1.
Janzen, D. H. Why mountain passes are higher in the tropics. Am. Nat. 101, 233–249 (1967).
Article Google Scholar
2.
Ghalambor, C. K., Huey, R. B., Martin, P. R., Tewksbury, J. J. & Wang, G. Are mountain passes higher in the tropics? Janzen’s hypothesis revisited. Integr. Comp. Biol. 46, 5–17 (2006).
PubMed Article PubMed Central Google Scholar
3.
Knowlton, N. Sibling species in the sea. Annu. Rev. Ecol. Syst. 24, 189–216 (1993).
Article Google Scholar
4.
Palumbi, S. R. Genetic divergence, reproductive isolation, and marine speciation. Annu. Rev. Ecol. Syst. 25, 547–572 (1994).
Article Google Scholar
5.
Carlon, D. B. & Budd, A. F. Incipient speciation across a depth gradient in a scleractinian coral? Evolution 56, 2227–2242 (2002).
PubMed Article Google Scholar
6.
Rocha, L. A., Robertson, D. R., Roman, J. & Bowen, B. W. Ecological speciation in tropical reef fishes. Proc. Biol. Sci. 272, 573–579 (2005).
PubMed PubMed Central Article Google Scholar
7.
Thornhill, D. J., Mahon, A. R., Norenburg, J. L. & Halanych, K. M. Open-ocean barriers to dispersal: a test case with the Antarctic Polar Front and the ribbon worm Parborlasia corrugatus (Nemertea: Lineidae). Mol. Ecol. 17, 5104–5117 (2008).
CAS PubMed Article Google Scholar
8.
Marshall, D. J., Monro, K., Bode, M., Keough, M. J. & Swearer, S. Phenotype–environment mismatches reduce connectivity in the sea. Ecol. Lett. 13, 128–140 (2010).
CAS PubMed Article Google Scholar
9.
Ingram, T. Speciation along a depth gradient in a marine adaptive radiation. Proc. Biol. Sci. 278, 613–618 (2011).
PubMed Google Scholar
10.
Prada, C. & Hellberg, M. E. Long prereproductive selection and divergence by depth in a Caribbean candelabrum coral. Proc. Natl Acad. Sci. USA 110, 3961–3966 (2013).
CAS PubMed Article Google Scholar
11.
Muir, P. R., Wallace, C. C., Done, T. & Aguirre, J. D. Limited scope for latitudinal extension of reef corals. Science 348, 1135–1138 (2015).
CAS PubMed Article Google Scholar
12.
Kenkel, C. D., Setta, S. P. & Matz, M. V. Heritable differences in fitness-related traits among populations of the mustard hill coral, Porites astreoides. Heredity 115, 509–516 (2015).
CAS PubMed PubMed Central Article Google Scholar
13.
Brown, B., Dunne, R., Goodson, M. & Douglas, A. Experience shapes the susceptibility of a reef coral to bleaching. Coral Reefs 21, 119–126 (2002).
Article Google Scholar
14.
Thompson, D. M. & van Woesik, R. Corals escape bleaching in regions that recently and historically experienced frequent thermal stress. Proc. Biol. Sci. 276, 2893–2901 (2009).
CAS PubMed PubMed Central Article Google Scholar
15.
Howells, E. J., Berkelmans, R., van Oppen, M. J. H., Willis, B. L. & Bay, L. K. Historical thermal regimes define limits to coral acclimatization. Ecology 94, 1078–1088 (2013).
PubMed Article Google Scholar
16.
Fine, M., Gildor, H. & Genin, A. A coral reef refuge in the Red Sea. Glob. Chang. Biol. 19, 3640–3647 (2013).
PubMed Article Google Scholar
17.
Palumbi, S. R., Barshis, D. J., Traylor-Knowles, N. & Bay, R. A. Mechanisms of reef coral resistance to future climate change. Science 344, 895–898 (2014).
CAS PubMed Article Google Scholar
18.
Dixon, G. et al. Genomic determinants of coral heat tolerance across latitudes. Science 348, 1460–1462 (2015).
