Integration of palaeo-and-modern food webs reveal slow changes in a river floodplain wetland ecosystem
1.
Herwig, B. R., Wahl, D. H., Dettmers, J. M. & Soluk, D. A. Spatial and temporal patterns in the food web structure of a large floodplain river assessed using stable isotopes. Can. J. Fish. Aquat. Sci. 64, 495–508. https://doi.org/10.1139/f07-023 (2007).
CAS Article Google Scholar
2.
Turner, B. L. I. et al. A framework for vulnerability analysis in sustainability science. Proc. Natl. Acad. Sci. USA 100, 8074–8079. https://doi.org/10.1073/pnas.1231335100 (2003).
ADS CAS Article PubMed Google Scholar
3.
Sayer, C. D., Davidson, T. A., Jones, J. I. & Langdon, P. G. Combining contemporary ecology and palaeolimnology to understand shallow lake ecosystem change. Freshw. Biol. 55, 487–499. https://doi.org/10.1111/j.1365-2427.2010.02388.x (2010).
Article Google Scholar
4.
Randsalu-Wendrup, L. et al. Combining limnology and palaeolimnology to investigate recent regime shifts in a shallow, eutrophic lake. J. Paleolimnol. 51, 437–448. https://doi.org/10.1007/s10933-014-9767-5 (2014).
ADS Article Google Scholar
5.
Kattel, G. R., Dong, X. & Yang, X. A century-scale, human-induced ecohydrological evolution of wetlands of two large river basins in Australia (Murray) and China (Yangtze). Hydrol. Earth Syst. Sci. 20, 2151–2168. https://doi.org/10.5194/hess-20-2151-2016 (2016).
ADS Article Google Scholar
6.
Kingsford, R. T. & Thomas, R. F. Destruction of wetlands and waterbird populations by dams and irrigation on the Murrumbidgee River in arid Australia. Environ. Manage. 34, 383–396. https://doi.org/10.1007/s00267-004-0250-3 (2004).
CAS Article PubMed Google Scholar
7.
Gell, P. A. & Reid, M. A. Muddied waters: The case for mitigating sediment and nutrient flux to optimize restoration response in the Murray-Darling Basin, Australia. Front. Ecol. Evolut. https://doi.org/10.3389/fevo.2016.00016 (2016).
Article Google Scholar
8.
Davis, J. et al. When trends intersect: The challenge of protecting freshwater ecosystems under multiple land use and hydrological intensification scenarios. Sci. Total Environ. 534, 65–78. https://doi.org/10.1016/j.scitotenv.2015.03.127 (2015).
ADS CAS Article PubMed Google Scholar
9.
Davis, J. A. & Froend, R. Loss and degradation of wetlands in southwestern Australia: Underlying causes, consequences and solutions. Wetlands Ecol. Manage. 7, 13–23 (1999).
Article Google Scholar
10.
Wright, I. A., Chessman, B. C., Eairweather, P. G. & Benson, L. J. Measuring the impact of sewage effluent on the macroinvertebrate community of an upland stream: The effect of different levels of taxonomic resolution and quantification. Aust. J. 20, 142–149 (1995).
Google Scholar
11.
Wright, I. A., Belmer, N. & Davies, P. J. Coal mine water pollution and ecological impairment of one of Australia’s most ‘protected’ high conservation-value rivers. Water Air Soil Pollut. https://doi.org/10.1007/s11270-017-3278-8 (2017).
Article Google Scholar
12.
Forsberg, B. R., Melack, J. M., Richey, J. E. & Pimentel, T. P. Regional and seasonal variability in planktonic photosynthesis and planktonic community respiration in Amazon floodplain lakes. Hydrobiologia 800, 187–206. https://doi.org/10.1007/s10750-017-3222-3 (2017).
CAS Article Google Scholar
13.
Kennard, M. J., Arthington, A. H., Pusey, B. J. & Harch, B. D. Are alien fish a reliable indicator of river health?. Freshw. Biol. 50, 174–193. https://doi.org/10.1111/j.1365-2427.2004.01293.x (2005).
Article Google Scholar
14.
Froend, R. H. & Mccomb, A. J. Distribution, productivity and reproductive phenology of emergent macrophytes in relation to water regimes at wetlands of South-western Australia. Aust. J. Mar. Freshwater Res. 45, 1491–1508 (1994).
Article Google Scholar
15.
Koehn, J. Carp (Cyprinus carpio) as a powerful invader. Freshw. Biol. 49, 882–894 (2004).
