid species and narrow host range of the dominant parasitoid. J. Pest Sci. 92, 509–522 (2018).
    Article  Google Scholar 

    65.
    Garriga, A. et al. Soil emergence of Drosophila suzukii adults: A susceptible period for entomopathogenic nematodes infection. J. Pest Sci. 93, 639–646 (2020).
    Article  Google Scholar 

    66.
    Wolf, S., Boycheva-Woltering, S., Romeis, J. & Collatz, J. Trichopria drosophilae parasitizes Drosophila suzukii in seven common non-crop fruits. J. Pest Sci. 93, 627–638 (2020).
    Article  Google Scholar 

    67.
    Pavela, R. & Benelli, G. Essential oils as ecofriendly biopesticides? Challenges and constraints. Trends Plant Sci. 21, 1000–1007 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    68.
    Krzyzowski, M., Baran, B. & Łozowski, B. The role of dilution mediums in studies of fumigant insecticidal activity of essential oils. J. Pest Sci. 93, 1119–1124 (2020).
    Article  Google Scholar 

    69.
    Campolo, O. et al. Essential oil-based nano-emulsions: Effect of different surfactants, sonication and plant species on physicochemical characteristics. Ind. Crop Prod 157, 112935 (2020).
    CAS  Article  Google Scholar 

    70.
    McLafferty, F. W., Stauffer, D. A., Loh, S. Y. & Wesdemiotis, C. Unknown identification using reference mass spectra. Quality evaluation of databases. J. Am. Soc. Mass Spectr. 10, 1229–1240 (1999).
    CAS  Article  Google Scholar 

    71.
    Van Den Dool, H. & Kratz, P. D. J. A. A generalization of the retention index system including linear temperature programmed gas-liquid partition chromatography. J. Chromatogr. A 11, 463–471 (1963).
    Article  Google Scholar 

    72.
    Adams, R. P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectorscopy 5th edn. (Texensis Publishing, New York, 2017).
    Google Scholar 

    73.
    Schlesener, D. C. H. et al. Biology and fertility life table of Drosophila suzukii on artificial diets. Entomol. Exp. Appl. 166, 932–936 (2018).
    Google Scholar 

    74.
    Abbott, W. S. A method of computing the effectiveness of an insecticide. J. Am. Mosquito Contr. 3, 302–303 (1925).
    Google Scholar 

    75.
    Finney, D. J. Statistical Method in Biological Assay (Charles Griffin & Company, London, 1978).
    Google Scholar 

    76.
    Nelder, J. A. & Wedderburn, R. W. M. Generalized linear models. J. R. Stat. Soc. B 135, 370–384 (1972).
    Google Scholar 

    77.
    Hinde, J. & Demétrio, C. G. B. Overdispersion: Models and estimation. Comput. Stat. Data Anal. 27, 151–170 (1998).
    MATH  Article  Google Scholar 

    78.
    R Development Core Team R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0 (2012). http://www.R-project.org. Accessed 2 September 2020.

    79.
    Institute, S. A. S. SAS System–SAS/STAT. Computer Program, Version 9.2 84 (SAS Institute, Cary, 2011).
    Google Scholar 

    80.
    Throne, J. E., Weaver, D. K., Chew, V. B. & James, E. Probit analysis of correlated data: Multiple observations over time at one concentration. J. Econ. Entomol. 88, 1510–1512 (1995).
    Article  Google Scholar 

    81.
    Obeng-Ofori, D. Plant oils as grain protectants against infestations of Cryptolestes pusillus and Rhyzopertha dominica in stored grain. Entomol. Exp. Appl. 77, 133–139 (1995).
    Article  Google Scholar  More