CAS PubMed Article Google Scholar
19.
Smith, T. B. et al. Caribbean mesophotic coral ecosystems are unlikely climate change refugia. Glob. Chang. Biol. 22, 2756–2765 (2016).
PubMed Article Google Scholar
20.
Kenkel, C. D. & Matz, M. V. Gene expression plasticity as a mechanism of coral adaptation to a variable environment. Nat. Ecol. Evol. 1, 0014 (2017).
Article Google Scholar
21.
Safaie, A. et al. High frequency temperature variability reduces the risk of coral bleaching. Nat. Commun. 9, 1671 (2018).
PubMed PubMed Central Article CAS Google Scholar
22.
Sully, S., Burkepile, D. E., Donovan, M. K., Hodgson, G. & van Woesik, R. A global analysis of coral bleaching over the past two decades. Nat. Commun. 10, 1264 (2019).
CAS PubMed PubMed Central Article Google Scholar
23.
Mousseau, T. A. & Fox, C. W. The adaptive significance of maternal effects. Trends Ecol. Evol. 13, 403–407 (1998).
CAS PubMed Article PubMed Central Google Scholar
24.
Badyaev, A. V. & Uller, T. Parental effects in ecology and evolution: mechanisms, processes and implications. Philos. Trans. R. Soc. B Biol. Sci. 364, 1169–1177 (2009).
Article Google Scholar
25.
Marshall, D. J., Allen, R. M. & Crean, A. J. The ecological and evolutionary importance of maternal effects in the sea. Oceanogr. Mar. Biol. 46, 203–250 (2008).
Google Scholar
26.
Torda, G. et al. Rapid adaptive responses to climate change in corals. Nat. Clim. Change 7, 627–636 (2017).
Article Google Scholar
27.
Padilla-Gamiño, J. L., Pochon, X., Bird, C., Concepcion, G. T. & Gates, R. D. From parent to gamete: vertical transmission of Symbiodinium (Dinophyceae) ITS2 sequence assemblages in the reef building coral Montipora capitata. PLoS One 7, e38440 (2012).
PubMed PubMed Central Article CAS Google Scholar
28.
Quigley, K. M., Willis, B. L. & Bay, L. K. Maternal effects and Symbiodinium community composition drive differential patterns in juvenile survival in the coral Acropora tenuis. R. Soc. Open Sci. 3, 160471 (2016).
PubMed PubMed Central Article Google Scholar
29.
Goodbody-Gringley, G., Wong, K. H., Becker, D. M., Glennon, K. & de Putron, S. J. Reproductive ecology and early life history traits of the brooding coral, Porites astreoides, from shallow to mesophotic zones. Coral Reefs 37, 483–494 (2018).
Article Google Scholar
30.
Bellworthy, J., Spangenberg, J. E. & Fine, M. Feeding increases the number of offspring but decreases parental investment of Red Sea coral Stylophora pistillata. Ecol. Evol. 9, 12245–12258 (2019).
PubMed PubMed Central Article Google Scholar
31.
Putnam, H. M., Ritson-Williams, R., Cruz, J. A., Davidson, J. M. & Gates, R. D. Environmentally-induced parental or developmental conditioning influences coral offspring ecological performance. Sci. Rep. 10, 13664 (2020).
CAS PubMed PubMed Central Article Google Scholar
32.
Gleason, D. F. & Wellington, G. M. Variation in UVB sensitivity of planula larvae of the coral Agaricia agaricites along a depth gradient. Mar. Biol. 123, 693–703 (1995).
Article Google Scholar
33.
Mundy, C. N. & Babcock, R. C. Role of light intensity and spectral quality in coral settlement: implications for depth-dependent settlement? J. Exp. Mar. Bio. Ecol. 223, 235–255 (1998).
Article Google Scholar
34.
Wellington, G. M. & Fitt, W. K. Influence of UV radiation on the survival of larvae from broadcast-spawning reef corals. Mar. Biol. 143, 1185–1192 (2003).
CAS Article Google Scholar
35.
