1.
Budel, J. et al. Essential oils of five Baccharis species: Investigations on the chemical composition and biological activities. Molecules 23, 1–19 (2018).
Article CAS Google Scholar
2.
Heiden, G. & Schneider, A. Baccharis in Lista de Espécies da Flora do Brasil, Jardim Botânico do Rio de Janeiro (2015). http://floradobrasil.jbrj.gov.br/jabot/floradobrasil/FB5255. Accessed 10 September 2020.
3.
Forzza, R. C. et al. New Brazilian floristic list highlights conservation challenges. Bioscience 62, 39–45 (2012).
Article Google Scholar
4.
Ramos Campos, F., Bressan, J. & Jasinski, V. C. G. Baccharis (Asteraceae): Chemical constituents and biological activities. Chem. Biodivers. 13, 1–17 (2016).
CAS PubMed Article Google Scholar
5.
Trombin-Souza, M. et al. Chemical composition of the essential oils of Baccharis species from southern Brazil: A comparative study using multivariate statistical analysis. J. Essent. Oil Res. 29, 400–406 (2017).
CAS Article Google Scholar
6.
Alves, K. F. et al. Baccharis dracunculifolia (Asteraceae) essential oil toxicity to Culex quinquefasciatus (Culicidae). Environ. Sci. Pollut. Res. 25, 31718–31726 (2018).
CAS Article Google Scholar
7.
García, M., Donadel, O. J., Ardanaz, C. E., Tonn, C. E. & Sosa, M. E. Toxic and repellent effects of Baccharis salicifolia essential oil on Tribolium castaneum. Pest Manage. Sci. 61, 612–618 (2005).
Article CAS Google Scholar
8.
Buss, E.A. & Park-Brown, S.G. Natural Products for Insect Pest Management. Preprint at https://edis.ifas.ufl.edu/in197 (2002).
9.
Park, C. G., Jang, M., Yoon, K. A. & Kim, J. Insecticidal and acetylcholinesterase inhibitory activities of Lamiaceae plant essential oils and their major components against Drosophila suzukii (Diptera: Drosophilidae). Ind. Crop Prod. 89, 507–513 (2016).
CAS Article Google Scholar
10.
Asplen, M. K. et al. Invasion biology of Spotted Wing Drosophila (Drosophila suzukii): A global perspective and future priorities. J. Pest Sci. 88, 469–494 (2015).
Article Google Scholar
11.
De La Veja, G. J., Corley, J. C. & Soliani, C. Genetic assessment of the invasion history of Drosophila suzukii in Argentina. J. Pest Sci. 93, 63–75 (2020).
Article Google Scholar
12.
Rota-Stabelli, O. et al. Distinct genotypes and phenotypes in European and American strains of Drosophila suzukii: Implications for biology and management of an invasive organism. J. Pest Sci. 93, 77–89 (2020).
Article Google Scholar
13.
Bernardi, D. et al. Potential use of Annona by products to control Drosophila suzukii and toxicity to its parasitoid Trichopria anastrephae. Ind. Crop Prod. 110, 30–35 (2017).
CAS Article Google Scholar
14.
Kienzle, R., Groß, L. B., Caughman, S. & Rohlfs, M. Resource use by individual Drosophila suzukii reveals a flexible preference for oviposition into healthy fruits. Sci. Rep. 10, 3132 (2020).
ADS CAS PubMed PubMed Central Article Google Scholar
15.
Souza, M. T. et al. Physicochemical characteristics and superficial damage modulate persimmon infestation by Drosophila suzukii and Zaprionus indianus (Diptera: Drosophilidae). Environ. Entomol. 49, 1290–1299 (2020).
Article Google Scholar
16.
Hamby, K. A. et al. Biotic and abiotic factors impacting development, behavior, phenology, and reproductive biology of Drosophila suzukii. J. Pest Sci. 89, 605–619 (2016).
Article Google Scholar
17.