  • in

    Mapping ticks and tick-borne pathogens in China

    Distribution of tick species in mainland China
    We compiled a database comprising 7344 unique records on geographic distributions of 124 known tick species, including 113 hard tick species in seven genera and 11 soft tick species in two genera, together with 103 tick-associated agents detected in either ticks or humans, which were recorded in 1134 counties (39% of all counties in the mainland of China) (Supplementary Fig. 1 and Supplementary Note 1). The most widely distributed tick genus was Dermacentor (in 574 counties), followed by Heamaphysalis (570), Ixodes (432), Rhipicephalus (431), Hyalomma (298), Argas (90), Ornithodoros (38), Amblyomma (37), and Anomalohimalaya (5) (Supplementary Data 1 and Supplementary Figs. 2‒10). At the species level, D. nuttalli, Ha. longicornis, D. silvarum, Hy. scupense, and R. sanguineus were each found in >200 counties, followed by R. microplus, I. persulcatus, I. sinensis, I. granulatus, and Hy. asiaticum that were each detected in 100‒200 counties (Supplementary Data 1). We identified 19 predominant ticks that were detected in more than 40 counties, including five Ixodes species, four Heamaphysalis, four Dermacentor, three Rhipicephalus, two Hyalomma, and one Argas tick species. Forest and meadowlands are the major vegetation types for these 19 tick species, accounting for a median of 46.4% (IQR: 40.0%‒68.9%) of their habitats (Supplementary Data 1).
    The abundance of tick species varies substantially across the seven biogeographic zones which are defined by climatic and ecological characteristics (Fig. 1)18,19. Tick species are most abundant in Central China, South China, and Inner Mongolia–Xinjiang districts, hosting 61, 57, and 50 tick species, respectively (Supplementary Data 2). Eight prefectures reported ≥20 tick species, three in Xinjiang Autonomous Region of northwestern China, two in Yunnan Province of southwestern China, and one in each of Gansu, Hubei, and Fujian provinces of northwestern, central, and southeastern China, respectively (Fig. 1). Most genera except for Amblyomma were found in northwestern China, particularly in Xinjiang Autonomous Region. In contrast, less tick diversity was observed in northeastern China, which only harbors Ixodes, Heamaphysalis, and Dermacentor (Supplementary Figs. 2‒10).
    Fig. 1: Tick species richness (circles) at the prefecture level in seven biogeographic zones in mainland China from 1950 to 2018.

    I = Northeast district (NE), II = North China district (N), III = Inner Mongolia–Xinjiang district (IMX), IV = Qinghai–Tibet district (QT), V = Southwest district (SW), VI = Central China district (C), and VII = South China district (S). Source data are provided as a Source Data file.

    Full size image

    Risk mapping and risk factors for 19 predominant tick species
    The ecological modeling results for the 19 predominant tick species showed highly accurate predictions, with the average testing area-under-curve (AUC) ranging from 0.83 to 0.97 (Table 1) and the testing partial AUC ratio ranging from 1.30 to 1.78 (Supplementary Tables 1‒5), indicating decent predictive power. The ecoclimatic and environmental variables that were predictive of the geographic distribution of the ticks differed among the species, even for those in the same genus (Fig. 2f, Supplementary Tables 1‒5). Temperature seasonality and mean temperature in the driest quarter were the two most important drivers, contributing ≥5% to the ensemble of models for 14- and 12- tick species, respectively, followed by elevation contributing ≥5% to the models for seven tick species (Fig. 2f, Supplementary Tables 1‒5). The same predictor, however, may drive the risk in different directions for different tick species (Supplementary Figs. 11‒29). For example, a high temperature in the driest quarter was associated with a high probability of presence for I. granulatus and R. haemaphysaloide but with a low probability for I. persulcatus and Ha. longicornis (Supplementary Figs. 11, 13, 16, 22).
    Table 1 The average testing areas under the curve (AUC) of the BRT models at the county level and model-predicted numbers, areas and population sizes of affected counties for the 19 most prevalent tick species in China.
    Full size table

    Fig. 2: Clustering of tick species based on their ecological features and spatial distributions at the county level.

    Panels a‒e indicate the spatial distribution of the five clusters (clusters I‒V). The boundaries of the seven biogeographic zones are shown as black solid lines. The dendrogram in panel f displays the clusters I‒V of tick species. The features used for clustering are three quantities associated with each predictor in the BRT models. Two of the three quantities were displayed in panel f to indicate the possible level of ecological suitability: relative contributions (colors in ascending order from yellow to red) and the standardized median value of the predictor (numbers in the heatmap) among counties with tick occurrence (numbers 1‒4 indicate the position of this median in reference to the quartiles of this predictor among all counties). Source data are provided as a Source Data file.

    Full size image

    The model-predicted high-risk areas of the 19 tick species were much more extensive than have been observed, 31‒520% greater in the number of affected counties, 14‒476% larger in the size of affected geographic area, and 25‒556% larger in the affected population size (Table 1, Supplementary Figs. 30‒34). Ha. longicornis was predicted to have the widest distribution that potentially affected 588 million people in 1140 counties, followed by I. sinensis and R. microplus that affected 363 and 350 million people in 630 and 678 counties, respectively (Table 1). High-risk areas of these three tick species collectively covered nearly all densely populated areas in China, mainly provinces in the central, eastern, southern, and southwestern China (Supplementary Figs. 30(b), 31(a), and 32(b)). R. sanguineus, and R. haemaphysaloides each affected more than 200 million people. D. nuttalli, I. crenulatus, Hy. asiaticum, Ar. persicus, and D. daghestanicus ticks were the top five tick species affecting the largest areas at the scale of 2.0‒3.8 million km2 (Table 1).
    Ecological clustering of tick species
    Based on the ecological similarity represented by the environmental and ecoclimatic predictors, the 19 tick species were grouped into five clusters with clear patterns of spatial aggregation (Fig. 2). D. nuttalli and D. silvarum constituted cluster I that covered the vast region in northern (including northeastern and northwestern) China. This cluster stretches over biogeographic zones I‒IV characterized by middle to high elevations, shrub grassland, strong seasonality in temperature, relatively low temperature in the wettest quarter (often also the warmest quarter), and low precipitation in the driest month (Fig. 2 and Supplementary Figs. 23, 24). Ha. longicornis, Hy. scupense, and R. sanguineus were grouped into Cluster II which was mainly found in biogeographic zones II, III, and VI, featuring the landscape of shrub grassland and irrigated or rainfed croplands at low-middle elevations (7% (Table 2). SFTSV ecologically prefers regions at low to moderate elevations ( 7%). High risks of TBEV were flagged by low to medium elevations ( More