Baird, A. H., Babcock, R. C. & Mundy, C. P. Habitat selection by larvae influences the depth distribution of six common coral species. Mar. Ecol. Prog. Ser. 252, 289–293 (2003).
Article Google Scholar
36.
Fogarty, N. D. Caribbean acroporid coral hybrids are viable across life history stages. Mar. Ecol. Prog. Ser. 446, 145–159 (2012).
Article Google Scholar
37.
Strader, M. E., Davies, S. W. & Matz, M. V. Differential responses of coral larvae to the colour of ambient light guide them to suitable settlement microhabitat. R. Soc. Open Sci. 2, 150358 (2015).
PubMed PubMed Central Article CAS Google Scholar
38.
Rundle, H. D. & Nosil, P. Ecological speciation. Ecol. Lett. 8, 336–352 (2005).
Article Google Scholar
39.
DeWitt, T. J., Sih, A. & Wilson, D. S. Costs and limits of phenotypic plasticity. Trends Ecol. Evol. 13, 77–81 (1998).
CAS PubMed Article Google Scholar
40.
Hendry, A. P. Selection against migrants contributes to the rapid evolution of ecologically dependent reproductive isolation. Evol. Ecol. Res. 6, 1219–1236 (2004).
Google Scholar
41.
Nosil, P., Vines, T. H. & Funk, D. J. Reproductive isolation caused by natural selection against immigrants from divergent habitats. Evolution 59, 705–719 (2005).
PubMed Google Scholar
42.
Eytan, R. I., Hayes, M., Arbour-Reily, P., Miller, M. & Hellberg, M. E. Nuclear sequences reveal mid‐range isolation of an imperilled deep‐water coral population. Mol. Ecol. 18, 2375–2389 (2009).
CAS PubMed Article Google Scholar
43.
Brazeau, D. A., Lesser, M. P. & Slattery, M. Genetic structure in the coral, Montastraea cavernosa: assessing genetic differentiation among and within mesophotic reefs. PLoS One 8, e65845 (2013).
CAS PubMed PubMed Central Article Google Scholar
44.
van Oppen, M. J. H. et al. Adaptation to reef habitats through selection on the coral animal and its associated microbiome. Mol. Ecol. 27, 2956–2971 (2018).
PubMed Article CAS Google Scholar
45.
Drury, C., Pérez Portela, R., Serrano, X. M., Oleksiak, M. & Baker, A. C. Fine‐scale structure among mesophotic populations of the great star coral Montastraea cavernosa revealed by SNP genotyping. Ecol. Evol. 10, 6009–6019 (2020).
PubMed PubMed Central Article Google Scholar
46.
van Oppen, M. J. H., Bongaerts, P., Underwoord, J. N., Peplow, L. M. & Cooper, T. F. The role of deep reefs in shallow reef recovery: an assessment of vertical connectivity in a brooding coral from west and east Australia. Mol. Ecol. 20, 1647–1660 (2011).
PubMed Article Google Scholar
47.
Serrano, X. M. et al. Geographic differences in vertical connectivity in the Caribbean coral Montastraea cavernosa despite high levels of horizontal connectivity at shallow depths. Mol. Ecol. 23, 4226–4240 (2014).
CAS PubMed Article Google Scholar
48.
Serrano, X. M. et al. Long distance dispersal and vertical gene flow in the Caribbean brooding coral Porites astreoides. Sci. Rep. 6, 21619 (2016).
CAS PubMed PubMed Central Article Google Scholar
49.
Bongaerts, P. et al. Deep reefs are not universal refuges: reseeding potential varies among coral species. Sci. Adv. 3, e1602373 (2017).
PubMed PubMed Central Article Google Scholar
50.
Eckert, R. J., Studivan, M. S. & Voss, J. D. Populations of the coral species Montastraea cavernosa on the Belize Barrier Reef lack vertical connectivity. Sci. Rep. 9, 7200 (2019).
PubMed PubMed Central Article CAS Google Scholar
51.
Riegl, B. & Piller, W. E. Possible refugia for reefs in times of environmental stress. Int. J. Earth Sci. 92, 520–531 (2003).