Sánchez-Ramos, I., Gómez-Casado, E., Fernández, C. E. & González-Núñez, M. Reproductive potential and population increase of Drosophila suzukii at constant temperatures. Entomol. Gen. 39, 103–115 (2019).
Article Google Scholar
18.
Spitaler, U. et al. Yeast species affects feeding and fitness of Drosophila suzukii adults. J. Pest Sci. 93, 1295–1309 (2020).
Article Google Scholar
19.
Santoiemma, G. et al. Habitat preference of Drosophila suzukii across heterogeneous landscapes. J. Pest Sci. 92, 485–494 (2019).
Article Google Scholar
20.
Tait, G. et al. Drosophila suzukii daily dispersal between distinctly different habitats. Entomol. Gen. 40, 25–37 (2020).
Article Google Scholar
21.
Delbac, L., Rusch, A. & Thiéry, D. Temporal dynamics of Drosophila suzukii in vineyard landscapes. Entomol. Gen. 40, 285–295 (2020).
Article Google Scholar
22.
Renkema, J. M., Wright, D., Buitenhuis, R. & Hallett, R. H. Plant essential oils and potassium metabisulfite as repellents for Drosophila suzukii (Diptera: Drosophilidae). Sci. Rep. 6, 21432 (2016).
ADS CAS PubMed PubMed Central Article Google Scholar
23.
Wiman, N. G. et al. Drosophila suzukii population response to environment and management strategies. J. Pest Sci. 89, 653–665 (2016).
Article Google Scholar
24.
Santoiemma, G. et al. Integrated management of Drosophila suzukii in sweet cherry orchards. Entomol. Gen. 40, 297–305 (2020).
Article Google Scholar
25.
Mermer, S. et al. Timing and order of different insecticide classes drive control of Drosophila suzukii; a modeling approach. J. Pest Sci. https://doi.org/10.1007/s10340-020-01292-w (2020).
Article Google Scholar
26.
Gress, B. E. & Zalom, F. G. Identification and risk assessment of spinosad resistance in a California population of Drosophila suzukii. Pest Manage. Sci. 75, 1270–1276 (2018).
Article CAS Google Scholar
27.
Van Timmeren, S., Sial, A. A., Lanka, S. K., Spaulding, N. R. & Isaacs, R. Development of a rapid assessment method for detecting insecticide resistance in Spotted Wing Drosophila (Drosophila suzukii Matsumura). Pest Manage. Sci. 75, 1782–1793 (2019).
Article CAS Google Scholar
28.
Zanardi, O. Z. et al. Bioactivity of a matrine-based biopesticide against four pest species of agricultural importance. Crop Prot. 67, 160–167 (2015).
Article Google Scholar
29.
Souza, M. T. et al. Chemical composition of essential oils of selected species of Piper and their insecticidal activity against Drosophila suzukii and Trichopria anastrephae. Environ. Sci. Pollut. Res. 27, 13056–13065 (2020).
Article CAS Google Scholar
30.
Kostyukovsky, M., Rafaeli, A., Gileadi, C., Demchenko, N. & Shaaya, E. Activation of octopaminergic receptors by essential oil constituents isolated from aromatic plants: Possible mode of action against insect pests. Pest Manage. Sci. 58, 1101–1106 (2002).
CAS Article Google Scholar
31.
Chaaban, A. et al. Insecticide activity of Baccharis dracunculifolia essential oil against Cochliomyia macellaria (Diptera: calliphoridae). Nat. Prod. Res. 32, 2854–2958 (2017).
Google Scholar
32.
Charlie-Silva, I., Souza, L. M., Pereira, C. C., Mazzonetto, F. & Belo, M. A. A. Insecticidal efficacy of aqueous extracts of Ricinus communis, Baccharis trimera and Chenopodium ambrosioides on adults of Alphitobius diaperinus. Ars. Vet. 35, 7–11 (2019).
CAS Article Google Scholar
33.