  • in

    Antagonist effects of the leek Allium porrum as a companion plant on aphid host plant colonization

    1.
    Parolin, P. et al. Secondary plants used in biological control: a review. Int. J. Pest Manag. 58, 91–100 (2012).
    Article  Google Scholar 
    2.
    Parker, J. E., Snyder, W. E., Hamilton, G. C. & Rodriguez‐Saona, C. Companion planting and insect pest control. Weed and Pest Control – Conventional and New Challenges (2013). https://doi.org/10.5772/55044

    3.
    Held, D. W., Gonsiska, P. & Potter, D. A. Evaluating companion planting and non-host masking odors for protecting roses from the Japanese beetle (Coleoptera: Scarabaeidae). J. Econ. Entomol. 96, 81–87 (2003).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    4.
    Togni, P. H. B., Laumann, R. A., Medeiros, M. A. & Suji, E. R. Odour masking of tomato volatiles by coriander volatiles in host plant selection of Bemisia tabaci biotype B. Entomol. Exp. Appl. 136, 164–173 (2010).
    Article  Google Scholar 

    5.
    Deletre, E. et al. Prospects for repellent in pest control: current developments and future challenges. Chemoecology 26, 127–142 (2016).
    CAS  Article  Google Scholar 

    6.
    Ben-Issa, R., Gomez, L. & Gautier, H. Companion plants for aphid pest management. Insects 8, 112 (2017).
    PubMed Central  Article  Google Scholar 

    7.
    Niemeyer, H. Secondary plant chemicals in aphid-host interactions. RK. RK Campbell RD Eikenbary Aphid-plant genotype Interact, 101–111 (1990).

    8.
    Powell, G., Tosh, C. R. & Hardie, J. HOST PLANT SELECTION BY APHIDS: behavioral, evolutionary, and applied perspectives. Annu. Rev. Entomol. 51, 309–330 (2006).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    9.
    Mansion-Vaquié, A., Ferrer, A., Ramon-Portugal, F., Wezel, A. & Magro, A. Intercropping impacts the host location behaviour and population growth of aphids. Entomol. Exp. Appl. 168, 41–52 (2020).
    Article  Google Scholar 

    10.
    Nottingham, S. F. et al. Behavioral and electrophysiological responses of Aphids to host and nonhost plant volatiles. J. Chem. Ecol. 17, 1231–1242 (1991).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    11.
    Ben Issa, R., Gautier, H. & Gomez, L. Influence of neighbouring companion plants on the performance of aphid populations on sweet pepper plants under greenhouse conditions. Agric. For. Entomol. 19, 181–191 (2017).
    Article  Google Scholar 

    12.
    Hatt, S., Xu, Q., Francis, F. & Osawa, N. Aromatic plants of East Asia to enhance natural enemies towards biological control of insect pests. A review. Entomol. Gener. 38, 275–315 (2019).
    Article  Google Scholar 

    13.
    Basedow, T., Hua, L. & Aggarwal, N. The infestation of Vicia faba L. (Fabaceae) by Aphis fabae (Scop.) (Homoptera: Aphididae) under the influence of Lamiaceae (Ocimum basilicum L. and Satureja hortensis L.). J. Pest Sci. 79, 149 (2006).
    Article  Google Scholar 

    14.
    Beizhou, S. et al. Temporal dynamics of the arthropod community in pear orchards intercropped with aromatic plants. Pest Manag. Sci. 67, 1107–1114 (2011).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    15.
    Glinwood, R., Ninkovic, V., Pettersson, J. & Ahmed, E. Barley exposed to aerial allelopathy from thistles (Cirsium spp.) becomes less acceptable to aphids. Ecol. Entomol. 29, 188–195 (2004).
    Article  Google Scholar 