Article Google Scholar
16.
Hardy, C. M., Krull, E. S., Hartley, D. M. & Oliver, R. L. Carbon source accounting for fish using combined DNA and stable isotope analyses in a regulated lowland river weir pool. Mol. Ecol. 19, 197–212. https://doi.org/10.1111/j.1365-294X.2009.04411.x (2010).
CAS Article PubMed Google Scholar
17.
Brett, M. T., Kainz, M. J., Taipale, S. J. & Seshan, H. Phytoplankton, not allochthonous carbon, sustains herbivorous zooplankton production. Proc. Natl. Acad. Sci. USA 106, 21197–21201. https://doi.org/10.1073/pnas.0904129106 (2009).
ADS Article PubMed Google Scholar
18.
Mendonca, R. et al. Bimodality in stable isotope composition facilitates the tracing of carbon transfer from macrophytes to higher trophic levels. Hydrobiologia 710, 205–218. https://doi.org/10.1007/s10750-012-1366-8 (2013).
CAS Article Google Scholar
19.
Doody, T. M. et al. Quantifying water requirements of riparian river red gum (Eucalyptus camaldulensis) in the Murray-Darling Basin, Australia—Implications for the management of environmental flows. Ecohydrology 8, 1471–1487. https://doi.org/10.1002/eco.1598 (2015).
Article Google Scholar
20.
Jenkins, K. M. & Boulton, A. J. Detecting impacts and setting restoration targets in arid-zone rivers: Aquatic micro-invertebrate responses to reduced floodplain inundation. J. Appl. Ecol. 44, 823–832. https://doi.org/10.1111/j.1365-2664.2007.01298.x (2007).
Article Google Scholar
21.
Reid, M. A. & Ogden, R. W. Factors affecting diatom distribution in floodplain lakes of the southeast Murray Basin, Australia and implications for palaeolimnological studies. J. Paleolimnol. 41, 453–470. https://doi.org/10.1007/s10933-008-9236-0 (2008).
Article Google Scholar
22.
Rawcliffe, R. et al. Back to the future: Using palaeolimnology to infer long-term changes in shallow lake food webs. Freshw. Biol. 55, 600–613. https://doi.org/10.1111/j.1365-2427.2009.02280.x (2010).
Article Google Scholar
23.
Carpenter, S., Walker, B., Anderies, J. M. & Abel, N. From metaphor to measurement: Resilience of what to what?. Ecosystems 4, 765–781. https://doi.org/10.1007/s10021-001-0045-9 (2014).
Article Google Scholar
24.
Randsalu-Wendrup, L., Conley, D. J., Carstensen, J. & Fritz, S. C. Paleolimnological records of regime shifts in lakes in response to climate change and anthropogenic activities. J. Paleolimnol. https://doi.org/10.1007/s10933-016-9884-4 (2016).
Article Google Scholar
25.
Jones, J. I. & Waldron, S. Combined stable isotope and gut contents analysis of food webs in plant-dominated, shallow lakes. Freshw. Biol. 48, 1396–1407 (2003).
Article Google Scholar
26.
Vander Zanden, M. J., Clayton, M. K., Moody, E. K., Solomon, C. T. & Weidel, B. C. Stable isotope turnover and half-life in animal tissues: A literature synthesis. PLoS ONE 10, e0116182. https://doi.org/10.1371/journal.pone.0116182 (2015).
CAS Article PubMed PubMed Central Google Scholar
27.
Mao, Z., Gu, X., Zeng, Q., Zhou, L. & Sun, M. Food web structure of a shallow eutrophic lake (Lake Taihu, China) assessed by stable isotope analysis. Hydrobiologia 683, 173–183. https://doi.org/10.1007/s10750-011-0954-3 (2011).
CAS Article Google Scholar
28.
Burford, M. A., Cook, A. J., Fellows, C. S., Balcombe, S. R. & Bunn, S. E. Sources of carbon fuelling production in an arid floodplain river. Mar. Freshw. Res. 59, 224–234 (2008).
CAS Article Google Scholar
29.
Phillips, D. L. Converting isotope values to diet composition: The use of mixing models. J. Mammal. 93, 342–352. https://doi.org/10.1644/11-mamm-s-158.1 (2012).
Article Google Scholar
30.