Khorram, M. S., Nasabi, N. T., Jafarnia, S. & Khosroshahi, S. The toxicity of selected monoterpene hydrocarbons as singles compounds and mixtures against different developmental stages of colorado potato beetle, Leptinotarsa decemlineata Say (Coleoptera: Chrysomelidae). J. Entomol. 8, 404–416 (2011).
CAS Article Google Scholar
34.
Fang, R. et al. Insecticidal activity of essential oil of carum carvi fruits from China and its main components against two grain storage insects. Molecules 15, 9391–9402 (2010).
CAS PubMed PubMed Central Article Google Scholar
35.
Malacrinò, A., Campolo, O. & Laudani, F. Fumigant and repellent activity of limonene enantiomers against Tribolium confusum du Val. Neotrop. Entomol. 45, 597–603 (2016).
PubMed Article Google Scholar
36.
Macchioni, F. et al. Acaricidal activity of pine essential oils and their main components against Tyrophagus putrescentiae, a stored food mite. J. Agric. Food Chem. 50, 4586–4588 (2002).
CAS PubMed Article Google Scholar
37.
Tiberi, R. et al. The role of the monoterpene composition in Pinus spp. needles, in host selection by the pine processionary caterpillar, Thaumetopoea pityocampa. Phytoparas. 27, 263–272 (1999).
CAS Article Google Scholar
38.
Schuster, D. J., Thompson, S., Ortega, L. D. & Polston, J. E. Laboratory evaluation of products to reduce settling of sweet potato whitefly adults. J. Econ. Entomol. 102, 1482–1489 (2009).
CAS PubMed Article Google Scholar
39.
Raina, A. et al. Effects of orange oil extract on the Formosan Subterranean Termite (Isoptera: Rhinotermitidae). J. Econ. Entomol. 100, 880–885 (2010).
Article Google Scholar
40.
Andreazza, F. et al. Toxicities and effects of insecticidal toxic baits to control Drosophila suzukii and Zaprionus indianus (Diptera: Drosophilidae). Pest Manage. Sci. 73, 146–152 (2017).
CAS Article Google Scholar
41.
Bruck, D. J. et al. Laboratory and field comparisons of insecticides to reduce infestation of Drosophila suzukii in berry crops. Pest Manage. Sci. 67, 1375–1385 (2011).
CAS Article Google Scholar
42.
Beers, E. H. et al. Developing Drosophila suzukii management programs for sweet cherry in the western United States. Pest Manage. Sci. 67, 1386–1395 (2011).
CAS Article Google Scholar
43.
Van Timmeren, S. & Isaacs, R. Control of spotted wing drosophila, Drosophila suzukii, by specific insecticides and by conventional and organic crop protection programs. Crop Prot. 54, 126–133 (2013).
Article CAS Google Scholar
44.
Pavela, R. Acute, synergistic and antagonistic effects of some aromatic compounds on the Spodoptera littoralis Boisd. (Lep., Noctuidae) larvae. Ind. Crop Prod. 60, 247–258 (2014).
CAS Article Google Scholar
45.
Dias, C. N. & Moraes, D. F. C. Essential oils and their compounds as Aedes aegypti L. (Diptera: Culicidae) larvicides: A review. Parasitol. Res. 113, 565–592 (2014).
PubMed Article PubMed Central Google Scholar
46.
Jankowska, M., Rogalska, J., Wyszkowska, J. & Stankiewicz, M. Molecular targets for components of essential oils in the insect nervous system–A review. Molecules https://doi.org/10.3390/molecules23010034 (2017).
Article PubMed PubMed Central Google Scholar
47.
Trombetta, D. et al. Mechanisms of antibacterial action of three monoterpenes. Antimicrob. Agents Chemother. 49, 2474–2478 (2005).
CAS PubMed PubMed Central Article Google Scholar
48.
Holley, R. A. & Patel, D. Improvement in shelf-life and safety of perishable foods by plant essential oils and smoke antimicrobials. Food Microbiol. 22, 273–292 (2005).