    16.
    Jankowska, B., Poniedziałek, M. & Jędrszczyk, E. Effect of intercropping white cabbage with French Marigold (Tagetes patula nana L.) and Pot Marigold (Calendula officinalis L.) on the colonization of plants by pest insects. Folia Hortic. 21, 95–103 (2009).
    Article  Google Scholar 

    17.
    Tang, G. B. et al. Repellent and attractive effects of herbs on insects in pear orchards intercropped with aromatic plants. Agroforest. Syst. 87, 273–285 (2013).
    Article  Google Scholar 

    18.
    de Lima, J. S. S. et al. Agroeconomic evaluation of intercropping rocket and carrot by uni- and multivariate analyses in a semi-arid region of Brazil. Ecol. Ind. 41, 109–114 (2014).
    Article  Google Scholar 

    19.
    Sujayanand, G. K., Sharma, R. K., Shankarganesh, K., Saha, S. & Tomar, R. S. Crop diversification for sustainable insect pest management in eggplant (Solanales: Solanaceae). Fla. Entomol. 98, 305–314 (2015).
    Article  Google Scholar 

    20.
    McCall, P. J. & Eaton, G. Olfactory memory in the mosquito Culex quinquefasciatus. Med. Vet. Entomol. 15, 197–203 (2001).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    21.
    Little, C. M., Chapman, T. W. & Hillier, N. K. Considerations for insect learning in integrated pest management. J. Insect Sci. 19, 6 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    22.
    Bandara, K. A. N. P. et al. Can leek interfere with bean plant-bean fly interaction? Test of ecological pest management in mixed cropping. J. Econ. Entomol. 102, 999–1008 (2009).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    23.
    Mutiga, S. K., Gohole, L. S. & Auma, E. O. Effects of integrating companion cropping and nitrogen application on the performance and infestation of collards by Brevicoryne brassicae. Entomol. Exp. Appl. 134, 234–244 (2010).
    CAS  Article  Google Scholar 

    24.
    Dugravot, S., Thibout, E., Abo-Ghalia, A. & Huignard, J. How a specialist and a non-specialist insect cope with dimethyl disulfide produced by Allium porrum. Neth. Entomol. Soc. Entomol. Exp. Appl. 113, 173–179 (2004).
    Article  Google Scholar 

    25.
    Thibout, E. & Auger, J. Composés soufrés des Allium et lutte contre les insectes. Acta Bot. Gallica 144, 419–426 (1997).
    Article  Google Scholar 

    26.
    Auger, J., Dugravot, S., Naudin, A. & Abo-Ghalia, A. Utilisation des composes allelochimiques des Allium en tant qu’insecticides. Use of pheromones and other semiochemicals in integrated production IOBC wprs Bulletin Vol. 25, 13 (2002).

    27.
    Amarawardana, L. et al. Olfactory response of Myzus persicae (Homoptera: Aphididae) to volatiles from leek and chive: potential for intercropping with sweet pepper. Acta Agric. Scand. Sect. B – Soil Plant Sci. 57, 87–91 (2007).
    Google Scholar 

    28.
    Zhou, H. et al. Influence of garlic intercropping or active emitted volatiles in releasers on aphid and related beneficial in wheat fields in China. J. Integr. Agric. 12, 467–473 (2013).
    Article  Google Scholar 

    29.
    Mauck, K. E., De Moraes, C. M. & Mescher, M. C. Deceptive chemical signals induced by a plant virus attract insect vectors to inferior hosts. Proc. Natl. Acad. Sci. USA 107, 3600–3605 (2010).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    30.
    Tjallingii, W. F. Electrical recording of stylet penetration activities. In Aphids, Their Biology, Natural Enemies and Control (eds Minks, A. K. & Harrewijn, P.) 95–108 (Elsevier, Amsterdam, 1988).
    Google Scholar 

    31.
    Tjallingii, W. F. Electronic recording of penetration behaviour by aphids. Entomol. Exp. Appl. 24, 721–730 (1978).
    Article  Google Scholar 

    32.
    Giordanengo, P. EPG-Calc: a PHP-based script to calculate electrical penetration graph (EPG) parameters. Arthropod-Plant Interact. 8, 163–169 (2014).
    Article  Google Scholar 

    33.
    MacGillivray, M. E. & Anderson, G. B. Three useful insect cages. Can. Entomol. 89, 43–46 (1957).
    Article  Google Scholar 

    34.
    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, 2014).
    Google Scholar 

    35.
    Järvenpää, E. P., Zhang, Z., Huopalahti, R. & King, J. W. Determination of fresh onion (Allium cepa L.) volatiles by solid phase microextraction combined with gas chromatography-mass spectrometry. Z. Lebensm Unters Forsch 207, 39–43 (1998).
    Article  Google Scholar 