Ventura, M. et al. Effects of increased temperature and nutrient enrichment on the stoichiometry of primary producers and consumers in temperate shallow lakes. Freshw. Biol. 53, 1434–1452. https://doi.org/10.1111/j.1365-2427.2008.01975.x (2008).
CAS Article Google Scholar
31.
Torres, I. C., Inglett, P. W., Brenner, M., Kenney, W. F. & Reddy, K. R. Stable isotope (δ13C and δ15N) values of sediment organic matter in subtropical lakes of different trophic status. J. Paleolimnol. 47, 693–706. https://doi.org/10.1007/s10933-012-9593-6 (2012).
ADS Article Google Scholar
32.
Kattel, G. et al. Tracking a century of change in trophic structure and dynamics in a floodplain wetland: Integrating palaeoecological and palaeoisotopic evidence. Freshw. Biol. 60, 711–723. https://doi.org/10.1111/fwb.12521 (2015).
CAS Article Google Scholar
33.
Kattel, G., Gell, P., Zawadzki, A. & Barry, L. Palaeoecological evidence for sustained change in a shallow Murray River (Australia) floodplain lake: Regime shift or press response?. Hydrobiologia 787, 269–290. https://doi.org/10.1007/s10750-016-2970-9 (2016).
CAS Article Google Scholar
34.
Gippel, C. J. & Blackham, D. Review of environmental impacts of flow regulation and other water resource developments in the river murray and lower darling river system. Final report by Fluvial Systems Pty Ltd, Stockton, to Murray-Darling Basin Commission, Canberra, ACT (2002).
35.
Lloyd, L. N. Kings Billabong operating plan. Report to the Mallee CMA. Lloyd Environmental, Syndal, Victoria. Final Draft 22 March 2012 (2012).
36.
Battarbee, R. W. Palaeolimnological approaches to climate change, with special regard to the biological record. Quatern. Sci. Rev. 19, 107–124 (2004).
ADS Article Google Scholar
37.
Shiel, R. J. & Dickson, A. Cladocera recorded from Australia. T. Roy. Soc. South Aust. 119, 29–40 (1995).
Google Scholar
38.
Szeroczyńska, K. & Sarmaja-Korjonen, K. Atlas of subfossil Cladocera from Central and Northern Europe (Friends of the Lower Vistula Society, Poland, 2007).
Google Scholar
39.
Grimm, E. C. CONISS: A FORTRAN 77 program for stratigraphically constrained cluster analysis by the method of incremental sum of squares. Comput. Geosci. 13, 13–35. https://doi.org/10.1016/0098-3004(87)90022-7 (1987).
ADS Article Google Scholar
40.
Schilder, J. et al. The stable isotopic composition of Daphnia ephippia reflects changes in δ13C and δ18O values of food and water. Biogeosciences 12, 3819–3830. https://doi.org/10.5194/bg-12-3819-2015 (2015).
ADS CAS Article Google Scholar
41.
Morlock, M. A. et al. Seasonality of cladoceran and bryozoan resting stage δ13C values and implications for their use as palaeolimnological indicators of lacustrine carbon cycle dynamics. J. Paleolimnol. 57, 141–156. https://doi.org/10.1007/s10933-016-9936-9 (2016).
Article Google Scholar
42.
Kattel, G. R., Battarbee, R. W., Mackay, A. W. & Birks, H. J. B. Recent ecological change in a remote Scottish mountain loch: An evaluation of a Cladocera-based temperature transfer-function. Palaeogeogr. Palaeoclimatol. Palaeoecol. 259, 51–76. https://doi.org/10.1016/j.palaeo.2007.03.052 (2008).
Article Google Scholar
43.
Vandekerkhove, J. et al. Use of ephippial morphology to assess richness of anomopods: Potentials and pitfalls. J. Limnol. 63(Suppl), 75–80 (2004).
Article Google Scholar
44.
Haines, E. B. & Montague, C. L. Food sources of estuarine invertebrates analyzed using 13C/12C ratios. Ecology 60, 48–56 (1979).
Article Google Scholar
45.
Appleby, P. G. Chronostratigraphic Techniques in Recent Sediments 171–203 (Kluwer Academic Publishers, Dordrecht, 2001).
Google Scholar
46.
Blaauw, M. & Hegaard, E. Estimation of age-depth relationships. In Tracking Environmental Change Using Lake Sediments (eds Birks, H. J. B., Juggins, S., Lotter, A. & Smol, J. P.) 379–413 (Springer, Dordrecht, 2012).
Google Scholar
47.