CAS Article Google Scholar
49.
Oussalah, M., Caillet, S., Saucier, L. & Lacroix, M. Inhibitory effects of selected plant essential oils on the growth of four pathogenic bacteria: E. coli O157:H7, Salmonella Typhimurium, Staphylococcus aureus and Listeria monocytogenes. Food Control 18, 414–420 (2007).
CAS Article Google Scholar
50.
Abdelgaleil, S., Badawy, M., Shawir, M. & Mohamed, M. Chemical composition, fumigant and contact toxicities of essential oils isolated from egyptian plants against the stored grain insects; Sitophilus oryzae L. and Tribolium castaneum (Herbst). Egypt J. Biol. Pest Co 25, 639–647 (2015).
Google Scholar
51.
Badawy, M. E. I., El-Arami, S. A. A. & Abdelgaleil, S. A. M. Acaricidal and quantitative structure activity relationship of monoterpenes against the two-spotted spider mite, Tetranychus urticae. Exp. Appl. Acarol. 52, 261–274 (2010).
CAS PubMed Article PubMed Central Google Scholar
52.
Chaaban, A. et al. Essential oil from Curcuma longa leaves: Can an overlooked by-product from turmeric industry be effective for myiasis control?. Ind. Crop Prod. 132, 352–364 (2019).
CAS Article Google Scholar
53.
Kumar, P., Mishra, S., Malik, A. & Satya, S. Biocontrol potential of essential oil monoterpenes against housefly, Musca domestica (Diptera: muscidae). Ecotoxicol. Environ. Safe 100, 1–6 (2014).
CAS Article Google Scholar
54.
Benelli, G. et al. Acute and sub-lethal toxicity of eight essential oils of commercial interest against the filariasis mosquito Culex quinquefasciatus and the housefly Musca domestica. Ind. Crop Prod. 112, 668–680 (2018).
CAS Article Google Scholar
55.
Pavela, R. et al. Outstanding insecticidal activity and sublethal effects of Carlina acaulis root essential oil on the housefly, Musca domestica, with insights on its toxicity on human cells. Food Chem. Toxicol. 136, 111037 (2020).
CAS PubMed Article PubMed Central Google Scholar
56.
Pavela, R. Lethal and sublethal effects of thyme oil (Thymus vulgaris L.) on the house fly (Musca domestica Lin.). J. Essent. Oil-Bear. Plants 10, 346–356 (2007).
CAS Article Google Scholar
57.
Haviland, D. R. & Beers, E. H. Chemical control programs for Drosophila suzukii that comply with international limitations on pesticide residues for exported sweet cherries. J. Integr. Pest Manage. 3, 1–6 (2012).
Article Google Scholar
58.
Shaw, B., Brain, P., Wijnen, H. & Fountain, M. T. Implications of sub-lethal rates of insecticides and daily time of application on Drosophila suzukii lifecycle. Crop Prot. 121, 182–194 (2019).
CAS Article Google Scholar
59.
Richards, O. W. & Davies, R. G. Imms’ General Textbook of Entomology: Structure, Physiology and Development 101–263 (Chapman and Hall, London, 1977).
Google Scholar
60.
Alves, S. N., Serrão, J. E. & Melo, A. L. Alterations in the fat body and midgut of Culex quinquefasciatus larvae following exposure to different insecticides. Micron 41, 592–597 (2010).
CAS PubMed Article PubMed Central Google Scholar
61.
Rossi, C. A., Roat, T. C., Tavares, D. A., Cintra-Socolowski, P. & Malaspina, O. Effects of sublethal doses of imidacloprid in malpighian tubules of africanized Apis melífera (Hymenoptera, Apidae). Microsc. Res. Techniq. 76, 552–558 (2013).
CAS Article Google Scholar
62.
Kerr, J. F. R. History of the events leading to the formulation of the apoptosis concept. Toxicology 181–182, 471–474 (2002).