    36.
    Løkke, M. M., Edelenbos, M., Larsen, E. & Feilberg, A. Investigation of volatiles emitted from freshly cut onions (Allium cepa L.) by real time proton-transfer reaction-mass spectrometry (PTR-MS) . Sensors 12, 16060–16076 (2012).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    37.
    Camacho-Coronel, X., Molina-Torres, J. & Heil, M. Sequestration of exogenous volatiles by plant cuticular waxes as a mechanism of passive associational resistance: a proof of concept. Front. Plant Sci. 11, 121 (2020).
    PubMed  PubMed Central  Article  Google Scholar 

    38.
    Himanen, S. J. et al. Birch (Betula spp.) leaves adsorb and re-release volatiles specific to neighbouring plants—a mechanism for associational herbivore resistance?. New Phytol. 186, 722–732 (2010).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    39.
    Dahlin, I., Vucetic, A. & Ninkovic, V. Changed host plant volatile emissions induced by chemical interaction between unattacked plants reduce aphid plant acceptance with intermorph variation. J Pest Sci 88, 249–257 (2015).
    Article  Google Scholar 

    40.
    Dardouri, T. et al. Non-host volatiles disturb the feeding behavior and reduce the fecundity of the green peach aphid, Myzus persicae. Pest Manag Sci. https://doi.org/10.1002/ps.6190 (2020).
    Article  PubMed  PubMed Central  Google Scholar 

    41.
    Dancewicz, K., Gabryś, B. & Przybylska, M. Effect of garlic (Allium sativum L.) and tansy (Tanaceum vulgare L.) extracts and potassic horticultural soap on the probing and feeding behaviour of Myzus persicae (Sulzer, 1776). Aphids Other Homopterous Insects 17, 126–136 (2011).
    Google Scholar 

    42.
    Chyb, S., Eichenseer, H., Hollister, B., Mullin, C. A. & Frazier, J. L. Identification of sensilla involved in taste mediation in adult western corn rootworm (Diabrotica virgifera virgifera LeConte). J. Chem. Ecol. 21, 313–329 (1995).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    43.
    Prado, E. & Tjallingii, W. F. Effects of previous plant infestation on sieve element acceptance by two aphids. Entomol. Exp. Appl. 82, 189–200 (1997).
    Article  Google Scholar 

    44.
    Sauge, M.-H., Lacroze, J.-P., Poëssel, J.-L., Pascal, T. & Kervella, J. Induced resistance by Myzus persicae in the peach cultivar ‘Rubira’. Entomol. Exp. Appl. 102, 29–37 (2002).
    Article  Google Scholar 

    45.
    Tolosa, T. A. et al. Molasses grass induces direct and indirect defense responses in neighbouring maize plants. J. Chem. Ecol. 45, 982–992 (2019).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    46.
    Ninkovic, V., Rensing, M., Dahlin, I. & Markovic, D. Who is my neighbor? Volatile cues in plant interactions. Plant Signal Behav. 14, 1634993 (2019).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    47.
    Karban, R., Yang, L. H. & Edwards, K. F. Volatile communication between plants that affects herbivory: a meta-analysis. Ecol. Lett. 17, 44–52 (2014).
    PubMed  Article  PubMed Central  Google Scholar 

    48.
    Kumar, P., Mishra, S., Malik, A. & Satya, S. Insecticidal properties of Mentha species: a review. Ind. Crops Prod. 34, 802–817 (2011).
    CAS  Article  Google Scholar 

    49.
    Nuñez-Mejía, G., Valadez-Lira, J. A., Gomez-Flores, R., Rodríguez-Padilla, C. & Tamez-Guerra, P. Trichoplusia ni (Lepidoptera: Noctuidae) survival, immune response, and gut bacteria changes after exposure to Azadirachta indica (Sapindales: Meliaceae) volatiles. Fla. Entomol. 99, 12–20 (2016).
    Article  Google Scholar 

    50.
    Regnault-Roger, C., Vincent, C. & Arnason, J. T. Essential oils in insect control: low-risk products in a high-stakes world. Annu. Rev. Entomol. 57, 405–424 (2012).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    51.
    Sousa, R. M. O. F., Rosa, J. S., Oliveira, L., Cunha, A. & Fernandes-Ferreira, M. Activities of Apiaceae essential oils and volatile compounds on hatchability, development, reproduction and nutrition of Pseudaletia unipuncta (Lepidoptera: Noctuidae). Ind. Crops Prod. 63, 226–237 (2015).
    CAS  Article  Google Scholar 