Oakes, J. M., Rysgaard, S., Glud, R. N. & Eyre, B. D. The transformation and fate of sub-Arctic microphytobenthos carbon revealed through 13 C-labeling. Limnol. Oceanogr. 61, 2296–2308. https://doi.org/10.1002/lno.10377 (2016).
ADS CAS Article Google Scholar
48.
Eyre, B. D., Oakes, J. M. & Middelburg, J. J. Fate of microphytobenthos nitrogen in subtropical subtidal sediments: A 15 N pulse-chase study. Limnol. Oceanogr. 61, 2108–2121. https://doi.org/10.1002/lno.10356 (2016).
ADS CAS Article Google Scholar
49.
Le Clercq, M., van der Plicht, J. & Groning, M. In Proceedings of the 16th International 14C Conference, Radiocarbon. (eds W.G. Mook & J. van der Plicht) 295–297.
50.
Böhlke, J. K. & Coplen, T. B. Reference and Inter-Comparison Materials for Stable Isotopes of Light Elements. Proceedings of a Consultants Meeting Held in Vienna 1–3 December 1993 (IAEA, Vienna, 1995).
Google Scholar
51.
Phillips, D. L. & Gregg, J. W. Source partitioning using stable isotopes: Coping with too many sources. Oecologia 136, 261–269. https://doi.org/10.1007/s00442-003-1218-3 (2003).
ADS Article PubMed Google Scholar
52.
Fry, B. Stable isotope diagrams of freshwater food webs. Ecology 72, 2293–2297 (1991).
Article Google Scholar
53.
Fry, B. & Sherr, E. B. PC measurements as indicators of carbon flow in marine and freshwater ecosystems. Contrib. Mar. Sci. 27, 13–47 (1984).
CAS Google Scholar
54.
McCutchan, J. H., Lewis, W. M., Kendall, C. & McGrath, C. C. Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur. Oikos 102, 378–390 (2003).
CAS Article Google Scholar
55.
Minagawa, M., Winter, D. A. & Kaplan, I. R. Comparison of Kjeldahl and combustion methods for measurement of nitrogen isotope ratios in organic matter. Anal. Chem. 56, 1859–1861. https://doi.org/10.1021/ac00275a023 (2002).
Article Google Scholar
56.
Roberts, J. & Kleinert, H. Managing Typha and Phragmites, Report for workshop held 16th June 2014, North Central Catchment Management Authority, Australia. (2015).
57.
CarpFactsheet. Pest Smart. https://pestsmart.org.au/pestsmart-factsheet-carp/ (2017).
58.
Minagawa, M., Winter, D. A. & Kaplan, I. R. Comparison of Kjeldahl and combustion methods for measurement of nitrogen isotope ratios in organic matter. Anal. Chem. 56(11), 1859–1861. https://doi.org/10.1021/ac00275a023 (1984).
CAS Article Google Scholar
59.
Powell, S. J., Letcher, R. A. & Croke, B. F. W. Modelling floodplain inundation for environmental flows: Gwydir wetlands, Australia. Ecol. Model. 211, 350–362. https://doi.org/10.1016/j.ecolmodel.2007.09.013 (2008).
Article Google Scholar
60.
Chiew, F., Young, W. J. & Cai, W. Current drought and future hydroclimate projections in southeast Australia and implications for water resources management. Stoch. Environ. Res. Risk Assess. 25, 601–612. https://doi.org/10.1007/s00477-010-0424-x (2011).
Article Google Scholar
61.
Powell, J. M. Watering the Garden State. (Allen & Unwin, 1989).
62.
Jeppesen, E., Leavitt, P. R., De Meester, L. & Jensen, J. P. Functional ecology and palaeolimnology: Using cladoceran remains to reconstruct anthropogenic impact. Trends Ecol. Evol. 16, 191–198 (2001).
CAS Article Google Scholar
63.
Dadswell, M. (Bureau of Immigration and Population Research, Canberra, 1980). http://www.dadswell.id.au/history/tree10/italian_essay.pdf.
64.
Scheffer, M. & Jeppesen, E. Regime shifts in shallow lakes. Ecosystems 10, 1–3. https://doi.org/10.1007/s10021-006-9002-y (2007).
Article Google Scholar
65.
Meyers, P. A. & Teranes, J. L. Sediment organic matter. In Tracking Environmental Changes Using Lake Sediments, Physical and Chemical Techniques Vol. II (eds Last, W. M. & Smol, J. P.) 239–269 (Kluwer, 2001).