Article Google Scholar
52.
Bongaerts, P. & Smith, T. B. Beyond the “Deep Reef Refuge” hypothesis: a conceptual framework to characterize persistence at depth. In Mesophotic Coral Ecosystems, Vol. 12 (eds Loya, Y., Puglise, K. A. & Bridge, T. C. L.) Ch. 45 (Springer, 2019).
53.
Loya, Y. et al. Coral bleaching: the winners and the losers. Ecol. Lett. 4, 122–131 (2001).
Article Google Scholar
54.
van Woesik, R., Sakai, K., Ganase, A. & Loya, Y. Revisiting the winners and the losers a decade after coral bleaching. Mar. Ecol. Prog. Ser. 434, 67–76 (2011).
Article Google Scholar
55.
Sinniger, F., Morita, M. & Harii, S. ‘Locally extinct’ coral species Seriatopora hystrix found at upper mesophotic depths in Okinawa. Coral Reefs 32, 153 (2013).
Article Google Scholar
56.
Prasetia, R., Sinniger, F., Hashizume, K. & Harii, S. Reproductive biology of the deep brooding coral Seriatopora hystrix: Implications for shallow reef recovery. PLoS One 12, e0177034 (2017).
PubMed PubMed Central Article CAS Google Scholar
57.
Richmond, R. H. Energetics, competency, and long-distance dispersal of planula larvae of the coral Pocillopora damicornis. Mar. Biol. 93, 527–533 (1987).
Article Google Scholar
58.
Graham, E. M., Baird, A. H. & Connolly, S. R. Survival dynamics of scleractinian coral larvae and implications for dispersal. Coral Reefs 27, 529–539 (2008).
Article Google Scholar
59.
Cowen, R. K., Lwiza, K. M. M., Sponaugle, S., Paris, C. B. & Olson, D. B. Connectivity of marine populations: open or closed? Science 287, 857–859 (2000).
CAS PubMed Article Google Scholar
60.
Thompson, D. M. et al. Variability in oceanographic barriers to coral larval dispersal: Do currents shape biodiversity? Prog. Oceanogr. 165, 110–122 (2018).
Article Google Scholar
61.
Kahng, S. E. et al. Light, Temperature, photosynthesis, heterotrophy, and the lower depth limits of mesophotic coral ecosystems. In Mesophotic Coral Ecosystems, Vol. 12 (eds Loya, Y., Puglise, K. A. & Bridge, T. C. L.) Ch. 42 (Springer, 2019).
62.
Shlesinger, T., Grinblat, M., Rapuano, H., Amit, T. & Loya, Y. Can mesophotic reefs replenish shallow reefs? Reduced coral reproductive performance casts a doubt. Ecology 99, 421–437 (2018).
PubMed Article PubMed Central Google Scholar
63.
Dishon, G., Dubinsky, Z., Fine, M. & Iluz, D. Underwater light field patterns in subtropical coastal waters: a case study from the Gulf of Eilat (Aqaba). Isr. J. Plant Sci. 60, 265–275 (2012).
Article Google Scholar
64.
Shlesinger, T. & Loya, Y. Recruitment, mortality, and resilience potential of scleractinian corals at Eilat, Red Sea. Coral Reefs 35, 1357–1368 (2016).
Article Google Scholar
65.
Shlesinger, T. & Loya, Y. Sexual reproduction of scleractinian corals in mesophotic coral ecosystems vs. shallow reefs. In Mesophotic Coral Ecosystems, Vol. 12 (eds Loya, Y., Puglise, K. A. & Bridge, T. C. L.) Ch. 35 (Springer, 2019).
66.
Bridge, T. C. L., Hughes, T. P., Guinotte, J. M. & Bongaerts, P. Call to protect all coral reefs. Nat. Clim. Change 3, 528–530 (2013).
Article Google Scholar
67.
Soares, M. O. et al. Why do mesophotic coral ecosystems have to be protected? Sci. Total Environ. 726, 138456 (2020).
CAS PubMed Article PubMed Central Google Scholar
68.