    52.
    Petrakis, E. A. et al. Responses of Myzus persicae (Sulzer) to three Lamiaceae essential oils obtained by microwave-assisted and conventional hydrodistillation. Ind. Crops Prod. 62, 272–279 (2014).
    CAS  Article  Google Scholar 

    53.
    Poorjavad, N., Goldansaz, S. H., Dadpour, H. & Khajehali, J. Effect of Ferula assafoetida essential oil on some biological and behavioral traits of Trichogramma embryophagum and T. evanescens. Biocontrol 59, 403–413 (2014).
    CAS  Article  Google Scholar 

    54.
    Vázquez-Covarrubias, D. A., Jiménez-Pérez, A., Castrejón-Ayala, F., Figueroa-Brito, R. & Belmont, R. M. Effects of five species of Chenopodiaceae on the development and reproductive potential of Copitarsia decolora (Lepidoptera: Noctuidae). Fla. Entomol. 98, 80–85 (2015).
    Article  Google Scholar 

    55.
    Bharti, G., Prasad, S. & Upadhyay, V. B. The influence of plant volatile of Allium sativum on the reproductive ability of multivoltine mulberry silkworm Bombyx mori Linn. Afr. J. Basic Appl. Sci. 5(6), 242–249 (2013).
    Google Scholar 

    56.
    Ameline, A., Couty, A., Martoub, M., Sourice, S. & Giordanengo, P. Modification of Macrosiphum euphorbiae colonisation behaviour and reproduction on potato plants treated by mineral oil. Entomol. Exp. Appl. 135, 77–84 (2010).
    Article  Google Scholar 

    57.
    Calabrese, E. J. Hormesis: why it is important to toxicology and toxicologists. Environ. Toxicol. Chem. 27, 1451–1474 (2008).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    58.
    Ayyanath, M.-M., Cutler, G. C., Scott-Dupree, C. D. & Sibley, P. K. Transgenerational shifts in reproduction hormesis in green peach aphid exposed to low concentrations of imidacloprid. PLoS ONE 8, e74532 (2013).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    59.
    Yu, Y., Shen, G., Zhu, H. & Lu, Y. Imidacloprid-induced hormesis on the fecundity and juvenile hormone levels of the green peach aphid Myzus persicae (Sulzer). Pestic. Biochem. Physiol. 98, 238–242 (2010).
    CAS  Article  Google Scholar 

    60.
    Stephens, D. W. Learning and behavioral ecology: incomplete information and environmental predictability. In Insect Learning: Ecology and Evolutionary Perspectives (eds Papaj, D. R. & Lewis, A. C.) 195–218 (Springer, New York, 1993).
    Google Scholar 

    61.
    Bedini, S. et al. Allium sativum, Rosmarinus officinalis, and Salvia officinalis essential oils: a spiced shield against blowflies. Insects 11, 143 (2020).
    PubMed Central  Article  Google Scholar 

    62.
    Shi, J. et al. Laboratory evaluation of acute toxicity of the essential oil of Allium tuberosum leaves and its selected major constituents against Apolygus lucorum (Hemiptera: Miridae). J. Insect Sci. 15, 117 (2015).
    PubMed  PubMed Central  Article  CAS  Google Scholar  More

  • in

    Potential impacts of marine urbanization on benthic macrofaunal diversity

    Study area
    We established field survey sites in four different habitat types (BW: breakwater wall; EB: eelgrass bed; IF: intertidal flat; SB: subtidal bottom) within Matsunaga Bay, located in the eastern Seto Inland Sea, Japan (Fig. 1). Matsunaga Bay is a small semi-closed bay with an area of approximately 12 km2. It is connected with other water bodies through the Tozaki-Seto Strait (width: approx. 400 m) and the Onomichi Strait (width: approx. 200 m)29,30. Water depths are mostly less than 20 m throughout the bay. The water depths at our four survey sites were approximately 4.5 m, but part of site SB located near a shipping channel reached depths of 10–13 m. Intertidal flats cover 35% (4.3 km2) of the bay area, whereas eelgrass beds cover 1.7% (0.2 km2)31. The bottom sediment type is mainly muddy throughout the bay, although some parts of EB and SB have sandy and muddy bottoms (see Supplementary Table S1)30.
    Figure 1

    Locations of sampling sites in Matsunaga Bay, Hiroshima, Japan. This map was created based on coordinate data from Google (http://www.gis-tool.com/mapview/maptocoordinates.html). The four habitats examined in this study are indicated by BW (breakwater wall; grey circle), EB (eelgrass bed; grey circle), IF (intertidal flat; grey rectangle), and SB (subtidal bottom; grey polygon).