PubMed Article PubMed Central Google Scholar
63.
Rossi-Stacconi, M. V. et al. Host location and dispersal ability of the cosmopolitan parasitoid Trichopria drosophilae released to control the invasive Spotted Wing Drosophila. Biol. Control 117, 188–196 (2018).
Article Google Scholar
64.
Giorgini, M. et al. Exploration for native parasitoids of Drosophila suzukii in China reveals a diversity of parasitoid species and narrow host range of the dominant parasitoid. J. Pest Sci. 92, 509–522 (2018).
Article Google Scholar
65.
Garriga, A. et al. Soil emergence of Drosophila suzukii adults: A susceptible period for entomopathogenic nematodes infection. J. Pest Sci. 93, 639–646 (2020).
Article Google Scholar
66.
Wolf, S., Boycheva-Woltering, S., Romeis, J. & Collatz, J. Trichopria drosophilae parasitizes Drosophila suzukii in seven common non-crop fruits. J. Pest Sci. 93, 627–638 (2020).
Article Google Scholar
67.
Pavela, R. & Benelli, G. Essential oils as ecofriendly biopesticides? Challenges and constraints. Trends Plant Sci. 21, 1000–1007 (2016).
CAS PubMed Article PubMed Central Google Scholar
68.
Krzyzowski, M., Baran, B. & Łozowski, B. The role of dilution mediums in studies of fumigant insecticidal activity of essential oils. J. Pest Sci. 93, 1119–1124 (2020).
Article Google Scholar
69.
Campolo, O. et al. Essential oil-based nano-emulsions: Effect of different surfactants, sonication and plant species on physicochemical characteristics. Ind. Crop Prod 157, 112935 (2020).
CAS Article Google Scholar
70.
McLafferty, F. W., Stauffer, D. A., Loh, S. Y. & Wesdemiotis, C. Unknown identification using reference mass spectra. Quality evaluation of databases. J. Am. Soc. Mass Spectr. 10, 1229–1240 (1999).
CAS Article Google Scholar
71.
Van Den Dool, H. & Kratz, P. D. J. A. A generalization of the retention index system including linear temperature programmed gas-liquid partition chromatography. J. Chromatogr. A 11, 463–471 (1963).
Article Google Scholar
72.
Adams, R. P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectorscopy 5th edn. (Texensis Publishing, New York, 2017).
Google Scholar
73.
Schlesener, D. C. H. et al. Biology and fertility life table of Drosophila suzukii on artificial diets. Entomol. Exp. Appl. 166, 932–936 (2018).
Google Scholar
74.
Abbott, W. S. A method of computing the effectiveness of an insecticide. J. Am. Mosquito Contr. 3, 302–303 (1925).
Google Scholar
75.
Finney, D. J. Statistical Method in Biological Assay (Charles Griffin & Company, London, 1978).
Google Scholar
76.
Nelder, J. A. & Wedderburn, R. W. M. Generalized linear models. J. R. Stat. Soc. B 135, 370–384 (1972).
Google Scholar
77.
Hinde, J. & Demétrio, C. G. B. Overdispersion: Models and estimation. Comput. Stat. Data Anal. 27, 151–170 (1998).
MATH Article Google Scholar
78.
R Development Core Team R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0 (2012). http://www.R-project.org. Accessed 2 September 2020.
79.
Institute, S. A. S. SAS System–SAS/STAT. Computer Program, Version 9.2 84 (SAS Institute, Cary, 2011).
Google Scholar
80.
Throne, J. E., Weaver, D. K., Chew, V. B. & James, E. Probit analysis of correlated data: Multiple observations over time at one concentration. J. Econ. Entomol. 88, 1510–1512 (1995).
Article Google Scholar
81.
Obeng-Ofori, D. Plant oils as grain protectants against infestations of Cryptolestes pusillus and Rhyzopertha dominica in stored grain. Entomol. Exp. Appl. 77, 133–139 (1995).
Article Google Scholar More