Pyle, R. L. & Copus, J. M. Mesophotic coral ecosystems: Introduction and overview. In Mesophotic Coral Ecosystems, Vol. 12 (eds Loya, Y., Puglise, K. A. & Bridge, T. C. L.) Ch. 1 (Springer, 2019).
69.
Holstein, D. M., Smith, T. B., Gyory, J. & Paris, C. B. Fertile fathoms: deep reproductive refugia for threatened shallow corals. Sci. Rep. 5, 12407 (2015).
CAS PubMed PubMed Central Article Google Scholar
70.
Ritson-Williams, R. et al. New perspectives on ecological mechanisms affecting coral recruitment on reefs. Smithson. Contrib. Mar. Sci. 38, 437–457 (2009).
71.
Webster, N. S. et al. Metamorphosis of a scleractinian coral in response to microbial biofilms. Appl. Environ. Microbiol. 70, 1213–1221 (2004).
CAS PubMed PubMed Central Article Google Scholar
72.
Whitman, T. N., Negri, A. P., Bourne, D. G. & Randall, C. J. Settlement of larvae from four families of corals in response to a crustose coralline alga and its biochemical morphogens. Sci. Rep. 10, 16397 (2020).
PubMed PubMed Central Article CAS Google Scholar
73.
Doropoulos, C. et al. Depth gradients drive changes in early successional community composition and associated coral larvae settlement interactions. Mar. Biol. 167, 59 (2020).
Article Google Scholar
74.
Sammarco, P. W. & Andrews, J. C. Localized dispersal and recruitment in Great Barrier Reef corals: the Helix experiment. Science 239, 1422–1424 (1988).
CAS PubMed Article PubMed Central Google Scholar
75.
Vollmer, S. V. & Palumbi, S. R. Restricted gene flow in the Caribbean staghorn coral Acropora cervicornis: implications for the recovery of endangered reefs. J. Hered. 98, 40–50 (2006).
PubMed Article PubMed Central Google Scholar
76.
Figueiredo, J., Baird, A. H. & Connolly, S. R. Synthesizing larval competence dynamics and reef‐scale retention reveals a high potential for self‐recruitment in corals. Ecology 94, 650–659 (2013).
PubMed Article PubMed Central Google Scholar
77.
Underwood, J. N. et al. Extreme seascape drives local recruitment and genetic divergence in brooding and spawning corals in remote north‐west Australia. Evol. Appl. 13, 2404–2421 (2020).
PubMed PubMed Central Article Google Scholar
78.
Dubé, C. E., Boissin, E., Mercière, A. & Planes, S. Parentage analyses identify local dispersal events and sibling aggregations in a natural population of Millepora hydrocorals, a free‐spawning marine invertebrate. Mol. Ecol. 29, 1508–1522 (2020).
PubMed Article PubMed Central Google Scholar
79.
Liberman, R., Shlesinger, T., Loya, Y. & Benayahu, Y. Octocoral sexual reproduction: temporal disparity between mesophotic and shallow-reef populations. Front. Mar. Sci. 5, 445 (2018).
Article Google Scholar
80.
Feldman, B., Shlesinger, T. & Loya, Y. Mesophotic coral-reef environments depress the reproduction of the coral Paramontastraea peresi in the Red Sea. Coral Reefs 37, 201–214 (2018).
Article Google Scholar
81.
Carlon, D. B. & Olson, R. R. Larval dispersal distance as an explanation for adult spatial pattern in two Caribbean reef corals. J. Exp. Mar. Bio. Ecol. 173, 247–263 (1993).
Article Google Scholar
82.
Miller, K. & Mundy, C. Rapid settlement in broadcast spawning corals: implications for larval dispersal. Coral Reefs 22, 99–106 (2003).
Article Google Scholar
83.
Cooper, T. F. et al. Niche specialization of reef-building corals in the mesophotic zone: metabolic trade-offs between divergent Symbiodinium types. Proc. Biol. Sci. 278, 1840–1850 (2011).
PubMed PubMed Central Google Scholar
84.