66.
Xu, D. et al. Variations of food web structure and energy availability of shallow lake with long-term eutrophication: A case study from Lake Taihu, China. Clean: Soil, Air, Water 44, 1306–1314. https://doi.org/10.1002/clen.201300837 (2016).
CAS Article Google Scholar
67.
Kong, X. et al. Changes in food web structure and ecosystem functioning of a large, shallow Chinese lake during the 1950s, 1980s and 2000s. Ecol. Model. 319, 31–41. https://doi.org/10.1016/j.ecolmodel.2015.06.045 (2016).
CAS Article Google Scholar
68.
Cole, J. J. et al. Strong evidence for terrestrial support of zooplankton in small lakes based on stable isotopes of carbon, nitrogen, and hydrogen. Proc. Natl. Acad. Sci. USA 108, 1975–1980. https://doi.org/10.1073/pnas.1012807108 (2011).
ADS Article PubMed Google Scholar
69.
Rosenblatt, A. E. & Schmitz, O. J. Climate change, nutrition, and bottom-up and top-down food web processes. Trends Ecol. Evol. 31, 965–975. https://doi.org/10.1016/j.tree.2016.09.009 (2016).
Article PubMed Google Scholar
70.
Kosten, S. et al. Effects of submerged vegetation on water clarity across climates. Ecosystems 12, 1117–1129. https://doi.org/10.1007/s10021-009-9277-x (2009).
Article Google Scholar
71.
Masson, S., Angeli, N., Guillard, J. & Pinel-Alloul, B. Diel vertical and horizontal distribution of crustacean zooplankton and young of the year fish in a sub-alpine lake: An approach based on high frequency sampling. J. Plankton Res. 23, 1041–1060 (2001).
Article Google Scholar
72.
Burks, R. L., Lodge, D. M., Jeppesen, E. & Lauridsen, T. L. Diel horizontal migration of zooplankton: Costs and benefits of inhabiting the littoral. Freshw. Biol. 47, 343–365 (2002).
Article Google Scholar
73.
Karlsson, J. et al. Light limitation of nutrient-poor lake ecosystems. Nature 460, 506–509. https://doi.org/10.1038/nature08179 (2009).
ADS CAS Article PubMed Google Scholar
74.
Cloern, J. E., Canuel, E. A. & Harris, D. Stable carbon and nitrogen isotope composition of aquatic and terrestrial plants of the San Francisco Bay estuarine system. Limnol. Oceanogr. 47, 713–729 (2002).
ADS CAS Article Google Scholar
75.
Robertson, A. I., Bunn, S. E., Boon, P. I. & Walker, K. F. Sources, sinks and transformations of organic carbon in Australian floodplain rivers. Mar. Freshw. Res. 50, 1393–1398 (1999).
Article Google Scholar
76.
Adis, J. & Victoria, R. L. C3 or C4 macrophytes: a specific carbon source for the development of semi-aquatic and terrestrial arthropods in central Amazonian river-floodplains according to delta13C values. Isotopes Environ. Health Stud. 37, 193–198. https://doi.org/10.1080/10256010108033295 (2001).
CAS Article PubMed Google Scholar
77.
Johnson, B. J. et al. Carbon isotope evidence for an abrupt reduction in grasses coincident with European settlement of Lake Eyre, South Australia. Holocene 15, 888–896. https://doi.org/10.1191/0959683605hl861ra (2005).
ADS Article Google Scholar
78.
Wang, J., Gu, B., Ewe, S. M. L., Wang, Y. & Li, Y. Stable isotope compositions of aquatic flora as indicators of wetland eutrophication. Ecol. Eng. 83, 13–18. https://doi.org/10.1016/j.ecoleng.2015.06.007 (2015).
Article Google Scholar
79.
Persson, A. et al. Effects of enrichment on simple aquatic food webs. Am. Nat. 157, 669–674 (2001).
Article Google Scholar
80.
Gell, P. et al. Accessing limnological change and variability using fossil diatom assemblages, south-east Australia. River Res. Appl. 21, 257–269. https://doi.org/10.1002/rra.845 (2005).
Article Google Scholar
81.
Gell, P. & Reid, M. Assessing change in floodplain wetland condition in the Murray Darling Basin, Australia. Anthropocene 8, 39–45. https://doi.org/10.1016/j.ancene.2014.12.002 (2014).
Article Google Scholar More