    Full size image

    Although human activities along the coast of Matsunaga Bay appear to be associated with artificial structures (e.g., industrial plants, marinas, and lumber yards), natural habitats are still relatively well-preserved compared to areas in the eastern Seto Inland Sea29. The total population of towns within 5 km of the coastline of the bay can be expected to exceed 100,000 people, which ranks within the top 20% of administrative districts in Japan, including prefectures, towns, villages, and the 23 wards of Tokyo32.
    Data collection
    We conducted one field survey in September 2016 (summer) and another in January 2017 (winter) to collect data on benthic community structures and environmental conditions in each habitat. We established five sampling sites within each habitat to obtain replicated samples. To reduce biases due to tidal cycle, we performed all field sampling and measurements at high tide, when all habitats were underwater.
    We used a standard sample area (approximately 0.15 m2 per sample) at each sampling site irrespective of sampling method to obtain comparable data on benthic communities. Some of our sampling methods involved Smith–McIntyre grab samplers and quadrats that could not cover the standard sample area in a single sample; for these methods, we combined the data from three samples to make up a single sampling site. At BW, benthic macrofauna (hereafter referred to as “benthos”) samples were collected by SCUBA divers. We established 15 sampling positions in a 5 × 3 grid (i.e., five depths [sampling sites] and three replicates) based on distance from the seafloor at the breakwater wall (Supplementary Fig. S1). The SCUBA divers used scraper blades, 0.1-mm mesh bags, and 22.5 cm × 22.5 cm quadrats because the benthic communities were mainly composed of sessile organisms. At EB, we employed different sampling methods for the above- and belowground components. SCUBA divers collected aboveground samples of eelgrass-associated benthos and eelgrass shoots using a mesh bag (mesh size: 0.1 mm; bag diameter: 45 cm). They then cut away the eelgrass shoots near each aboveground site and collected belowground samples of the benthos on top of and within the sediment by using the bucket part of a Smith–McIntyre grab sampler (sampling area: 22.5 cm × 22.5 cm). At IF and SB, benthos and bottom sediment samples were collected from a ship using a Smith–McIntyre grab sampler (sampling area: 22.5 cm × 22.5 cm).
    All benthos was extracted using a 1-mm sieve and preserved in buffered 10% formalin in the field as soon as possible after sampling. The samples were identified to the lowest possible taxonomic unit and counted in the laboratory. After identification, we organized the dominant benthic species (or taxa) according to their primary feeding types and common life forms with reference to the World Register of Marine Species (http://www.marinespecies.org/) and the literature. No vertebrate species were targeted in this study. We defined the primary life forms of adult benthic species on/in their substrates as “common life forms.”
    Although differences in environmental conditions were not the focus of our study, we did assess whether there were considerable water quality differences among sites. The purpose of this assessment was to try to identify sites with similar conditions so that exogenous impacts on biological communities could be discounted as much as possible in the analysis. We measured water and sediment conditions at each sampling site (except at BW, where sediment conditions were not measured due to the absence of sediment). Prior to benthos and sediment sampling, we measured water temperature, salinity, pH, and dissolved oxygen concentration at each site at a depth directly above the seafloor by using a multi-parameter water quality meter (AAQ‐RINKO, JFE Advantech Co. Ltd., Japan). At BW, where the substrate (i.e., the breakwater) is oriented vertically (see Supplementary Fig. S1), we measured water conditions in the middle of the water column. We also measured temperature, pH, oxidation–reduction potential (ORP), water content, and median particle size (D50) in the sediment. Sediment temperature, pH, and ORP were measured by using a portable ion meter (IM-32P, DKK-TOA Co., Japan) immediately after each sample was collected. Sediment water content and D50 were measured in the laboratory once benthic species had been removed from the sample.
    Data analysis
    First, we identified how many species were shared between all habitat pairs to understand inter-habitat species-sharing relationships. Second, we compared species compositions and abundances among habitats using similarity indices and multivariate analysis (described below).
    To detect species sharing in terms of species commonality and endemism among the four habitats, we classified benthic species into the following three categories: common, endemic, and shifting. Common species were defined as species that occurred across all habitats. Endemic species are those that were found in only one habitat. Shifting species were defined as those that occurred in multiple habitats (but not across all habitats) and therefore showed a broad allowable range of habitat types or conditions. To analyse the importance of habitat sets in maintaining local species diversity, we further categorized the shifting species into two- or three-habitat users (i.e., those that occurred in two or three different habitats). Moreover, we calculated the numbers and proportions (i.e., using the Jaccard similarity index) of shared species in each habitat pair to evaluate the potential strength of any inter-habitat relationships. The Jaccard similarity index ((J)) is calculated as follows:

    $$ J = frac{{S_{alpha beta } }}{{S_{alpha } + S_{beta } – S_{alpha beta } }}, $$

    where (S_{alpha }) is the number of species in habitat (alpha), (S_{beta }) is the number of species in habitat (beta), and (S_{alpha beta }) is the number of species that are shared among habitats (alpha) and (beta).
    In terms of the functional groups, we analysed abundance matrices of abundant species grouped by primary feeding types and common life forms. Focusing on abundant species is a useful way to reflect the functional characteristics of biological communities14. Therefore, we identified the most abundant species from each sample before constructing the abundance data matrices. To determine how many species to select for analysis, we calculated the number e of equally-abundant species that would be required to obtain the Simpson diversity index of each community (i.e., the effective number of species33). We then selected e abundant species from each sample in rank order from most to least abundant. If multiple species of the same rank occupied this cut-off threshold, we selected all of them. This selection method, which is unique to our study, successfully identified dominant species that accounted for over 70% of the total abundance in each community in all habitats.
    To compare benthic macrofaunal communities among habitats, we performed non‐metric multidimensional scaling (NMDS)34 based on dissimilarity matrices obtained by using the metaMDS function in the vegan package35. To compare species compositions, we constructed Jaccard dissimilarity matrices based on presence/absence data, and to compare species abundance and functional compositions, we constructed Bray–Curtis dissimilarity matrices based on abundance datasets. All abundance datasets were square-root transformed before calculating the Bray–Curtis dissimilarity matrices to reduce the influence of abundance bias. We accepted the NMDS ordinations if stress values were less than 0.2 to maintain the accuracy of the two‐dimensional ordinations34. Then, we tested the effects of habitat type and sampling time by conducting a two-way permutational multivariate analysis of variance (two-way PERMANOVA)36 using the adonis function in the vegan package. Here, we considered four habitats (Habitat), two sampling times (Time), and their interaction term as explanatory factors. Although our main focus was differences in community compositions among habitats at each sampling time, we also examined the magnitude of variation in each habitat by comparing two stable seasonal extremes (i.e., summer and winter). If the results of the PERMANOVA were significant, we performed post-hoc tests (pairwise PERMANOVA) to identify which pairs of community structures were significantly different by using the pairwise.perm.manova function in the RVAideMemoire package37. We used 9999 permutations for the NMDS ordination, PERMANOVA, and pairwise PERMANOVA. P-values calculated during the pairwise PERMANOVA were corrected using the false discovery rate method38. For the benthic community data collected at each sampling point at EB, above- and belowground datasets were integrated to reflect spatial representativeness (see Figs. S3 and S4). All analyses were performed using R version 3.5.139. More

  • in

    A geo-chemo-mechanical study of a highly polluted marine system (Taranto, Italy) for the enhancement of the conceptual site model

    The Litho-technical characterization of the deposit
    The litho-technical characterisation of the sediments has resulted from: the geological inspection of the cores in the liners and of the undisturbed geotechnical samples; the paleogeographic reconstruction of the soil deposition29,39; the soil geotechnical index properties; the geochemical and the mineralogical analyses. Here-forth, Fig. 7a reports the litho-technical section N–N′ whose trace is shown in Fig. 7b.
    Figure 7

    (a) Litho-technical section N–N′; (b) I Bay and location of all the investigated sections. Key: (1) 2017 campaign projected borehole; (2) top of the calcareous bedrock according to30 (3) bathymetry (Port authority 1947–1978); (4) significant content of organic matter; (5) fishing net (anthropogenic material); (6) coastline; (7) stratigraphic contact; (8) 1stLTU; (9) 2ndLTU, of consistency from very soft to soft and occasional presence of sand or silty sand, from very loose to loose (a); (10) 3rdLTU, of consistency increasing with depth, from very soft to soft (a), from soft to firm (b), firm (c), stiff (d)66,67, and occasional layers rich in sand (e), gravel (f) and peaty levels (g); (11) Possible disturbed top layers of the ASP formation; (12) ASP formation, with clayey silt or silty clay of very stiff consistency, and sandy levels (Su = 200–500 kPa) (a), or Grey-bluish marly-silty clay (Su  > 500 kPa) (b).

    Full size image

    A First litho-technical unit, hereafter 1stLTU (light yellow colour in Fig. 7a), of about 1.5 m thickness, has been found to cover the whole deposit. It is formed of either clay with silt, or sandy to slightly sandy silt with clay, deposited in recent times up to present, according to the sedimentology and paleogeographic studies. The corresponding grading curves (Fig. 8) show that its clay fraction, CF, varies in the range 27–53%, its silt fraction, MF, in the range 39–57%, and its sand fraction, SF, is minor, except for site S1, close to the Porta Napoli channel (Fig. 2). It is rich in organic matter and the pocket penetrometer Su data (Su  More