Pochon, X. et al. Depth specialization in mesophotic corals (Leptoseris spp.) and associated algal symbionts in Hawai’i. R. Soc. Open Sci. 2, 140351 (2015).
CAS PubMed PubMed Central Article Google Scholar
85.
Baird, A. H., Guest, J. R. & Willis, B. L. Systematic and biogeographical patterns in the reproductive biology of scleractinian corals. Annu. Rev. Ecol. Evol. Syst. 40, 551–571 (2009).
Article Google Scholar
86.
Hoegh-Guldberg, O., Poloczanska, E. S., Skirving, W. & Dove, S. Coral reef ecosystems under climate change and ocean acidification. Front. Mar. Sci. 4, 158 (2017).
Article Google Scholar
87.
Hughes, T. P. et al. Coral reefs in the Anthropocene. Nature 546, 82–90 (2017).
CAS PubMed Article Google Scholar
88.
Shlesinger, T. & Loya, Y. Breakdown in spawning synchrony: a silent threat to coral persistence. Science 365, 1002–1007 (2019).
CAS PubMed Article Google Scholar
89.
Doebeli, M. & Dieckmann, U. Speciation along environmental gradients. Nature 421, 259–264 (2003).
CAS PubMed Article Google Scholar
90.
Schluter, D. Evidence for ecological speciation and its alternative. Science 323, 737–741 (2009).
CAS PubMed Article PubMed Central Google Scholar
91.
Goreau, T. F. The ecology of Jamaican coral reefs I. Species composition and zonation. Ecology 40, 67–90 (1959).
Article Google Scholar
92.
Loya, Y. Community structure and species diversity of hermatypic corals at Eilat, Red Sea. Mar. Biol. 13, 100–123 (1972).
Article Google Scholar
93.
Sheppard, C. R. C. Coral populations on reef slopes and their major controls. Mar. Ecol. Prog. Ser. 7, 83–115 (1982).
Article Google Scholar
94.
Vermeij, M. J. A. & Bak, R. P. M. Species-specific population structure of closely related coral morphospecies along a depth gradient (5-60 m) over a Caribbean reef slope. Bull. Mar. Sci. 73, 725–744 (2003).
Google Scholar
95.
Rocha, L. et al. Mesophotic coral ecosystems are threatened and ecologically distinct from shallow water reefs. Science 361, 281–284 (2018).
CAS PubMed Article PubMed Central Google Scholar
96.
Tamir, R., Eyal, G., Kramer, N., Laverick, J. H. & Loya, Y. Light environment drives the shallow‐to‐mesophotic coral community transition. Ecosphere 10, e02839 (2019).
Article Google Scholar
97.
Roberts, T. E., Bridge, T. C. L., Caley, M. J., Madin, J. S. & Baird, A. H. Resolving the depth zonation paradox in reef‐building corals. Ecology 100, e02761 (2019).
PubMed Article PubMed Central Google Scholar
98.
Benayahu, Y. & Loya, Y. Surface brooding in the Red Sea soft coral Parerythropodium fulvum fulvum (Forskål, 1775). Biol. Bull. 165, 353–369 (1983).
CAS PubMed Article PubMed Central Google Scholar
99.
Shefy, D., Shashar, N. & Rinkevich, B. The reproduction of the Red Sea coral Stylophora pistillata from Eilat: 4-decade perspective. Mar. Biol. 165, 27 (2018).
Article Google Scholar
100.
Rosenberg, Y., Doniger, T. & Levy, O. Sustainability of coral reefs are affected by ecological light pollution in the Gulf of Aqaba/Eilat. Commun. Biol. 2, 289 (2019).
PubMed PubMed Central Article Google Scholar
101.
Eyal, G. et al. Euphyllia paradivisa, a successful mesophotic coral in the northern Gulf of Eilat/Aqaba, Red Sea. Coral Reefs 35, 91–102 (2016).
Article Google Scholar
102.
R Core Team. R: a language and environment for statistical computing. R Foundation for Statistical Computing https://www.R-project.org/ (2020). More